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Abstract This work presents a global surrogate modelling of mechanical systems with elasto-plastic material
behaviour based on support vector regression (SVR). In general, the main challenge in surrogate modelling
is to construct an approximation model with the ability to capture the non-smooth behaviour of the system
under interest. This paper investigates the ability of the SVR to deal with discontinuous and high non-smooth
outputs. Two different kernel functions, namely the Gaussian and Matèrn 5/2 kernel functions, are examined
and compared through one-dimensional, purely phenomenological elasto-plastic case. Thereafter, an essential
part of this paper is addressed towards the application of the SVR for the two-dimensional elasto-plastic case
preceded by a finite element method. In this study, the SVR computational cost is reduced by using anisotropic
training grid where the number of points are only increased in the direction of the most important input
parameters. Finally, the SVR accuracy is improved by smoothing the response surface based on the linear
regression. The SVR is constructed using an in-houseMATLAB code, while Abaqus is used as a finite element
solver.

Keywords Nonlinear finite element method · Global surrogate modelling · Support vector regression
(SVR) · Kernel function · Elasto-plasticity

1 Introduction

Computational simulation is being increasingly used in the field of structural mechanics for design optimi-
sation, reliability, uncertainty quantification or sensitivity analysis. In practical applications, the parameters
identification and assessing the properties of mechanical structures with real physical experiments require a
large number of simulations of the high-fidelity models. However, the repeated simulations of the parame-
terised model remain an extremely time-consuming process and involve a huge computational effort. In order
to reduce the computational burden associated with predictive modelling of complex engineering problems,
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the model’s response is often replaced by a simplified mathematical model known as surrogate model, also
referred to as meta-model. In general, the surrogate model is built by considering the original model as a
black-box model which is evaluated only on a limited number of simulations. Accordingly, the approximated
model can be built to resemble the behaviour of the high-fidelity model while preserving accuracy and being
computationally cheaper to evaluate. Indeed, particularly over the last decade, different surrogate modelling
techniques have been proposed in the literature such as proper orthogonal decomposition (POD) [1–5], poly-
nomial response surfaces [6,7], polynomial chaos expansion (PCE) [8–10], Gaussian process models [11–13]
and support vector regression (SVR) [14–16]. Among all the mentioned surrogate model techniques, SVR has
attracted considerable attention in the literature due to its potential ability, efficiency and robustness in approx-
imating the model response in various engineering problems. For instance, SVR was applied for structural
crashworthiness design optimization in [17]. Pan et al. [18] utilised SVR as a surrogate model for lightweight
vehicle design. The least square support vector regression meta-model technique for sheet metal forming
optimization was proposed in [19]. Moustapha et al. applied SVR for nonlinear structural analysis in [20].
More recently, SVR was applied for structural reliability analysis in [21] and for measuring the water quality
parameters in [22]. Moreover, a comprehensive comparison between SVR and various meta-model techniques
including response surface methodology, kriging, radial basis functions and multivariate adaptive regression
splines was examined in [23]. The study shows that SVR outperformed all other meta-model techniques in
terms of prediction accuracy and robustness.

In fact, many engineering problems involve non-smooth responses which exhibit discontinuity or sharp
changes for certain combinations of the input parameters. This behaviour often occurs in the context of
nonlinear finite element method where the output response may behave non-smoothly in the parametric space.
Consequently, approximating the non-smooth response of the underlying physical problem by a smooth global
surrogate model might lead to large errors and poor prediction capability. This issue has been addressed in
the literature in [24–26]. To overcome this problem, several attempts have been proposed in the literature
based on data mining techniques such as clustering [27] which automatically determines the input domain of
similar responses. In addition, the decomposition of the input space was applied in [28] where the different
behaviours of the response surface are locally approximated. The multi-element approaches were applied in
[29–31] where the parametric space is discretised into non-overlapping elements. Thereafter, the surrogate
model is constructed element-wise which weakens the non-smoothness influence of the response within each
element. However, these techniques might impose additional computations to tackle the non-smooth behaviour
of the output. In this paper, the optimisation of SVR parameters is investigated in order to build a single and
global surrogate model with high capability to capture the non-smooth responses. The developed SVR model
is examined through nonlinear elasto-plastic problem where the output of interest exhibits highly non-smooth
behaviour in the inputs parametric space. In this paper, the accuracy and the computational cost of SVR are
studied and compared for two types of kernel functions, namely Gaussian andMatèrn 5/2 kernels.More details
about the behaviour of different types of kernel functions can be found in [32]. Thereafter, the computational
cost of SVR is reduced by applying anisotropic training grid where the training points are only increased in
the input parameter where the response behaves highly nonlinear. Finally, this paper provides a smoothing
technique of the non-smooth output response using linear regression. The smoothing method can be applied
to enhance the accuracy and prediction capability of SVR, in addition to reducing the computational cost.

