
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 4, AUGUST 2019 1401

Globally Synchronized Time

via Datacenter Networks
Vishal Shrivastav , Ki Suh Lee, Han Wang, Member, IEEE, and Hakim Weatherspoon

Abstract— Synchronized time is critical to distributed systems
and network applications in a datacenter network. Unfortunately,
many clock synchronization protocols in datacenter networks
such as NTP and PTP are fundamentally limited by the char-
acteristics of packet-switched networks. In particular, network
jitter, packet buffering and scheduling in switches, and network
stack overheads add non-deterministic variances to the round
trip time, which must be accurately measured to synchronize
clocks precisely. We present the Datacenter Time Protocol (DTP),
a clock synchronization protocol that does not use packets at
all, but is able to achieve nanosecond precision. In essence,
the DTP uses the physical layer of network devices to implement
a decentralized clock synchronization protocol. By doing so,
the DTP eliminates most non-deterministic elements in clock
synchronization protocols and has virtually zero protocol over-
head since it does not add load at layer-2 or higher at all.
It does require replacing network devices, which can be done
incrementally and with very small amount of hardware resource
consumption. We demonstrate that the precision provided by
DTP in hardware is bounded by 4TD where D is the longest
distance between any two nodes in a network in terms of number
of hops and T is the period of the fastest clock. The precision
can be further improved by combining DTP with frequency
synchronization. By contrast, the precision of the state-of-the-
art protocol (PTP) is not bounded: The precision is hundreds of
nanoseconds in an idle network and can decrease to hundreds
of microseconds in a heavily congested network.

Index Terms— Time synchronization protocol, datacenter net-
works, networking hardware.

I. INTRODUCTION

S
YNCHRONIZED clocks are essential for many network

and distributed applications. Importantly, an order of mag-

nitude improvement in synchronized precision can improve

performance. For instance, if no clock differs by more than

100 nanoseconds (ns) compared to 1 microsecond (us), one-

way delay (OWD), which is an important metric for both

Manuscript received September 24, 2018; revised March 27, 2019,
May 11, 2019 and May 17, 2019; accepted May 18, 2019; approved by
IEEE/ACM TRANSACTIONS ON NETWORKING Editor P. Giaccone. Date of
publication June 11, 2019; date of current version August 16, 2019. This work
was supported in part by the SLOAN Research Fellowship received by Hakim
Weatherspoon, in part by the DARPA CSSG under Grant D11AP00266, in part
by the NSF under Grant 1053757, Grant 0424422, Grant 1440744, Grant
1422544, Grant 1413972, and Grant 1704742, in part by the European Union’s
Horizon 2020 Research and Innovation Program under the SSICLOPS Project
(agreement No. 644866), and gifts from Cisco, Intel, Altera, and Bluespec.
(Corresponding author: Vishal Shrivastav.)

V. Shrivastav and H. Weatherspoon are with the Department of
Computer Science, Cornell University, Ithaca, NY 14853 USA (e-mail:
vishal@cs.cornell.edu; hweather@cs.cornell.edu).

K. S. Lee was with Cornell University, Ithaca, NY 14853 USA. He is now
with Mode, San Francisco, CA 94134 USA.

H. Wang was with Cornell University, Ithaca, NY 14853 USA. He is now
with Barefoot Networks Inc., Santa Clara, CA 95054 USA.

Digital Object Identifier 10.1109/TNET.2019.2918782

network monitoring and research, can be measured precisely

due to the tight synchronization. Tightly synchronized clocks

allow packet level scheduling at a finer granularity, which can

result in high performant networks in rack-scale systems [53]

and in datacenter networks [44], [51]. Moreover, taking a

snapshot of forwarding tables in a network requires syn-

chronized clocks [58]. In software-defined networks (SDN),

synchronized clocks with microsecond level of precision can

be used for coordinated network updates with less packet

loss [46] and for real-time synchronous data streams [26].

In distributed systems, consensus protocols like Spanner can

increase throughput with tighter synchronization precision

bounds on TrueTime [23]. As the speeds of networks continue

to increase, the demand for precisely synchronized clocks at

nanosecond scale is necessary.

Synchronizing clocks with nanosecond level precision is

a difficult problem. It is challenging due to the problem of

measuring round trip times (RTT) accurately, which many

clock synchronization protocols use to compute the time

difference between a timeserver and a client. RTTs are prone to

variation due to characteristics of packet switching networks:

Network jitter, packet buffering and scheduling, asymmetric

paths, and network stack overhead. As a result, any protocol

that relies on RTTs must carefully handle measurement errors.

In this paper, we present the Datacenter Time Protocol

(DTP) [37] which provides nanosecond precision in hardware

and tens of nanosecond precision in software, with no protocol

message overhead. DTP uses the insight that two physically

connected Ethernet devices are always transmitting symbols,

and uses those symbols to run the synchronization protocol

in the physical layer. DTP achieves better precision than other

protocols and provides strong bounds on precision: By running

in the physical layer of a network stack, it eliminates non-

determinism from measuring RTTs and it introduces zero

Ethernet packets on the network. It is decentralized and

synchronizes clocks of every network device in a network

including network interfaces and switches.

In practice, in a 10 Gbps network, DTP achieves a bounded

precision of 25.6 nanoseconds between any directly connected

nodes, and 153.6 nanoseconds within an entire datacenter

network with six hops at most between any two nodes,

which is the longest distance in a Fat-tree [19] (i.e. no two

nodes [clocks] will differ by more than 153.6 nanoseconds).

In software, a DTP daemon can access its DTP clock with

usually better than 4T nanosecond precision resulting in an

end-to-end precision better than 4TD+8T nanoseconds where

D is the longest distance between any two servers in a

network in terms of number of hops and T is the period of

the fastest clock (≈ 6.4ns). DTP’s approach applies to full-

1063-6692 © 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted,
but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-2770-4799

1402 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 4, AUGUST 2019

duplex Ethernet standards such as 1, 10, 40, 100 Gigabit

Ethernet (See Sections II-E and IX). We further improve

DTP’s performance by synchronizing the frequency of each

clock in the network. This way we are able to achieve a

synchronization precision of one clock period (6.4ns). DTP

does require replacing network devices to support running the

protocol in the physical layer of the network. But, it can be

incrementally deployed via DTP-enabled racks and switches,

and the implementation consumes a very small amount of

hardware resources. Further, incrementally deployed DTP-

enabled racks and switches can work together and enhance

other synchronization protocols such as Precise Time Protocol

(PTP) [8] and Global Positioning System (GPS) by distributing

time with bounded nanosecond precision within a rack or set

of racks without any load on the network.

The contributions of our work are as follows:

• We present DTP that provides clock synchronization at

nanosecond resolution with bounded precision in hard-

ware and tens of nanosecond precision in software.

• We further combine DTP with frequency synchronization

to achieve single digit nanosecond synchronization pre-

cision.

• Using a FPGA-based implementation, we show that DTP

can be implemented on today’s hardware at a very modest

resource consumption.

• We demonstrate that DTP works in practice. DTP can

synchronize all devices in a datacenter network.

• We evaluate PTP as a comparison. PTP does not pro-

vide bounded precision and is affected by configuration,

implementation, and network characteristics such as load

and congestion.

• We evaluate a real application (packet scheduling) that

uses DTP and frequency synchronization, and show that

tight synchronization significantly improves the perfor-

mance of the application.

II. TOWARDS PRECISE CLOCK SYNCHRONIZATION

In this paper, we show how to improve the precision and

efficiency of clock synchronization by running a protocol in

the physical layer of the network protocol stack. In fact, two

machines physically connected by an Ethernet link are already

synchronized: Synchronization is required to reliably transmit

and receive bitstreams. The question, then, is how to use the

bit-level synchronization of the physical layer to synchronize

clocks of distributed systems in a datacenter, and how to scale

the number of synchronized machines from two to a large

number of machines in a datacenter? In this section, we state

the problem of clock synchronization, why it is hard to achieve

better precision and scalability with current approaches, and

how synchronizing clocks in the physical layer can improve

upon the state-of-the-art.

A. Terminology

A clock c of a process p1 is a function that returns a local

clock counter given a real time t, i.e. cp(t) = local clock

1We will use the term process to denote not only a process running on a
processor but also any system entities that can access a clock, e.g. a network
interface card.

counter. Note that a clock is a discrete function that returns

an integer, which we call clock counter throughout the paper.

A clock changes its counter at every clock cycle (or tick).

If clocks ci for all i are synchronized, they will satisfy

∀i, j, t |ci(t) − cj(t)| ≤ � (1)

where � is the level of precision to which clocks are synchro-

nized. Accuracy refers to how close clock counters are to true

time [52].

Each clock is driven by a quartz oscillator, which oscillates

at a given frequency. Oscillators with the same nominal fre-

quency may run at different rates due to frequency variations

caused by external factors such as temperature. As a result,

clocks that have been previously synchronized will have clock

counters that differ more and more as time progresses. The

difference between two clock counters is called the offset,

which tends to increase over time, if not resynchronized.

Therefore, the goal of clock synchronization is to periodically

adjust offsets between clocks (offset synchronization) and/or

frequencies of clocks so that they remain close to each

other [52].

If a process attempts to synchronize its clock to true time

by accessing an external clock source such as an atomic

clock, or a satellite, it is called external synchronization. If a

process attempts to synchronize with another (peer) process

with or without regard to true time, it is called internal

synchronization. Thus, externally synchronized clocks are also

internally synchronized, but not vice versa [24]. In many cases,

monotonically increasing and internally synchronized clocks

are sufficient. For example, measuring one-way delay and

processing time or ordering global events do not need true

time. As a result, in this paper, we focus on how to achieve

internal synchronization: We achieve clock synchronization of

all clocks in a datacenter with high precision; however, their

clock counters are not synchronized to an external source.

We briefly discuss how to extend the protocol to support

external synchronization in Section V.