2 Support vector regression

The main concept of SVR is to generate a surrogate model of the underlying complex physical response which
depends only on a given training set S = {xi , yi }ni=1 of n training points xi ∈ R

d with corresponding output
yi ∈ R. The SVR aims at approximating a linear regression function

f (x) = 〈w, φ (x)〉 + b, (1)

where 〈· , ·〉 denotes the inner product, w and b ∈ R are the regression parameters to be estimated using the
training data x and φ (x) is the transformation of x from the input space into the so called feature space F .
Here, the vector x can be mapped into the feature space by using a kernel function K

(
xi , x j

)
that defines an

inner product in this feature space as

〈φ (xi ) ,φ
(
x j

)〉 = K
(
xi , x j

)
. (2)
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Fig. 1 Nonlinear SVR structural parameters for one input parameter, the regression function f (x) := ŷ (x) and the ε−tube. The
blue dots represent the training data points

Accordingly, the solution vector w can be rewritten in its dual representation as [33]

w =
n∑

i=1

(
α̂i − αi

)
φ (xi ) =

n∑

i=1

α̃iφ (xi ) , (3)

where α̂i and αi are the Lagrange multipliers representing the dual variables. Substituting Eqs. (3) and (2)
into Eq. (1), the regression function becomes

f (x) =
n∑

i=1

α̃i K (xi , x) + b = α̃Tk + b , (4)

with α̃ = [
α̃1, · · · , α̃n

]T and k = [k1, · · · , kn]T where ki = K (xi , x). The variables α̃ and b are determined
by means of an optimisation problem. For this purpose, the ε-intensive loss function is introduced as follows
[34]:

Lε (x, y, f (x)) = |y − f (x) |ε = max (0 , |y − f (x) | − ε) . (5)

Evaluating Eq. (5) at the training data points xi leads to the definition of the slack variables

ξi + ξ̂i = Lε (xi , yi , f (xi )) . (6)

The interpretation of the parameter ε and the slack variables ξi and ξ̂i are clarified in Fig. 1.
It can be seen that, SVR aims to construct a function such that the training points are inside a tube of given

radius ε. The slack variables ξ and ξ̂ indicate how far a training point lies outside the ε-tube. For instance,
ξ̂ = 0 if the corresponding training point lies above the tube. In contrast, ξ = 0 if a training point is located
below the tube. Finally, both slack variables take the value ξ = ξ̂ = 0 if the training points are inside the tube.
Here, the points that are not strictly located inside the ε-tube are called the support vectors. Typically, the SVR
formulation written as an optimisation problem consists of minimising the ε-intensive loss function through
the calculation of its norm 1

2‖w‖2 as

min
w,b,ξ̂ ,ξ

{
1

2
‖w‖2 + C

n∑

i=1

(
ξi + ξ̂i

)
}

, i = 1, .., n,

subject to

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

〈w, φ (xi )〉 + b − yi ≤ ε + ξi ,

yi − 〈w, φ (xi )〉 − b ≤ ε + ξ̂i ,

ξ̂i ≥ 0,
ξi ≥ 0,

(7)

where C is a positive weighting constant known as the box constraint.



828 S. Funk et al.

The primary optimisation problem represented in Eq. (7) can be transformed into its dual form with the
aid of the Lagrange multiplier technique as [35,36]

max
α̂,α

{
L

(
α̂, α

)}
,

subject to

{
0 ≤ α̂i , αi ≤ C,∑n

i=1

(
α̂i − αi

) = 0,
i = 1, .., n,

(8)

where

L =
n∑

i=1

(
α̂i − αi

)
yi − ε

n∑

i=1

(
α̂i + αi

)−1

2

n∑

i=1

n∑

j=1

(
α̂i − αi

) (
α̂ j − α j

)
K

(
xi , x j

)
, (9)

and by satisfying the Karush–Kuhn–Tucker complementary conditions

αi (〈w, φ (xi )〉 + b − yi − ε − ξi ) = 0,

α̂i

(
yi − 〈w, φ (xi )〉 − b − ε − ξ̂i

)
= 0,

αi α̂i = 0,

ξi ξ̂i = 0,

(αi − C) ξi = 0,
(
α̂i − C

)
ξ̂i = 0. (10)