B. Clock Synchronization

Regardless of whether the goal is to achieve inter-

nal or external synchronization, the common mechanism of

synchronizing two clocks is similar across different algorithms

and protocols: A process reads a different process’s current

clock counter and computes an offset, adjusting its own clock

frequency or clock counter by the offset.

In more detail, a process p sends a time request message

with its current local clock counter (ta in Figure 1) to a process

q (q reads p’s clock). Then, process q responds with a time

response message with its local clock counter and p’s original

clock counter (p reads q’s clock). Next, process p computes

the offset between its local clock counter and the remote clock

counter (q) and round trip time (RTT) of the messages upon

receiving the response at time td. Finally, p adjusts its clock

counter or the rate of its clock to remain close to q’s clock.

In order to improve precision, q can respond with two clock

counters to remove the internal delay of processing the time

request message: One upon receiving the time request (tb), and

SHRIVASTAV et al.: GLOBALLY SYNCHRONIZED TIME VIA DATACENTER NETWORKS 1403

Fig. 1. Common approach to measure offset and RTT.

the other before sending the time response (tc). See Figure 1.

For example, in NTP, the process p computes RTT δ and offset

θ, as follows [45]:

δ = (td − ta) − (tc − tb)

θ =
(tb + tc)

2
−

(ta + td)

2

Then, p applies these values to adjust its local clock.

C. Problems of Clock synchronization

Precision of a clock synchronization protocol is a function

of clock skew, errors in reading remote clocks, and the interval

between resynchronizations [24], [30], [34]. We discuss these

factors in turn below and how they contribute to (reduced)

precision in clock synchronization protocols.

1) Problems With Oscillator Skew: Many factors such as

temperature and quality of an oscillator can affect oscillator

skew. Unfortunately, we often do not have control over these

factors to the degree necessary to prevent reduced precision.

As a result, even though oscillators may have been designed

with the same nominal frequency, they may actually run at

slightly different rates causing clock counters to diverge over

time, requiring synchronization.

2) Problems With Reading Remote Clocks: There are many

opportunities where reading clocks can be inaccurate and lead

to reduced precision. In particular, reading remote clocks can

be broken down into multiple steps (enumerated below) where

each step can introduce random delay errors that can affect the

precision of clock synchronization.

1) Preparing a time request (reply) message

2) Transmitting a time request (reply) message

3) Packet traversing time through a network

4) Receiving a time request (reply) message

5) Processing a time request (reply) message

Specifically, there are three points where precision is

adversely affected: (a) accuracy of timestamping affects

steps 1 and 5, (b) the software network stack can introduce

errors in steps 2 and 4, and (c) network jitter can contribute

errors in step 3. We discuss each one further.

a) Precision errors introduced by timestamps: First,

accurate timestamping is not trivial. Before transmitting a

message, a process timestamps the message to embed its

own local counter value. Similarly, after receiving a message,

a process timestamps it for further processing (i.e. comput-

ing RTT). Timestamping is often inaccurate in commodity

systems [38], which is a problem. It can add random delay

errors which can prevent the nanosecond-level timestamping

TABLE I

COMPARISON BETWEEN NTP, PTP, GPS, AND DTP

required for 10 Gigabit Ethernet (10 GbE) where minimum

sized packets (64-byte) arriving at line speed can arrive every

68 nanoseconds. Improved timestamping with nanosecond

resolution via new NICs are becoming more accessible [13].

However, random jitter can still be introduced due to the issues

discussed below.

b) Precision errors introduced by network stack: Second,

transmitting and receiving messages involve a software net-

work stack (e.g., between ta and t′a in Figure 1). Most clock

synchronization protocols (e.g., NTP and PTP) run in a time

daemon, which periodically sends and receives UDP packets

between a remote process (or a time server). Unfortunately,

the overhead of system calls, buffering in kernel and network

interfaces, and direct memory access transactions can all

contribute to errors in delay [25], [27], [38]. To minimize the

impact of measurement errors, a daemon can run in kernel

space, or kernel bypassing can be employed. Nonetheless, non-

deterministic delay errors cannot be completely removed when

a protocol involves a network stack.

c) Precision errors introduced by network jitter: Third,

packet propagation time can vary since it is prone to network

jitter (e.g., between t′a and t′b or between t′c and t′d in Fig-

ure 1). Two processes are typically multiple hops away from

each other and the delay between them can vary over time

depending on network conditions and external traffic. Further,

time requests and responses can be routed through asymmetric

paths, or they may suffer different network conditions even

when they are routed through symmetric paths. As a result,

measured delay, which is often computed by dividing RTT by

two, can be inaccurate.

3) Problems With Resynchronization Frequency: The more

frequent resynchronizations, the more precise clocks can be

synchronized to each other. However, frequent resynchro-

nizations require increased message communication, which

adds overhead to the network, especially in a datacenter

network where hundreds of thousands of servers exist. The

interval between resynchronizations can be configured. It is

typically configured to resynchronize over a period of once

per second [8], which will keep network overhead low, but

on the flip side, will also adversely affect precision of clock

synchronization.

D. NTP vs. PTP vs. GPS

In this section, we compare the most popular clock syn-

chronization protocols, NTP, PTP, and GPS, in terms of the

problems of clock synchronization discussed in Section II-C.

A summary of the comparison is in Table I.

1) Network Time Protocol (NTP): The most commonly

used time synchronization protocol is the Network Time

1404 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 4, AUGUST 2019

Protocol (NTP) [45]. NTP provides millisecond precision in

a wide area network (WAN) and microsecond precision in

a local area network (LAN). In NTP, time servers construct

a tree, and top-level servers (or stratum 1) are connected to

a reliable external time source (stratum 0) such as satellites

through a GPS receiver, or atomic clocks. A client com-

municates with one of the time servers via UDP packets.

As mentioned in Section II-A, four timestamps are used to

account for processing time in the time server.

NTP is not adequate for a datacenter. It is prone to errors

that reduce precision in clock synchronization: Inaccurate

timestamping, software network stack (UDP daemon), and

network jitter. Furthermore, NTP assumes symmetric paths for

time request and response messages, which is often not true in

reality. NTP attempts to reduce precision errors via statistical

approaches applied to network jitter and asymmetric paths.

Nonetheless, the precision in NTP is still low.

2) Precise Time Protocol (PTP): The IEEE 1588 Precise

Time Protocol (PTP) [8]2 is an emerging time synchronization

protocol that can provide tens to hundreds of nanosecond

precision in a LAN when properly configured. PTP picks

the most accurate clock in a network to be the grandmaster

via the best master clock algorithm and others synchronize

to it. The grandmaster could be connected to an external

clock source such as a GPS receiver or an atomic clock.

Network devices including PTP-enabled switches form a tree

with the grandmaster as the root. Then, at each level of the

tree, a server or switch behaves as a slave to its parent and a

master to its children. When PTP is combined with Synchro-

nous Ethernet, which syntonizes frequency of clocks (SyncE,

See Section X), PTP can achieve sub-nanosecond precision

in a carefully configured environment [42], or hundreds of

nanoseconds with tens of hops in back-haul networks [41].

The protocol normally runs as follows: The grandmaster

periodically sends timing information (Sync) with IP multi-

cast packets. Upon receiving a Sync message which contains

time t0, each client sends a Delay_Req message to the

timeserver, which replies with a Delay_Res message. The

mechanism of communicating Delay_Req and Delay_Res

messages is similar to NTP, and Figure 1. Then, a client

computes the offset and adjusts its clock or frequency. If the

timeserver is not able to accurately embed t0 in the Sync

message, it emits a Follow_Up message with t0, after the

Sync message, to everyone.

To improve the precision, PTP employs a few techniques.

First, PTP-enabled network switches can participate in the

protocol as Transparent clocks or Boundary clocks in order

to eliminate switching delays. Transparent clocks timestamp

incoming and outgoing packets, and correct the time in

Sync or Follow_Up to reflect switching delay. Bound-

ary clocks are synchronized to the timeserver and work as

masters to other PTP clients, and thus provide scalability to

PTP networks. Second, PTP uses hardware timestamping in

order to eliminate the overhead of network stack. Modern

PTP-enabled NICs timestamp both incoming and outgoing

PTP messages [13]. Third, a PTP-enabled NIC has a PTP

2We use PTPv2 in this discussion.

hardware clock (PHC) in the NIC, which is synchronized to

the timeserver. Then, a PTP-daemon is synchronized to the

PHC [22], [49] to minimize network delays and jitter. Lastly,

PTP uses smoothing and filtering algorithms to carefully

measure one way delays.

As we demonstrate in Section VII-A, the precision provided

by PTP is about few hundreds of nanoseconds at best in a

10 GbE environment, and it can change (decrease) over time

even if the network is in an idle state. Moreover, the precision

could be affected by the network condition, i.e. variable and/or

asymmetric latency can significantly impact the precision of

PTP, even when cut-through switches with priority flow control

are employed [56], [57]. Lastly, it is not easy to scale the

number of PTP clients. This is mainly due to the fact that a

timeserver can only process a limited number of Delay_Req

messages per second [8]. Boundary and Transparent clocks can

potentially solve this scalability problem. However, precision

errors from Boundary clocks can be cascaded to low-level

components of the timing hierarchy tree, and can significantly

impact the precision overall [31]. Further, it is shown that

Transparent clocks often are not able to perform well under

network congestion [57], although a correct implementation of

Transparent clocks should not degrade the performance under

network congestion.

3) Global Positioning System (GPS): In order to achieve

nanosecond-level precision, GPS can be employed [4], [23].

GPS provides about 100 nanosecond precision in practice [40].

Each server can have a dedicated GPS receiver or can be con-

nected to a time signal distribution server through a dedicated

link. As each device is directly synchronized to satellites (or

atomic clocks) or is connected via a dedicated timing network,

network jitter and software network stack is not an issue.

Unfortunately, GPS based solutions are not realistic for an

entire datacenter. It is not cost effective and scalable because

of extra cables and GPS receivers required for time signals.

Further, GPS signals are not always available in a datacenter

as GPS antennas must be installed on a roof with a clear view

to the sky. However, GPS is often used in concert with other

protocols such as NTP and PTP and also DTP.

E. Datacenter Time Protocol (DTP): Why the PHY?

Our goal is to achieve nanosecond-level precision as in

GPS, with scalability in a datacenter network, and without

any network overhead. We achieve this goal by running a

decentralized protocol in the physical layer (PHY).

DTP exploits the fact that two peers3 are already synchro-

nized in the PHY in order to transmit and receive bitstreams

reliably and robustly. In particular, the receive path (RX) of

a peer physical layer recovers the clock from the physical

medium signal generated by the transmit path (TX) of the

sending peer’s PHY. As a result, although there are two

physical clocks in two network devices, they are virtually

in the same circuit (Figure 2; What each rectangle means is

explained in Section IV-A).

Further, a commodity switch often uses one clock oscillator

to feed the sole switching chip in a switch [2], i.e. all TX paths

3two peers are two physically connected ports via a cable.

SHRIVASTAV et al.: GLOBALLY SYNCHRONIZED TIME VIA DATACENTER NETWORKS 1405

Fig. 2. Clock domains of two peers. The same color represents the the same
clock domain.

of a switch use the same clock source. Given a switch and N
network devices connected to it, there are N + 1 physical

oscillators to synchronize, and all of them are virtually in the

same circuit.

As delay errors from network jitter and a software network

stack can be minimized by running the protocol in the lowest

level of a system [52], the PHY is the best place to reduce

those sources of errors. In particular, we give three reasons

why clock synchronization in the PHY addresses the problems

in Section II-C.

First, the PHY allows accurate timestamping at sub-

nanosecond scale, which can provide enough fidelity for

nanosecond-level precision. Timestamping [27], [38] in the

PHY achieves high precision by counting the number of bits

between and within packets. Timestamping in the PHY relies

on the clock oscillator that generates bits in the PHY, and, as a

result, it is possible to read and embed clock counters with a

deterministic number of clock cycles in the PHY.

Second, a software network stack is not involved in the

protocol. As the physical layer is the lowest layer of a network

protocol stack, there is always a deterministic delay between

timestamping a packet and transmitting it. In addition, it is

always possible to avoid buffering in a network device because

protocol messages can always be transmitted when there is no

other packet to send.

Lastly, there is little to no variation in delay between two

peers in the PHY. The only element in the middle of two phys-

ically communicating devices is a wire that connects them.

As a result, when there is no packet in transit, the delay in

the PHY measured between two physically connected devices

will be the time to transmit bits over the wire (propagation

delay, which is always constant with our assumptions in

Section III-A), a few clock cycles required to process bits

in the PHY (which can be deterministic), and a clock domain

crossing (CDC) which can add additional random delay. A

CDC is necessary for passing data between two clock domains,

namely between the TX and RX paths. Synchronization FIFOs

are commonly used for a CDC. In a synchronization FIFO,

a signal from one clock domain goes through multiple flip-

flops in order to avoid metastability from the other clock

domain. As a result, one random delay could be added until

the signal is stable to read.

Operating a clock synchronization protocol in the physical

layer not only provides the benefits of zero to little delay

errors, but also zero overhead to a network: There is no need

for injection of packets to implement a clock synchronization

protocol. A network interface continuously generates either

Ethernet frames or special characters (Idle characters) to main-

tain a link connection to its peer. We can exploit those special

characters in the physical layer to transmit messages (We will

discuss this in detail in Section IV). The Ethernet standard [9]

requires at least twelve idle characters (/I/) between any two

Ethernet frames regardless of link speed to allow the receiving

MAC layer to prepare for the next packet. As a result, if we

use these idle characters to deliver protocol messages (and

revert them back to idle characters), no additional packets will

be required. Further, we can send protocol messages between

every Ethernet frame without degrading the bandwidth of

Ethernet and for different Ethernet speeds (See Section IX).

III. DATACENTER TIME PROTOCOL

In this section, we present the Datacenter Time Protocol

(DTP) : Assumptions, protocol, and analysis. The design goals

for the protocol are the following:

• Internal synchronization with nanosecond precision.

• No network overhead: No packets are required for the

synchronization protocol.

A. Assumptions

We assume, in a 10 Gigabit Ethernet (10 GbE) network,

all network devices are driven by oscillators that run at

slightly different rates due to oscillator skew, but operate

within a range defined by the IEEE 802.3 standard. The

standard requires that the clock frequency fp be in the range of

[f−0.0001f, f+0.0001f]4 where f is 156.25 MHz in 10 GbE

(See Section IV-A).

We assume that there are no “two-faced”

clocks [35] or Byzantine failures which can report different

clock counters to different peers.

We further assume that the length of Ethernet cables is

bounded and, thus, network propagation delay is bounded. The

propagation delay of optic fiber is about 5 nanoseconds per

meter (2/3 × the speed of light, which is 3.3 nanoseconds per

meter in a vacuum) [32]. In particular, we assume the longest

optic fiber inside a datacenter is 1000 meters, and as a result

the maximum propagation delay is at most 5 us. Most cables

inside a datacenter are 1 to 10 meters as they are typically

used to connect rack servers to a Top-of-Rack (ToR) switch;

5 to 50 nanoseconds would be the more common delay.

B. Protocol

In DTP, every network port (of a network interface or a

switch) has a local counter in the physical layer that increments

at every clock tick. DTP operates via protocol messages

between peer network ports: A network port sends a DTP

message timestamped with its current local counter to its peer

and adjusts its local clock upon receiving a remote counter

value from its peer. We show that given the bounded delay

and frequent resynchronizations, local counters of two peers

can be precisely synchronized in Section III-C.

Since DTP operates and maintains local counters in the

physical layer, switches play an important role in scaling up

the number of network devices synchronized by the proto-

col. As a result, synchronizing across all the network ports

of a switch (or a network device with a multi-port network

4This is ±100 parts per million (ppm).

1406 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 4, AUGUST 2019

Algorithm 1 DTP inside a network port

STATE:

gc : global counter, from Algorithm 2

lc ← 0 : local counter, increments at every clock tick

d ← 0 : measured one-way delay to peer p
TRANSITION:

T0: After the link is established with p
lc ← gc
Send (Init, lc)

T1: After receiving (Init, c) from p
Send (Init-Ack, c)

T2: After receiving (Init-Ack, c) from p
d ← (lc − c − α)/2

T3: After a timeout

Send (Beacon, gc)

T4: After receiving (Beacon, c) from p
lc ← max(lc, c + d)

interface) requires an extra step: DTP needs to synchronize the

local counters of all local ports. Specifically, DTP maintains

a global counter that increments every clock tick, but also

always picks the maximum counter value between it and all

of the local counters.

DTP follows Algorithm 1 to synchronize the local counters

between two peers. The protocol runs in two phases: INIT

and BEACON phases.

INIT phase. The purpose of the INIT phase is to measure

the one-way delay between two peers. The phase begins when

two ports are physically connected and start communicating,

i.e. when the link between them is established. Each peer mea-

sures the one-way delay by measuring the time between send-

ing an INIT message and receiving an associated INIT-ACK

message, i.e. measure RTT, then divide the measured RTT by

two (T0, T1, and T2 in Algorithm 1).

As the delay measurement is processed in the physical layer,

the RTT consists of a few clock cycles to send / receive

the message, the propagation delays of the wire, and the

clock domain crossing (CDC) delays between the receive and

transmit paths. Given the clock frequency assumption, and the

length of the wire, the only non-deterministic part is the CDC.

We analyze how they affect the accuracy of the measured delay

in Section III-C. Note that α in Transition 2 in Algorithm 1

is there to control the non-deterministic variance added by the

CDC (See Section III-C).

BEACON phase. During the BEACON phase, two ports

periodically exchange their local counters for resynchroniza-

tion (T3 and T4 in Algorithm 1). Due to oscillator skew,

the offset between two local counters will increase over time.

A port adjusts its local counter by selecting the maximum

of the local and remote counters upon receiving a BEACON

message from its peer. Since BEACON messages are exchanged

frequently, hundreds of thousands of times a second (every few

microseconds), the offset can be kept to a minimum.

Scalability and multi hops. Switches and multi-port net-

work interfaces have two to ninety-six ports in a single device

Algorithm 2 DTP inside a network device / switch

STATE:

gc: global counter

{lci}: local counters

TRANSITION:

T5: at every clock tick

gc ←max(gc + 1, {lci})

that need to be synchronized within the device.5 As a result,

DTP always picks the maximum of all local counters {lci}
as the value for a global counter gc (T5 in Algorithm 2).

Then, each port transmits the global counter gc in a BEACON

message (T3 in Algorithm 1).

Choosing the maximum allows any counter to increase

monotonically at the same rate and allows DTP to scale: The

maximum counter value propagates to all network devices

via BEACON messages, and frequent BEACON messages keep

global counters closely synchronized (Section III-C).

Network dynamics. When a device is turned on, the local

and global counters of a network device are set to zero.

The global counter starts incrementing when one of the local

counters starts incrementing (i.e., a peer is connected), and

continuously increments as long as one of the local counters

is incrementing. However, the global counter is set to zero

when all ports become inactive. Thus, the local and global

counters of a newly joining device are always less than

those of other network devices in a DTP network. We use

a special BEACON_JOIN message in order to make large

adjustments to a local counter. This message is communicated

after INIT_ACK message in order for peers to agree on the

maximum counter value between two local counters. When a

network device with multiple ports receives a BEACON_JOIN

message from one of its ports, it adjusts its global clock

and propagates BEACON_JOIN messages with its new global

counter to other ports. Similarly, if a network is partitioned and

later restored, two subnets will have different global counters.

When the link between them is re-established, BEACON_JOIN

messages allow the two subnets to agree on the same (maxi-

mum) clock counter.