The solution of the optimisation problem results in the dual variables α̃ = [
α̃1 · · · α̃n

]T with α̃i = α̂i − αi and
an optimal bias term b that satisfies the following equations [37]

b = yi −
n∑

j=1

(
α̂ j − α j

)
K

(
xi , x j

) − ε for αi ∈ (0,C) ,

b = yi −
n∑

j=1

(
α̂ j − α j

)
K

(
xi , x j

) + ε for α̂i ∈ (0,C) . (11)

In general, the parameters C and ε can be chosen as

ε = iqr (Y)

13, 49
, (12)

and

C = iqr (Y)

1, 349
, (13)

where iqr(Y) is the interquartile range of the response spectrum Y = {y1, · · · , yn} of the input training data
set.

2.1 Error measures

In order to ensure the quality and the prediction accuracy of the surrogate model, two main error measures are
considered in this study. First, the overall quality of the SVR approximation is determined by using a relative
error measure

εrel =
∑n∗

i=1 εi

n∗ , (14)
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Table 1 Input parameters for one-dimensional elasto-plastic model

Parameter Minimum Maximum

Total strain ε 0 0.005
Hardening parameter k [MPa] 6000 600,000
Yield Stress σ y [MPa] 200 800

where n∗ is the number of the test data points and εi is the relative absolute error, given by

εi = |yi − ŷi |
|ỹ| , (15)

where yi = y
(
x∗
i

)
is the exact response evaluated at the test data points x∗, ŷi = ŷ

(
x∗
i

)
is the SVR surrogate

model evaluated at the same test points, and ỹ is the average output obtained from the exact response

ỹ =
∑n∗

i=1 yi
n∗ . (16)

Second, a local error estimator known asChebyshev norm estimator is used to determine the local prediction
accuracy of SVR

εmax = max{e1, · · · , en∗}, (17)

where ei is the absolute error defined as the absolute difference between each data point evaluated for the exact
response and the SVR surrogate model

ei = |yi − ŷi |. (18)

3 Numerical studies

This numerical study aims to construct a global surrogate model using SVR that is capable of capturing
highly non-smooth and nonlinear responses. In order to determine the appropriate kernel function K and the
optimal values of the SVR parameters C and ε, a one-dimensional phenomenological elasto-plastic model is
firstly considered in this study. The model consists of three inputs parameters, namely the total strain ε, the
hardening parameter k and the yield stress σ y . Thereafter, the optimised SVR parameters are applied for a two-
dimensional four-point bending beam where the response of interest exhibits highly non-smooth behaviour in
the parametric space. Furthermore, the computational cost of the SVR is reduced by using anisotropic training
grid. In addition, the accuracy of the constructed SVR is improved by smoothing the response surface using
linear regression.

3.1 One-dimensional elasto-plastic model

Consider a one-dimensional pure phenomenological elasto-plastic model where the strain ε takes a scalar
quantity. The total strain ε can be additively decomposed into an elastic and plastic strain as

ε = εe + ε p . (19)

The splitting is done by an return-mapping algorithm as described specifically for the one-dimensional case
in [38]. In this example, the associated plastic strain ε p is considered as the quantity of interests by assigning
the total strain ε, the hardening parameter k and the yield stress σ y as input parameters denoted by x =[
ε, k, σ y

]
. The variation ranges of the inputs parameters are given in Table 1. The Young’s modulus is fixed

at E = 210000MPa.
First, Cartesian grids are used as training- and test points, e.g. with eight points in each dimension

X8×8×8 = {εi }8i=1 × {ki }8i=1 × {σ y
i }8i=1. (20)
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Fig. 2 Cartesian grid X8×8×8 for the input parameters xi = [
εi , ki , σ

y
i

]512
i=1 (left) and the border surface between ε p > 0 and

ε p = 0 (right)

(a) ε = 0.005. (b) ε = 0.0028.
Fig. 3 Exact response surface ε p obtained from the exact solution by fixing the value of the total strain ε

The training grid (20) and the separation of the parametric space into an elastic region (ε p = 0) and a plastic
region (ε p >= 0) are shown in Fig. 2.