Handling failures. There are mainly two types of failures

that need to be handled appropriately: Bit errors and faulty

devices. IEEE 802.3 standard supports a Bit Error Rate (BER)

objective of 10−12 [9], which means one bit error could happen

every 100 seconds in 10 GbE. However, it is possible that a

corrupted bit coincides with a DTP message and could result

in a big difference between local and remote counters. As a

result, DTP ignores messages that contain remote counters off

by more than eight (See Section III-C), or bit errors not in the

three least significant bits (LSB). Further, in order to prevent

bit errors in LSBs, each message could include a parity bit

that is computed using three LSBs. As BEACON messages

are communicated very frequently, ignoring messages with bit

errors does not affect the precision.

5Local counters of a multi-port device will not always be the same because
remote clocks run at different rates. As a result, a multi-port device must
synchronize local counters.

SHRIVASTAV et al.: GLOBALLY SYNCHRONIZED TIME VIA DATACENTER NETWORKS 1407

Similarly, if one node makes too many jumps (i.e. adjusting

local counters upon receiving BEACON messages) in a short

period of time, it assumes the connected peer is faulty. Given

the latency, the interval of BEACON messages, and maximum

oscillator skew between two peers, one can estimate the max-

imum offset between two clocks and the maximum number of

jumps. If a port receives a remote counter outside the estimated

offset too often, it considers the peer to be faulty and stops

synchronizing with the faulty device.

C. Analysis

As discussed in Section II-A, the precision of clock

synchronization is determined by oscillator skew, interval

between resynchronizations, and errors in reading remote

clocks [24], [30], [34]. In this section, we analyze DTP to

understand its precision in regards to the above factors. In par-

ticular, we analyze the bounds on precision (clock offsets) and

show the following:

• The clock offset of two peers (directly connected nodes)

is bounded by four clock ticks.

• The clock offset of two nodes separated by D hops is

bounded by 4D clock ticks.

Theorem 1 [Direct connection precision]: The clock offset

of two directly connected nodes is bounded by four clock

ticks or 4T where T is 6.4ns. In 10GbE the offset of two

directly connected nodes is bounded by 25.6ns.

Proof: For simplicity, we use two peers p and q, and use

Tp (fp) and Tq (fq) to denote the period (frequency) of p and

q’s oscillator. We assume for analysis p’s oscillator runs faster

than q’s oscillator, i.e. Tp < Tq (or fp > fq). In DTP, clock

tick errors can happen due to two reasons.

Two tick errors due to OWD. In DTP, the one-way delay

(OWD) between two peers, measured during the INIT phase,

is assumed to be stable, constant, and symmetric in both

directions. In practice, however, the delay can be measured

differently depending on when it is measured due to oscillator

skew and how the synchronization FIFO between the receive

and transmit paths interact. Further, the OWD of one path

(from p to q) and that of the other (from q to p) might not be

symmetric due to the same reasons. We show that DTP still

works with very good precision despite any errors introduced

by measuring the OWD.

Suppose p sends an INIT message to q at time t, and the

delay between p and q is d clock cycles. Given the assumption

that the length of cables is bounded, and that oscillator skew is

bounded, the delay is d cycles for both directions. The message

arrives at q at t + Tpd (i.e. the elapsed time is Tpd). Since

the message can arrive in the middle of a clock cycle of q’s

clock, it can wait up to Tq before q processes it. Further,

passing data from the receipt path to the transmit path requires

a synchronization FIFO between two clock domains, which

can add one more cycle randomly, i.e. the message could spend

an additional Tq before it is received. Then, the INIT-ACK

message from q takes Tqd time to arrive at p, and it could wait

up to 2 Tp before p processes it. As a result, it takes up to a

total of Tpd+2Tq +Tqd+2Tp time to receive the INIT-ACK

message after sending an INIT message. Thus, the measured

OWD, dp, at p is,

dp ≤ b
Tpd + 2Tq + Tqd + 2Tp

Tp

c/2 = d + 2

In other words, dp could be one of d, d + 1, or d + 2 clock

cycles depending on when it is measured. As q’s clock is

slower than p, the clock counter of q cannot be larger than p.

However, if the measured OWD, dp, is larger than the actual

OWD, d, then p will think q is faster and adjust its offset more

frequently than necessary (See Transition T 4 in Algorithm 1).

This, in consequence, causes the global counter of the network

to go faster than necessary. As a result, α in T2 of Algorithm 1

is introduced.

α = 3 allows dp to always be less than d. In particular,

dp will be d − 1 or d; however, dq will be d − 2 or d − 1.

Fortunately, a measured delay of d−2 at q does not make the

global counter go faster, but it can increase the offset between

p and q to be two clock ticks most of the time, which will

result in q adjusting its counter by one only when the actual

offset is two.

Two tick errors due to the BEACON interval. The BEACON

interval, period of resynchronization, plays a significant role

in bounding the precision. We show that a BEACON interval

of less than 5000 clock ticks can bound the clock offset to

two ticks between peers.

Let Cp(X) be a clock that returns a real time t at which

cp(t) changes to X . Note that the clock is a discrete function.

Then, cp(t) = X means, the value of the clock is stably X at

least after t − Tp, i.e. t − Tp < Cp(X) ≤ t.
Suppose p and q are synchronized at time t1, i.e. cp(t1) =

cq(t1) = X . Also suppose cp(t2) = X + ∆P , and cq(t2) =
X +∆Q at time t2, where ∆P is the difference between two

counter values of clock p at time t1 and t2. Then,

t2 − Tp < Cp(X + ∆P) = Cp(X) + ∆PTp ≤ t2

t2 − Tq < Cq(X + ∆Q) = Cq(X) + ∆QTq ≤ t2

Then, the offset between two clocks at t2 is,

∆t(fp − fq) − 2 < ∆P − ∆Q < ∆t(fp − fq) + 2

where ∆t = t2 − t1.

Since the maximum frequency of a NIC clock oscillator is

1.0001f , and the minimum frequency is 0.9999f , ∆t(fp−fq)
is always smaller than 1 if ∆t is less than 32 us. As a result,

∆P −∆Q can be always less than or equal to 2, if the interval

of resynchronization (∆t) is less than 32 us (≈ 5000 ticks).

Considering the maximum latency of the cable is less than 5 us

(≈ 800 ticks), a beacon interval less than 25 us (≈ 4000 ticks)

is sufficient for any two peers to synchronize with 12.8 ns (=
2 ticks) precision.

As a result, the offset of two directly connected nodes is

bounded by four clock ticks. �

Theorem 2 [Multi hop precision]: The clock offset of any

two nodes in the network is bounded by 4TD where 4 is the

bound for the clock offset between directly connected nodes,

T is the clock period and D is the longest distance in terms

of the number of hops.

Proof: Note that DTP always picks the maximum clock

counter of all nodes as the global counter. All clocks will

1408 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 4, AUGUST 2019

Fig. 3. Low layers of a 10 GbE network stack. Grayed rectangles are DTP
sublayers, and the circle represents a synchronization FIFO.

always be synchronized to the fastest clock in the network,

and the global counter always increases monotonically. Then,

the maximum offset between any two clocks in a network is

between the fastest and the slowest. As discussed above, any

link between them can add at most two offset errors from the

measured delay and two offset errors from BEACON interval.

Therefore, the maximum offset within a DTP-enabled network

is bounded by 4TD where D is the longest distance between

any two nodes in a network in terms of number of hops, and T

is the period of the clock as defined in the IEEE 802.3 standard

(≈ 6.4ns). �

IV. IMPLEMENTATION

In this section, we briefly discuss the IEEE 802.3ae 10 Giga-

bit Ethernet standard before presenting how we modify the

physical layer to support DTP.

A. IEEE 802.3 Standard

According to the IEEE 802.3ae, the physical layer (PHY)

of 10 GbE consists of three sublayers (Figure 3): The Physical

Coding Sublayer (PCS), the Physical Medium Attachment

(PMA), and the Physical Medium Dependent (PMD). The

PMD is responsible for transmitting the outgoing symbol-

stream over the physical medium and receiving the incoming

symbolstream from the medium. The PMA is responsible for

clock recovery and (de-)serializing the bitstream. The PCS

performs 64b/66b encoding / decoding.

In the PHY, there is a 66-bit Control block (/E/), which

encodes eight seven-bit idle characters (/I/). As the standard

requires at least twelve /I/s in an interpacket gap, it is

guaranteed to have at least one /E/ block preceding any

Ethernet frame.6 Moreover, when there is no Ethernet frame,

there are always /E/ blocks: 10 GbE is always sending at

10 Gbps and sends /E/ blocks continuously if there are no

Ethernet frames to send.

As briefly mentioned in Section II, the PCS of the transmit

path is driven by the local oscillator, and the PCS of the receive

6Full-duplex Ethernet standards such as 1, 10, 40, 100 GbE send at least
twelve /I/s (at least one /E/) between every Ethernet frame.

path is driven by the recovered clock from the incoming

bitstream. See Figure 2.

B. DTP-Enabled PHY

The control logic of DTP in a network port consists of

Algorithm 1 from Section III and a local counter. The local

counter is a 106-bit integer (2 × 53 bits) that increments at

every clock tick (6.4 ns = 1/156.25 MHz), or is adjusted

based on received BEACON messages. Note that the same

oscillator drives all modules in the PCS sublayer on the

transmit path and the control logic that increments the local

counter. i.e. they are in the same clock domain. As a result,

the DTP sublayer can easily insert the local clock counter into

a protocol message with no delay.

The DTP-enabled PHY is illustrated in Figure 3. Figure 3

is exactly the same as the PCS from the standard, except that

Figure 3 has DTP control, TX DTP, and RX DTP sublayers

shaded in gray. Specifically, on the transmit path, the TX

DTP sublayer inserts protocol messages, while, on the receive

path, the RX DTP sublayer processes incoming protocol

messages and forwards them to the control logic through a

synchronization FIFO. After the RX DTP sublayer receives

and uses a DTP protocol message from the Control block

(/E/), it replaces the DTP message with idle characters

(/I/s , all 0’s) as required by the standard such that higher

network layers do not know about the existence of the DTP

sublayer. Lastly, when an Ethernet frame is being processed

in the PCS sublayer in general, DTP simply forwards blocks

of the Ethernet frame unaltered between the PCS sublayers.

C. DTP Hardware Implementation Overhead

In this section we quantify the overhead of DTP’s hardware

implementation. We implemented DTP on Altera DE5 board

comprising Stratix V FPGA and four 10Gbps ports. The

basic logic block in Altera FPGAs is an Adaptive Logic

Module (ALM), which typically comprises small number of

look-up table (LUT) blocks, registers, arithmetic blocks, and

control signals. We report the amount of Adaptive Logic

Modules (ALMs) and memory consumed in the FPGA-based

implementation of DTP. DTP adds three modules to a standard

Ethernet PHY (Figure 3): (i) DTP TX, (ii) DTP RX, and

(iii) DTP CTRL. The three DTP modules combined consumed

4211 ALMs (1.7% of available ALMs) and 1 Mbits of

SRAM (2% of available SRAM). Thus, DTP implementation

consumes nominal hardware resources.

D. DTP-Enabled Network Device

A DTP-enabled device (Figure 4) can be implemented with

additional logic on top of the DTP-enabled ports. The logic

maintains the 106-bit global counter as shown in Algorithm 2,

which computes the maximum of the local counters of all ports

in the device. The computation can be optimized with a tree-

structured circuit to reduce latency, and can be performed in

a deterministic number of cycles. When a switch port tries to

send a BEACON message, it inserts the global counter into the

message, instead of the local counter. Consequently, all switch

ports are synchronized to the same global counter value.

SHRIVASTAV et al.: GLOBALLY SYNCHRONIZED TIME VIA DATACENTER NETWORKS 1409

Fig. 4. DTP enabled four-port device.

E. Protocol Messages

DTP uses /I/s in the /E/ control block to deliver pro-

tocol messages. There are eight seven-bit /I/s in an /E/

control block, and, as a result, 56 bits total are available

for a DTP protocol message per /E/ control block. Mod-

ifying control blocks to deliver DTP messages does not

affect the physics of a network interface since the bits are

scrambled to maintain DC balance before sending on the

wire (See the scrambler/descrambler in Figure 3). More-

over, using /E/ blocks do not affect higher layers since

DTP replaces /E/ blocks with required /I/s (zeros) upon

processing them.

A DTP message consists of a three-bit message type, and

a 53-bit payload. There are five different message types

in DTP: INIT, INIT-ACK, BEACON, BEACON-JOIN, and

BEACON-MSB. As a result, three bits are sufficient to encode

all possible message types. The payload of a DTP message

contains the local (global) counter of the sender. Since the

local counter is a 106-bit integer and there are only 53 bits

available in the payload, each DTP message carries the 53 least

significant bits of the counter. In 10 GbE, a clock counter

increments at every 6.4 ns (=1/156.25MHz), and it takes about

667 days to overflow 53 bits. DTP occasionally transmits the

53 most significant bits in a BEACON-MSB message in order

to prevent overflow.

As mentioned in Section IV-A, it is always possible to

transmit one protocol message after/before an Ethernet frame

is transmitted. This means that when the link is fully saturated

with Ethernet frames DTP can send a BEACON message every

200 clock cycles (≈ 1280 ns) for MTU-sized (1522B) frames7

and 1200 clock cycles (≈ 7680 ns) at worst for jumbo-sized

(≈9kB) frames. The PHY requires about 191 66-bit blocks and

1,129 66-bit blocks to transmit a MTU-sized or jumbo-sized

frame, respectively. This is more than sufficient to precisely

synchronize clocks as analyzed in Section III-C and evalu-

ated in Section VII. Further, DTP communicates frequently

when there are no Ethernet frames, e.g every 200 clock

cycles, or 1280 ns: The PHY continuously sends /E/ when

there are no Ethernet frames to send.

V. PRACTICAL CONSIDERATIONS

A. Accessing DTP Counters

Applications access the DTP counter via a DTP daemon

that runs in each server. A DTP daemon regularly (e.g., once

per second) reads the DTP counter of a network interface

7It includes 8-byte preambles, an Ethernet header, 1500-byte payload and a
checksum value.

card via a memory-mapped IO in order to minimize errors

in reading the counter. Further, TSC counters are employed

to estimate the frequency of the DTP counter. A TSC

counter is a reliable and stable source to implement software

clocks [25], [50], [55]. Modern systems support invariant

TSC counters that are not affected by CPU power states [10].

Applications can accurately estimate DTP counters via a

get_DTP_counter API that interpolates the DTP counter

at any moment using TSC counters and the estimated DTP

clock frequency. Similar techniques are used to implement

gettimeofday(). The details of how a DTP daemon

works and how the API is implemented is standard. Note

that DTP counters of each NIC are running at the same rate

on every server in a DTP-enabled network and, as a result,

software clocks that DTP daemons implement are also tightly

synchronized.

B. External Synchronization

We discuss one simple approach that extends DTP to sup-

port external synchronization, although there could be many

other approaches. One server (either a timeserver or a com-

modity server that uses PTP or NTP) periodically (e.g., once

per second) broadcasts a pair, DTP counter and universal time

(UTC), to other servers. Upon receiving consecutive broadcast

messages, each DTP daemon estimates the frequency ratio

between the received DTP counters and UTC values. Next,

applications can read UTC by interpolating the current DTP

counter with the frequency ratio in a similar fashion as the

method discussed in Section V-A. Again, DTP counters of

each NIC are running at the same rate, and as a result, UTC

at each server can also be tightly synchronized with some

loss of precision due to errors in reading system clocks.

It is also possible to combine DTP and PTP to improve

the precision of external synchronization further: A time-

server timestamps sync messages with DTP counters, and

delays between the timeserver and clients are measured using

DTP counters.

C. Incremental Deployment

DTP requires the physical layer to be modified. As a result,

in order to deploy DTP, network devices must be modified.

As there is usually a single switching chip inside a network

device [2], the best strategy to deploy DTP is to implement

it inside the switching chip. Then network devices with DTP-

enabled switching chips can create a DTP-enabled network.

This would require updating the firmware, or possibly replac-

ing the switching chip. PTP uses a similar approach in order

to improve precision: PTP-enabled switches have a dedicated

logic inside the switching chip for processing PTP packets and

PTP-enabled NICs have hardware timestamping capabilities

and PTP hardware clocks (PHC). Therefore, the cost of

achieving the best configuration of PTP is essentially the same

as the cost of deploying DTP, as both require replacing NICs

and switches.

An alternative way to deploy DTP is to use FPGA-based

devices. FPGA-based NICs and switches [5], [47] have more

flexibility of updating firmware. Further, customized PHYs can

1410 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 4, AUGUST 2019

be easily implemented and deployed with modern FPGAs that

are equipped with high-speed transceivers.

One of the limitations of DTP is that it is not possible to

deploy DTP on routers or network devices with multiple line

cards without sacrificing precision. Network ports on separate

line cards typically communicate via a bus interface. As a

result, it is not possible to maintain a single global counter

with high precision over a shared bus, although each line

card can have its own separate global counter. Fortunately,

as long as all switches and line cards form a connected graph,

synchronization can be maintained.

Replacing or updating switches and NICs in a datacenter

at once is not possible due to both cost and availability.

Importantly, DTP can be incrementally deployed: NICs and a

ToR switch within the same rack are updated at the same time,

and aggregate and core switches are updated incrementally

from the lower levels of a network topology. Each DTP-

enabled rack elects one server to work as a master for PTP

/ NTP. Then, servers within the same rack will be tightly

synchronized, but servers from different racks are less tightly

synchronized depending on the performance of PTP / NTP.

When two independently DTP-enabled racks start communi-

cating via a DTP-enabled switch, servers from two racks will

be tightly synchronized both internally and externally after

communicating BEACON_JOIN messages.

D. Following the Fastest Clock

DTP assumes that oscillators of DTP-enabled devices

operate within a range defined by IEEE 802.3 standard

(Section III-A). However, in practice, this assumption can be

broken, and an oscillator in a network could run at a frequency

outside the range specified in the standard. This could lead

to many jumps from devices with slower oscillators. More

importantly, the maximum offset between two devices could

be larger than 4TD. One approach to address the problem is to

choose a network device with a reliable and stable oscillator

as a master node. Then, through DTP daemons, it is possible

to construct a DTP spanning tree using the master node as

a root. This is similar to PTP’s best master clock algorithm.

Next, at each level of the tree, a node uses the remote counter

of its parent node as the global counter. If an oscillator of a

child node runs faster than its parent node, the local counter

of a child should stall occasionally in order to keep the local

counter monotonically increasing. We leave this design as a

future work.

VI. DTP WITH FREQUENCY SYNCHRONIZATION

As stated in Theorem 2, DTP achieves bounded precision

of 4TD between the clocks of any two nodes in the network,

where T is the clock period and D is the longest distance

between any two nodes in terms of number of hops. However,

the above bound assumes that the clocks are not frequency

synchronized. If we combine DTP with frequency synchro-

nization, we can achieve synchronization precision of less

than a clock period. We achieve frequency synchronization

on top of DTP by distributing a global clock across all the

nodes in the network. In our testbed, we use the PCIe clock

Fig. 5. Evaluation Setup

signal of the server connecting all the FPGAs as the global

clock signal, and feed it into the respective Phase-loop locked

(PLL) circuits on each FPGA. This way all the FPGAs are

frequency synchronized, in addition to time synchronized via

DTP. With this setup, we are able to achieve the worst-case

synchronization precision of 6.4ns between any two nodes in

the network.

VII. EVALUATION

In this section, we attempt to answer following questions:

• Precision: In Section III-C, we showed that the precision

of DTP is bounded by 4TD where D is the longest

distance between any two nodes in terms of number of

hops. In this section, we demonstrate and measure that

precision is indeed within the 4TD bound via a prototype

and deployed system.