The reference response surface shown in Fig. 3 is obtained from the exact solution by fixing the value of
the total strain at ε = 0, 005 and ε = 0, 0028, respectively. It can be seen that the exact response appears to
have only nonlinear behaviour in Fig. 3a and begins to behave non-smoothly (e.g. C0-continuous in the elastic
region where ε p = 0) by decreasing the value of the total strain, as shown in Fig. 3b.

In order to adopt a kernel function that can capture the non-smooth transition of the response surface in
the input parametric space, two kernel functions are applied in this example.

First, the Gaussian kernel function defined as

K (xi , x j ) = exp
(
−‖xTi x j‖2

)
, (21)

is applied to build the surrogatemodel usingSVR.The trainingpoints are distributed uniformly in the parametric
space with ten points in each dimension. The exact response surface and the approximated one obtained from
SVR at a fixed value of the total ε = 0.0028 are clarified in Fig. 4b.

It can be seen that theGaussian kernel provides a qualitatively sufficient approximation of the exact response
surface in the range where ε p = 0, and it exhibits a small deviation in the nonlinear region where ε p > 0.

Now, the Matèrn 5/2 kernel function defined as

K (xi , x j ) =
(
1 + √

5
‖xi − x j‖

ρ
+ 5

3

‖xi − x j‖2
ρ2

)
exp

(
−√

5
‖xi − x j‖

ρ

)
, (22)
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(a) ε = 0.0028 (view 1) (b) ε = 0.0028 (view 2)
Fig. 4 Exact response surface (•) and the SVR approximation (•) using the Gaussian Kernel function at a fixed value of the total
strain ε

(a) Absolute error εmax. (b) Relative error εrel.

Fig. 5 Accuracy versus the number of training points of the SVR surrogate model using Gaussian and Matèrn kernel functions

is applied to the same problem and compared with the Gaussian kernel using the error criteria discussed in
Sect. 2.1. In both kernels, the correlation length is set to ρ = 1, and the optimal values of the SVR parameters,
namely the box constraint C and the tube width ε, are experimentally determined as

εopt = iqr (Y)

200
(23)

Copt = iqr (Y)

0, 001
. (24)

The absolute error εmax and the relative error εrel using the Gaussian and Matèrn kernel functions with respect
to the number of training points are shown in Fig. 5.

It can be seen that the Matèrn kernel function outperforms the Gaussian kernel for both error measures.
The Gaussian kernel exhibits high oscillations in the absolute error and an increment in the relative error
by increasing the number of the training points (n > 500). On the contrary, the Matèrn kernel provides
higher accuracy by increasing the number of the training points for the both errors. However, it shows a slight
oscillation for the number of training points (n > 104) due to the over-fitting phenomenon.
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Table 2 Input parameters for two-dimensional elasto-plastic model

Parameter Minimum Maximum

Young’s modulus E (MPa) 190,000 230,000
Yield stress σ y (MPa) 300 360
Displacement ū (mm) 0.4 2.8

Fig. 6 Equivalent plastic strain ε
p
eq (PEEQ) at a fixed value of applied displacement ū (mm) where del denotes the not plastified

cross section

3.2 Four-point bending beam with elasto-plastic material behaviour

In this numerical study, theSVR is investigatedon anonlinear elasto-plastic analysis of a four-point bending test.
The 200mm× 20mm beam is subjected to displacement-controlled loading at x = 60mm and x = 140mm,
respectively. The beam is supported at x = 10mm and x = 190mm. The Poisson’s ratio υ = 0.3 and a von
Mises ideal plasticity yield criterion with a plane stress assumption are considered in this example. The height
of non-plastified cross-section del is considered as a quantity of interest by assuming the Young’s modulus
E , a yield stress σ y and the applied displacement ū as inputs parameters. The variation ranges of the inputs
parameters are given in Table 2.

The contour plot of the equivalent plastic strain ε
p
eq obtained from FEM simulation at a fixed value of

displacement ū = 0.2mm is plotted in Fig. 6.
The non-plastified cross-section height at the centre of the beam is measured at the centre of gravity

(centroid) of the non-plastified elements as

del = Ne |ε peq=0 le, (25)

where Ne|ε peq=0 is the number of elements with zero centroid equivalent plastic strain and le is the element
length. In general, the equivalent plastic strain can be estimated as

ε
p
eq :=

∫ t

0

√
2

3
‖ε̇ p‖ dτ =

√
2

3
ε p · · ε p , (26)

where ε p denotes the plastic strain tensor. For the sake of higher precision, the equivalent plastic strain is
evaluated at the centroid of each element where super convergence is guaranteed, as it is clarified in Fig. 7.