• Scalability: We demonstrate that DTP scales as the num-

ber of hops of a network increases.

Further, we measured the precision of accessing DTP from

software and compared DTP against PTP.

A. Evaluation Setup

For the DTP prototype and deployment, we used pro-

grammable NICs plugged into commodity servers: We used

DE5-Net boards from Terasic [3]. A DE5-Net board is an

FPGA development board with an Altera Stratix V [15]

and four Small Form-factor Pluggable (SFP+) modules. We

implemented the DTP sublayer and the 10 GbE PHY using

the Bluespec language [1] and Connectal framework [33].

We deployed DE5-Net boards on a cluster of twelve Dell

R720 servers. Each server was equipped with two Xeon E5-

2690 processors and 96 GB of memory. All servers were in the

same rack in a datacenter. The temperature of the datacenter

was stable and cool.

We created a DTP network as shown in Figure 5: A tree

topology with the height of two, i.e. the maximum number of

hops between any two leaf servers was four. DE5-Net boards

of the root node, S0, and intermediate nodes, S1 ∼ S3, were

configured as DTP switches, and those of the leaves (S4 ∼
S11) were configured as DTP NICs. We used 10-meter Cisco

copper twinax cables to a DE5-Net board’s SFP+ modules.

The measured one-way delay (OWD) between any two DTP

devices was 43 to 45 cycles (≈ 280 ns).

We also created a PTP network with the same servers as

shown in Figure 5 (PTP used Mellanox NICs). Each Mellanox

NIC was a Mellanox ConnectX-3 MCX312A 10G NIC. The

SHRIVASTAV et al.: GLOBALLY SYNCHRONIZED TIME VIA DATACENTER NETWORKS 1411

Fig. 6. Precision of DTP and PTP. A tick is 6.4 nanoseconds. (a) DTP: BEACON interval = 200. Heavily loaded with MTU packets. (b) DTP: BEACON
interval = 1200. Heavily loaded with Jumbo packets. (c) DTP: Offset distribution from S3. (BEACON interval = 1200 cycles). (d) PTP: Idle network.
(e) PTP: Medium loaded, (f) PTP: Heavily loaded.

Mellanox NICs supported hardware timestamping for incom-

ing and outgoing packets which was crucial for achieving high

precision in PTP. A VelaSync timeserver from Spectracom was

deployed as a PTP grandmaster clock. An IBM G8264 cut-

through switch was used to connect the servers including the

timeserver. As a result, the number of hops between any two

servers in the PTP network was always two. Cut-through

switches are known to work well in PTP networks [57].

We deployed a commercial PTP solution (Timekeeper [16])

in order to achieve the best precision in 10 Gigabit Ethernet.

Note that the IBM switch was configured as a transparent

clock.

The timeserver multicasted PTP timing information every

second, i.e. the synchronization rate was once per second,

which was the recommended sync rate by the provider. Note

that each sync message was followed by Follow_Up and

Announce messages. Further, we enabled PTP UNICAST

capability, which allowed the server to send unicast sync

messages to individual PTP clients once per second in addition

to multicast sync messages. In our configuration, a client sent

two Delay_Req messages per 1.5 seconds.

B. Methodology

Measuring offsets at nanosecond scale is a very challenging

problem. One approach is to let hardware generate pulse

per second (PPS) signals and compare them using an oscil-

loscope. Another approach, which we use, is to measure the

precision directly in the PHY. Since we are mainly interested in

the clock counters of network devices, we developed a logging

mechanism in the PHY.

Each leaf node generates and sends a 106-bit log message

twice per second to its peer, a DTP switch. DTP switches also

generate log messages between each other twice per second.

A log message contains a 53-bit estimate of the DTP counter

generated by the DTP daemon, t0 (See Section V), which is

then timestamped in the DTP layer with the lower 53-bits

of the global counter (or the local counter if it is a NIC).

The 53-bit timestamp, t1, is appended to the original message

generated by the DTP daemon, and, as a result, a 106-bit

Fig. 7. Precision of DTP daemon. (a) Before smoothing: Raw offsetsw .
(b) After smoothing: Window size = 10.

message is generated by the sender. Upon arriving at an

intermediate DTP switch, the log message is timestamped

again, t2, in the DTP layer with the receiver’s global counter.

Then, the original 53-bit log message (t0) and two timestamps

(t1 from the sender and t2 from the receiver) are delivered

to a DTP daemon running on the receiver. By computing

offsethw = t2 − t1 −OWD where OWD is the one-way delay

measured in the INIT phase, we can estimate the precision

between two peers. Similarly, by computing offsetsw = t1−t0,

we can estimate the precision of a DTP daemon. Note that

offsethw includes the non-deterministic variance from the syn-

chronization FIFO and offsetsw includes the non-deterministic

variance from the PCIe bus. We can accurately approximate

both the offsethw and offsetsw with this method.

For PTP, the Timekeeper provides a tool that reports mea-

sured offsets between the timeserver and all PTP clients. Note

that our Mellanox NICs have PTP hardware clocks (PHC).

For a fair comparison against DTP that synchronizes clocks

of NICs, we use the precision numbers measured from a PHC.

Also, note that a Mellanox NIC timestamps PTP packets in

the NIC for both incoming and outgoing packets.

1412 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 4, AUGUST 2019

The PTP network was mostly idle except when we intro-

duced network congestion. Since PTP uses UDP datagrams for

time synchronization, the precision of PTP can vary relying

on network workloads. As a result, we introduced network

workloads between servers using iperf [11]. Each server

occasionally generated MTU-sized UDP packets destined for

other servers so that PTP messages could be dropped or arbi-

trarily delayed.

To measure how DTP responds to varying network condi-

tions, we used the same heavy load that we used for PTP

and also changed the BEACON interval during experiments

from 200 to 1200 cycles, which changed the Ethernet frame

size from 1.5kB to 9kB. Recall that when a link is fully

saturated with MTU-sized (Jumbo) packets, the minimum

BEACON interval possible is 200 (1200) cycles.

C. Results

Figure 6 and 7 show the results: We measured precision of

DTP in Figure 6a-c, PTP in Figure 6d-f, and the DTP daemon

in Figure 7. For all results, we continuously synchronized

clocks and measured the precision (clock offsets) over at least

a two-day period in Figure 6 and at least a few-hour period

in Figure 7.

Figures 6a-b demonstrate that the clock offsets between any

two directly connected nodes in DTP never differed by more

than four clock ticks; i.e. offsets never differed by more than

25.6 nanoseconds (4TD = 4 × 6.4 × 1 = 25.6): Figures 6a

and b show three minutes out of a two-day measurement

period and Figure 6c shows the distribution of the measured

offsets with node S3 for the entire two-day period. The

network was always under heavy load and we varied the

Ethernet frame size by varying the BEACON interval between

200 cycles in Figure 6a and 1200 cycles in Figure 6b. DTP

performed similarly under idle and medium load. Since

we measured all pairs of nodes and no offset was ever greater

than four, the results support that precision was bounded by

4TD for nodes D hops away from each other. Figure 7

shows the precision of accessing a DTP counter via a DTP

daemon: Figure 7a shows the raw offsetsw and Figure 7b

shows the offsetsw after applying a moving average algorithm

with a window size of 10. We applied the moving average

algorithm to smooth the effect of the non-determinism from

the PCIe bus, which is shown as occasional spikes. The offset

between a DTP daemon in software and the DTP counter in

hardware was usually no more than 16 clock ticks (≈ 102.4ns)

before smoothing, and was usually no more than 4 clock ticks

(≈ 25.6ns) after smoothing.

Figures 6d-f show the measured clock offsets between

each node and the grandmaster timeserver using PTP. Each

figure shows minutes to hours of a multi-day measurement

period, enough to illustrate the precision trends. We varied

the load of the network from idle (Figure 6d), to medium

load where five nodes transmitted and received at 4 Gbps

(Figure 6e), to heavy load where the receive and trans-

mit paths of all links except S11 were fully saturated at

9 Gbps (Figure 6f). When the network was idle, Figure 6d

showed that PTP often provided hundreds of nanoseconds

Fig. 8. Effect of synchronization precision on network performance of a
circuit-switched network. (a) Average throughput. (b) Worst-case latency.

of precision, which matches literature [7], [17]. When the

network was under medium load, Figure 6e showed the

offsets of S4 ∼ S8 became unstable and reached up to

50 microseconds. Finally, when the network was under heavy

load, Figure 6f showed that the maximum offset degraded to

hundreds of microseconds. Note that we measured, but do not

report the numbers from the PTP daemon, ptpd, because the

precision with the daemon was the same as the precision with

the hardware clock, PHC. Also, note that all reported PTP

measurements include smoothing and filtering algorithms.

There are multiple takeaways from these results.

1) DTP more tightly synchronized clocks than PTP.

2) The precision of DTP was not affected by network

workloads. The maximum offset observed in DTP did

not change either when load or Ethernet frame size (the

BEACON interval) changed. PTP, on the other hand, was

greatly affected by network workloads and the precision

varied from hundreds of nanoseconds to hundreds of

microseconds depending on the network load.

3) DTP scales. The precision of DTP only depends on the

number of hops between any two nodes in the network.

The results show that precision (clock offsets) were

always bounded by 4TD nanoseconds.

4) DTP daemons can access DTP counters with tens of

nanosecond precision.

5) DTP synchronizes clocks in a short period of time,

within two BEACON intervals. PTP, however, took about

10 minutes for a client to have an offset below one

microsecond. This was likely because PTP needs history

to apply filtering and smoothing effectively. We omitted

these results due to limited space.

6) PTP’s performance was dependent upon network con-

ditions, configuration such as transparent clocks, and

implementation.

VIII. APPLICATIONS ENABLED BY TIGHT

SYNCHRONIZATION

Tight synchronization amongst the nodes can enable or

improve the performance of many different applications, as

discussed in Section I. In this section, we discuss one such

application where tight synchronization significantly improves

the performance of the application.