In this example, the beam height at the centre contains Ne = 100 finite elements with an element width
length equal to le = 0, 2mm. The exact response surface obtained from n = 8000 FEM simulations using
Cartesian grid distributed equally in the input parametric space is calcified in Fig. 8. It can be observed that the
response surface exhibits highly non-smooth and discontinuous in addition to linear and nearly flat behaviour
for certain combinations of the input parameters. This discontinuity is mainly caused due to the fact that
the non-plastified height of the beam del is measured by counting the number of element Ne with the zero
equivalent plastic strain ε

p
eq along the beam cross section. Consequently, del can only change by the element

length le for different combination of the input parameters. In order to approximate this response surface, the
SVR model is built using the optimal parameters of the box constraint C and the tube width ε (see eqs. (23)
and (24)) using the Matèrn 5/2 kernel function.

The accuracy of the SVR approximation using the error criteria discussed in Sect. 2.1 is given in Fig. 9. It
is evident that the SVR approximation shows higher local error where the response behaves discontinuously,
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Fig. 7 Mesh quantities and its distances at the symmetry edge at the centre of the beam

(a) Exact response surface del. (b) del|ū=−0.4mm.

(c) del|ū=−1.5368mm (d) del|ū=−2.8mm

Fig. 8 Exact response surface del obtained from n = 8000 FEM simulations using Cartesian grid at different values of displace-
ment ū



834 S. Funk et al.

(a) Absolute error εmax. (b) Relative error εrel.

Fig. 9 Accuracy versus the number of training points of the SVR surrogate model using the Matèrn kernel function

Fig. 10 Anisotropic X19×10×10 training grid with n = 1900 training points (right) and the isotropic X19×19×19 training grid with
n = 6859 training points (left)

as shown in Fig. 9a. It requires approximately n = 6860 training points to obtain εmax = 0.44 absolute error.
On the contrary, the global relative error is εrel = 0.017 for the same number of training points.

In fact, the response surface shown in Fig. 8 behaves approximately linearly with respect to the yield stress
σ y and the Young’s modulus E , whereas it shows nonlinearity with respect to the displacement loading ū.
Therefore, a natural choice to reduce the computational cost of the SVR model is to assign a higher number of
training points only in the direction of the input parameter ū. The reduction in the training points in specific
dimensions can be applied by using anisotropic training grids. For the sake of comparison with the previously
used isotropic training grids, the number of training points in the anisotropic grid is reduced by half in the
parameter directions σ y and E , while it remains at the same number of training points in the direction of ū. A
comparison between the isotropic and anisotropic training grid is shown Fig. 10.

The accuracy of the SVR approximation using the anisotropic training grid in comparisonwith the isotropic
one is given in Fig. 11. It can be seen that the anisotropic training grid provides approximately the same accuracy
as the isotropic grid while reducing the computational cost by a factor of four. For instance, it requires only
n = 1900 training points to achieve εmax ≈ 0, 4mm absolute error and εrel ≈ 0, 017 relative error, whereas
the isotropic grid requires n = 6890 training points to obtain the same accuracy.

The computational time required for SVR surrogate model to obtain the target absolute error εmax ≈
0, 43mm using anisotropic training grid is given in Table 3.

Table 3 shows that after constructing the SVR surrogate model, the computational time is reduced to
0.18 s compared with 2 s computation time to run a single FEM simulation. This allows a reduction in the
computational cost by a factor of 11.
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(a) Absolute error εmax. (b) Relative error εrel.

Fig. 11 Accuracy versus the number of training points of the SVR surrogate model using anisotropic training grid

Table 3 Computational cost of SVR surrogate model using anisotropic training grid

Computational time (s)

One FE simulation 2
1900 FE simulations using anisotropic training points 3800
SVR training time with n = 1900 training points 60.7
SVR surrogate model for a single test point 0.18