SHRIVASTAV et al.: GLOBALLY SYNCHRONIZED TIME VIA DATACENTER NETWORKS 1413

A. Example Application: Packet Scheduling

Packet scheduling is one of the key functionalities in a net-

worked system. Traditionally, packet scheduling is done inde-

pendently at each node in the network (end-hosts, switches,

routers etc.). However, recently there have been several pro-

posals for network designs, both at the scale of datacen-

ters [44], [51] as well as at the scale of racks [53], where

packet scheduling decisions, i.e., when and which packets

to transmit at each node are very tightly coupled with one

another, resulting in networks that behave as a synchronous

system. Benefits of such a design include more predictable

performance [51], improved performance at the tail [53],

and improved scalability [44]. However, the performance of

such synchronous networks often depends upon the degree of

synchronization precision between the nodes in the network.

To illustrate this, we use the example of a recently proposed

circuit-switched network, called Shoal [53]. Shoal’s network

comprises a non-blocking topology of circuit switches, and

time is divided into fixed size time slots. In each time slot,

each circuit switch independently sets up it’s respective circuits

to create end-to-end paths between pairs of nodes, as dictated

by a static pre-defined schedule. Shoal’s design thus assumes

perfect synchronization across all the nodes in the network,

i.e., each node has the same view of the current time slot

at all times, or else it would result in wrong routing, and in

the worst-case, packet corruption. This assumption, however,

does not hold in practice, and hence in Shoal two consecutive

time slots have to be separated by at least the amount of

time that could absorb any synchronization imprecision. This,

in turn, results in throughput overhead, for e.g., if the worst-

case synchronization precision is p, and the length of each

time slot is t, then the maximum achievable throughput of

the network is t/(t + p). For a fixed p, one could reduce

the throughput overhead by simply increasing the value of

t, but unfortunately, the latency experienced by a packet

in Shoal is a increasing function of (t + p) [53], for e.g.,

in a network with N end-hosts and a single flow, the worst-

case latency experienced by a packet is (N − 1) ∗ (t + p).
Thus, to achieve both high throughput and low latency, Shoal

requires the synchronization precision value p to be as small as

possible. The impact of synchronization precision on network

performance is evaluated in the following experiment.

B. Experiment

We use five FPGAs to build a small 4-node network,

with one FPGA implementing a circuit switch and remaining

four FPGAs implementing four end-hosts connected to the

switch. Each link is 10Gbps. Next, we start a single long

running flow between a pair of end-hosts. DTP achieves worst-

case synchronization precision of 51.2ns (4TD, where T is

6.4ns and D is 2). Thus, for 64B time slots (51.2ns), the

throughput of the network is only 42%8 (Figure 8a). As

expected, throughput increases with increasing size of the

time slot, but as explained earlier, this comes at the cost of

higher latency (Figure 8b). In contrast, when we combine DTP

8These results also account for the Ethernet overhead of 24B per packet

TABLE II

SPECIFICATIONS OF THE PHY AT DIFFERENT SPEEDS

with frequency synchronization (Section VI), the worst-case

synchronization precision improves to 6.4ns, resulting in much

higher throughput even for small time slots, thus allowing

Shoal to achieve both high throughput and small latency.

Further, these results validate that tighter synchronization

precision results in better performance for systems like Shoal.

Hence, combining these results with results from Section VII,

one can also qualitatively infer that state-of-the-art protocols

like PTP would perform worse than DTP for Shoal.9

IX. DISCUSSION

What about 1G, 40G or 100G? In this paper we dis-

cussed and demonstrated how we can implement and deploy

DTP over a datacenter focusing on 10 GbE links. However,

the capacity of links in a datacenter is not homogeneous.

Servers can be connected to Top-of-Rack switches via 1 Gbps

links, and uplinks between switches and routers can be 40 or

100 Gbps. Nonetheless, DTP is still applicable to these cases

because the fundamental fact still holds: Two physically

connected devices in high-speed Ethernet (1G and beyond)

are already synchronized to transmit and receive bitstreams.

The question is how to modify DTP to support thousands of

thousands of devices with different link capacities.

DTP can be extended to support 40 GbE and 100 GbE

in a straight forward manner. The clock frequency required

to operate 40 or 100 Gbps is multiple of that of 10 Gbps

(Table II). In fact, switches that support 10 Gbps and beyond

normally use a clock oscillator running at 156.25 MHz to

support all ports [14]. As a result, incrementing clock counters

by different values depending on the link speed is sufficient.

In particular, see the last column of Table II, if a counter

tick represents 0.32 nanoseconds, then DTP will work at

10, 40, and 10GbE by adjusting a counter value to match

the corresponding clock period (i.e. 20 × 0.32 = 6.4 ns,

5 × 0.32 = 1.6 ns, and 2 × 0.32 = 0.64 ns, respectively).

Similarly, DTP can be made to work with 1 GbE by

incrementing the counter of a 1 GbE port by 25 at every tick

(see the last column of Table II). However, the PHY of 1 Gbps

is different, it uses a 8b/10b encoding instead of a 64b/66b

encoding, and we need to adapt DTP to send clock counter

values with the different encoding.

X. RELATED WORK

Clock synchronization is critical to systems and has been

extensively studied from different areas. As we discussed

9We could not perform a quantitative analysis of PTP performance with
Shoal as both PTP and Shoal require custom NICs and we did not have a
single NIC that implements both.

1414 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 4, AUGUST 2019

NTP [45], PTP [8], and GPS [40] in Section II, we briefly

discuss other clock synchronization protocols.

Because NTP normally does not provide precise clock

synchronization in a local area network (LAN), much of

the literature has focused improving NTP without extra

hardware. One line of work was to use TSC instructions

to implement precise software clocks called TSCclock, and

later called RADclock [25], [50], [55]. It was designed to

replace ntpd and ptpd (daemons that run NTP or PTP)

and provide sub-microsecond precision without any extra

hardware support. Other software clocks include Server Time

Protocol (STP) [48], Coordinated Cluster Time (CCT) [28],

AP2P [54], and skewless clock synchronization [43], which

provide microsecond precision.

In [18], authors use PTP to synchronize a packet-switched

optical network for datacenters, with zero-overhead. Zero-

overhead is achieved by using data packets to carry the time

messages instead of a separate control channel. They showed

that their system could achieve microsecond level of synchro-

nization precision. DTP also runs with zero protocol overhead

by using the idle bits in PHY instead of packets, and can

achieve nanosecond level of synchronization precision, at the

expense of hardware modifications, which have been shown to

be nominal (Section IV-C). In [29], authors are able to achieve

nanosecond synchronization precision with minimal hardware

support by exploiting natural network effects. However, unlike

DTP, they do not guarantee bounded synchronization precision

across any traffic pattern.

Implementing clock synchronization in hardware has been

demonstrated by Fiber Channel (FC) [6] and discussed by

Kopetz and Ochsenreiter [34]. FC embeds protocol messages

into interpacket gaps similar to DTP. However, it is not a

decentralized protocol and the network fabric simply forwards

protocol messages between a server and a client using physical

layer encodings. As a result, it does not eliminate non-

deterministic delays in delivering protocol messages.

Synchronous optical networks (SONET/SDH) is a standard

that transmits multiple bitstreams (such as Voice, Ethernet,

TCP/IP) over an optical fiber. In order to reduce buffering

of data between network elements, SONET requires precise

frequency synchronization (i.e., syntonization). An atomic

clock is commonly deployed as a Primary Reference Clock

(PRC), and other network elements are synchronized to it

either by external timing signals or by recovering clock signals

from incoming data. DTP does not synchronize frequency of

clocks, but values of clock counters.

Synchronous Ethernet (SyncE) [12] was introduced for

reliable data transfer between synchronous networks (e.g.

SONET/SDH) and asynchronous networks (e.g. Ethernet).

Like SONET, it synchronizes the frequency of nodes in a

network, not clocks (i.e. syntonization). It aims to provide a

synchronization signal to all Ethernet network devices. The

idea is to use the recovered clock from the receive (RX)

path to drive the transmit (TX) path such that both the RX

and TX paths run at the same clock frequency. As a result,

each Ethernet device uses a phase locked loop to regenerate

the synchronous signal. As SyncE itself does not synchronize

clocks in a network, PTP is often employed along with SyncE

to provide tight clock synchronization. One such example is

White Rabbit which we discuss below.

White Rabbit [36], [42], [47] has by far the best precision in

packet-based networks. The goal of White Rabbit (WR) [47]

was to synchronize up to 1000 nodes with sub-nanosecond

precision. It uses SyncE to syntonize the frequency of clocks

of network devices, and WR-enabled PTP [36] to embed

the phase difference between a master and a slave into

PTP packets. WR demonstrated that the precision of a non-

disturbed system was 0.517ns [42]. WR also requires WR-

enabled switches, and synchronizes slaves that are up to four-

hops apart from the timeserver. WR works on a network with a

tree topology and with a limited number of levels and servers.

Furthermore, it currently supports 1 Gigabit Ethernet only, and

it is not clear how WR behaves under heavy network loads as

it uses PTP packets. DTP does not rely on any specific network

topology, and can be extended to protocols with higher speeds.

Similarly, BroadSync [20] and ChinaMobile [41] also com-

bine SyncE and PTP to provide hundreds of nanosecond

precision. The Data Over Cable Service Interface Specification

(DOCSIS) is a frequency synchronized network designed to

time divide data transfers between multiple cable modems

(CM) and a cable modem termination system (CMTS). The

DOCSIS time protocol [21] extends DOCSIS to synchronize

time by approximating the internal delay from the PHY

and asymmetrical path delays between a reference CM and

the CMTS. As shown in Section VI, combining DTP with

frequency synchronization techniques such as SyncE can also

improve the precision of DTP.