3.2.1 Smoothing the response surface

In fact, the non-plastified height of the beam del discussed in Sect. 3.2 is mainly measured by counting the
number of finite elements Ne with zero centroid equivalent plastic strain ε

p
eq = 0 using Eq. (25). This mesh

dependency causes the response surface to behave discontinuously in the parametric space since the non-
plastified height de can only change by the element length le. This discontinuous behaviour can be weakened
by estimating the non-plastified height of the beam depending on the number of integration points with zero
equivalent plastic strain. However, this might only weaken the non-smoothness without relieving the mesh
dependency of the response surface del . Alternatively, this section provides a measure of the equivalent plastic
strain ε

p
eq at the centre of the beam depending on the state of all integration points across the beam cross

section, including the ones with ε
p
eq > 0 by using two linear regression functions, defined as

y+(ε̃
p
eq) = α0 + α1x

+, (27)

and

y−(ε̃
p
eq) = β0 + β1x

−, (28)

where the signs (+, −) indicate the positive and negative global y-coordinates of the integration points,
respectively, and α and β are the linear combination coefficients to be estimated. Once the linear combinations
coefficients are estimated using least squares method, the non-plastified height del can be simply calculated
as

del = y+(ε̃
p
eq = 0) − y−(ε̃

p
eq = 0). (29)

An example of the regression functions along the beam height is given in Fig. 12.
A comparison of the response surface obtained from n = 8000 combinations of the input parameters using

different measures of the equivalent plastic strain ε
p
eq , namely at the centroid of the element, integration points

and by using linear regression, is plotted in Fig. 13.
Figure 13c shows that using the linear regression to measure the equivalent plastic strain provides a smooth

transition of the quantity of interest del in the parametric space unlike the centroid and integration points
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(a) Linear regression for negative y-
coordinate integration points.

(b) Linear regression for positive y-
coordinate integration points.

Fig. 12 Linear regression smoothing technique for measuring the equivalent plastic strain ε
p
eq

(a) Centroid. (b) Integration points.

(c) Smoothed Curve.

Fig. 13 Different measures of the equivalent plastic strain ε
p
eq to estimate the quantity of interest deli using n = 8000 combination

of the input parameters sorted in descending order



Globally supported surrogate model based on support vector 837

(a) Absolute error εmax. (b) Relative error εrel.

Fig. 14 Accuracy versus the number of training points of the SVR surrogate model using different measures of the equivalent
plastic strain ε

p
eq to estimate the quantity of interest del

measures presented in Figs. 13a and b, respectively. The SVR approximation of the non-plastified height del

is given in Fig. 14.
First, it can be observed from the global relative error εrel , plotted in Fig. 14b, that the smoothed curve using

linear regression provides a significant improvement in the accuracy of the SVR approximation compared with
the centre point and the integration points. On the contrary, it exhibits approximately identical local accuracy
with the integration points, as shown in Fig. 14a. This is mainly due to the fact that the quantity of interest
del remains constant at del = 20mm when the beam is in a fully elastic state for different combination of the
input parameters. Thereafter, it exhibits C0 transition in the parametric space where the cross-section height
begins to be partially plastified where del < 20mm, as clarified in Fig. 13.

4 Conclusion

This study has presented a global surrogate modelling for mechanical systems with nonlinear elasto-plastic
material behaviour based on support vector regression (SVR). First, SVR is applied to a purely phenomeno-
logical one-dimensional material model. In the numerical study, it is shown that theMatèrn 5/2 kernel function
with appropriately optimised parameters tends to have more accurate representation of the output (the plastic
strain ε p). It outperforms theGaussian kernel. The optimal values of SVR parameters such as the box constraint
C and tube width ε are determined in the first numerical study. The results obtained from the one-dimensional
elasto-plastic example are therefore applied to continuum elasto-plasticity within the framework of the finite
element method. The four-point bending with elasto-plastic material behaviour is chosen as a technical appli-
cation. The quantity of interest is considered as the non-plastified cross-sectional height del by representing
the displacement magnitude ū, the Young’s modulus E and the yield stress σ y as inputs parameters. It is
shown that the post-processing and the element size of the finite element mesh have a significant impact on the
accuracy of the SVR approximation. Consequently, it causes the quantity of interest to behave discontinuously
in the parametric space. To overcome this problem, the quantity of interest del is smoothed over the input space
by using linear regression. The results show that SVR can provide relatively a sufficient approximation of a
highly nonlinear and non-smooth responses surfaces while the computational cost is reduced by a factor of
11. Finally, it is worth mentioning that only three input parameters are considered in this paper. However, the
accuracy and the performance of the SVR surrogate model might be affected for high-dimensional non-smooth
engineering problems.
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