In [39], authors do an extensive survey of the existing

time synchronization protocols on top of packet-switched

networks, and conclude that to achieve microsecond to sub-

microsecond synchronization precision, hardware support is

generally needed at the expense of increased cost. DTP is

an extreme design in this space, where we implement the

entire protocol at the PHY layer, thus getting rid of non-

deterministic components of time synchronization protocols,

such as queuing delays, which allows one to achieve bounded

nanosecond synchronization precision. We also show that DTP

implementation is cost effective as the logic consumes very

small amount of hardware resources (Section IV-C).

XI. CONCLUSION

Synchronizing clocks with bounded and high precision

is not trivial, but can improve measurements (e.g. one-way

delay) and performance (e.g. Spanner TrueTime). In this

paper, we presented DTP that tightly synchronizes clocks

with zero network overhead (no Ethernet packets). It exploits

the fundamental fact that two physically connected devices

are already synchronized to transmit and receive bitstreams.

We demonstrated that DTP can synchronize clocks of network

components at tens of nanoseconds of precision, can scale

up to synchronize an entire datacenter network, and can be

accessed from software with usually better than twenty five

nanosecond precision. As a result, the end-to-end precision is

the precision from DTP in the network (i.e. 25.6 nanoseconds

for directly connected nodes and 153.6 nanoseconds for a

SHRIVASTAV et al.: GLOBALLY SYNCHRONIZED TIME VIA DATACENTER NETWORKS 1415

datacenter with six hops) plus fifty nanosecond precision from

software. The precision can be further improved by synchro-

nizing the frequency of each clock in the network. DTP does

require modifying the network devices (NICs and switches),

but this can be done incrementally and the implementation

consumes a very small amount of hardware resources.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers,

the Associate Editor, Dr. P. Giaccone, and Editor-In-Chief,

Prof. E. Modiano, for their useful comments and suggestions.

REFERENCES

[1] Bluespec. Accessed: May 17, 2019. [Online]. Available: www.
bluespec.com

[2] Broadcom. Accessed: May 17, 2019. [Online]. Available: http://www.
broadcom.com/products/Switching/

[3] DE5-Net FPGA Development Kit. Accessed: May 17, 2019. [Online].
Available: http://de5-net.
terasic.com.tw

[4] Endace DAG Network Cards. Accessed: May 17, 2019. [Online]. Avail-
able: http://www.
endace.com/endace-dag-high-speed-packet-capture-cards.html

[5] Exablaze. Accessed: May 17, 2019. [Online]. Available:
https://exablaze.com/

[6] Fibre Channel. Accessed: May 17, 2019. [Online]. Available:
http://fibrechannel.org

[7] Highly Accurate Time Synchronization With ConnectX-3 and

Timekeeper. Accessed: May 17, 2019. [Online]. Available: http://www.
mellanox.com/pdf/whitepapers/WP_Highly_Accurate_Time_Synchroni-
zation.pdf

[8] IEEE Standard for a Precision Clock Synchronization Protocol
for Networked Measurement and Control Systems, IEEE Standard
1588-2008, 2008. [Online]. Available: http://ieeexplore.ieee.org/xpl/
mostRecentIssue.jsp?punumber=4579757

[9] IEEE Standard for Information Technology—Telecommunications and

Information Exchange Between Systems—Local and Metropolitan Area

Networks—Specific Requirements Part 3: Carrier Sense Multiple Access

With Collision Detection (CSMA/CD) Access Method and Physical
Layer Specifications, IEEE Standard IEEE 802.3-2008, 2008. [Online].
Available: http://standards.ieee.org/about/get/802/802.3.html

[10] Intel 64 and IA-32 Architectures Software Developer Manuals.
Accessed: May 17, 2019. [Online]. Available: http://www.
intel.com/content/www/us/en/processors/architectures-software-
developer-manuals.html

[11] iperf. Accessed: May 17, 2019. [Online]. Available: https://iperf.fr

[12] Timing Characteristics of a Synchronous Ethernet Equipment Slave
Clock, Standard ITU-T Rec. G.8262, 2018. [Online]. Available: http://
www.itu.int/rec/T-REC-G.8262

[13] Mellanox. Accessed: May 17, 2019. [Online]. Available:
www.mellanox.com

[14] Open Compute Project. Accessed: May 17, 2019. [Online]. Available:
http://www.opencompute.org

[15] Stratix V FPGA. Accessed: May 17, 2019. [Online]. Available:
http://www.altera.com/devices/fpga/stratix-fpgas/stratix-v/stxv-index.jsp

[16] Timekeeper. Accessed: May 17, 2019. [Online]. Available:
http://www.fsmlabs.com/timekeeper

[17] (2014). IEEE 1588 PTP and Analytics on the Cisco Nexus 3548

Switch. [Online]. Available: http://www.cisco.com/c/en/us/products/
collateral/switches/nexus-3000-series-switches/white-paper-c11-
731501.html

[18] T. Ahmed, S. Rahman, M. Tornatore, K. Kim, and B. Mukherjee,
“A survey on high-precision time synchronization techniques for optical
datacenter networks and a zero-overhead microsecond-accuracy solu-
tion,” Photon. Netw. Commun., vol. 36, pp. 56–67, Aug. 2018.

[19] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity
data center network architecture,” in Proc. ACM SIGCOMM Conf. Data

Commun., 2008, pp. 63–74.
[20] Broadcom. Ethernet Time Synchronization. Accessed: May 17, 2019.

[Online]. Available: https://docs.broadcom.com/docs-and-downloads/
collateral/wp/StrataXGSIV-WP100-R.pdf

[21] J. T. Chapman, R. Chopra, and L. Montini, “The DOCSIS timing
protocol (DTP) generating precision timing services from a DOCSIS
system,” in Proc. Spring Tech. Forum, 2011, pp. 51–85.

[22] R. Cochran, C. Marinescu, and C. Riesch, “Synchronizing the Linux
system time to a PTP hardware clock,” in Proc. Int. IEEE Symp. Precis.

Clock Synchronization Meas. Control Commun., Sep. 2011, pp. 87–92.

[23] J. C. Corbett et al., “Spanner: Google’s globally-distributed database,”
in Proc. 10th USENIX Conf. Operat. Syst. Design Implement., 2012,
pp. 1–9.

[24] F. Cristian, “Probabilistic clock synchronization,” Distrib. Comput.,
vol. 3, no. 3, pp. 146–158, Sep. 1989.

[25] M. Davis, B. Villain, J. Ridoux, A.-C. Orgerie, and D. Veitch,
“An IEEE-1588 compatible radclock,” in Proc. Int. IEEE Symp. Precis.
Clock Synchronization Meas., Control Commun., Sep. 2012, pp. 1–6.

[26] T. G. Edwards and W. Belkin, “Using SDN to facilitate precisely timed
actions on real-time data streams,” in Proc. 3rd Workshop Hot Topics

Softw. Defined Netw., 2014, pp. 55–60.

[27] D. A. Freedman et al., “Exact temporal characterization of 10 Gbps
optical wide-area network,” in Proc. 10th ACM SIGCOMM Conf.

Internet Meas., 2010, pp. 342–355.

[28] S. Froehlich, M. Hack, X. Meng, and L. Zhang, “Achieving precise
coordinated cluster time in a cluster environment,” in Proc. Int. IEEE

Symp. Precis. Clock Synchronization Meas., Control Commun., 2008,
pp. 54–58.

[29] Y. Geng et al., “Exploiting a natural network effect for scalable, fine-
grained clock synchronization,” in Proc. NSDI, 2018, pp. 81–94.

[30] R. Gusella and S. Zatti, “The accuracy of the clock synchronization
achieved by TEMPO in Berkeley UNIX 4.3BSD,” IEEE Trans. Softw.

Eng., vol. 15, no. 7, pp. 847–853, Jul. 1989.

[31] J. Jasperneite, K. Shehab, and K. Weber, “Enhancements to the time
synchronization standard IEEE-1588 for a system of cascaded bridges,”
in Proc. IEEE Int. Workshop Factory Commun. Syst., Sep. 2004,
pp. 239–244.

[32] C. Kachris, K. Bergman, and I. Tomkos, Optical Interconnects for Future
Data Center Networks. New York, NY, USA: Springer, 2013.

[33] M. King, J. Hicks, and J. Ankcorn, “Software-driven hardware devel-
opment,” in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate Arrays,
2015, pp. 13–22.

[34] H. Kopetz and W. Ochsenreiter, “Clock synchronization in distributed
real-time systems,” IEEE Trans. Comput., vol. C-36, no. 8, pp. 933–940,
Aug. 1987.

[35] L. Lamport and P. M. Melliar-Smith, “Byzantine clock synchronization,”
in Proc. 3rd Annu. ACM Symp. Princ. Distrib. Comput., 1984, pp. 68–74.

[36] M. Lapinski, T. Wlostowki, J. Serrano, and P. Alvarez, “White rabbit:
A PTP application for robust sub-nanosecond synchronization,” in Proc.
Int. IEEE Symp. Precis. Clock Synchronization Meas. Control Commun.,
Sep. 2011, pp. 25–30.

[37] K. S. Lee, H. Wang, V. Shrivastav, and H. Weatherspoon, “Globally
synchronized time via datacenter networks,” in Proc. ACM SIGCOMM

Conf. Data Commun., 2016, pp. 454–467.

[38] K. S. Lee, H. Wang, and H. Weatherspoon, “SoNIC: Precise realtime
software access and control of wired networks,” in Proc. 10th USENIX
Symp. Netw. Syst. Design Implement., 2013, pp. 213–225.

[39] M. Lévesque and D. Tipper, “A survey of clock synchronization over
packet-switched networks,” IEEE Commun. Surveys Tuts., vol. 18, no. 4,
pp. 2926–2947, 4th Quart., 2016.

[40] W. Lewandowski, J. Azoubib, and W. J. Klepczynski, “GPS: Primary
tool for time transfer,” Proc. IEEE, vol. 87, no. 1, pp. 163–172,
Jan. 1999.

[41] H. Li, “IEEE 1588 time synchronization deployment for mobile
backhaul in China mobile,” in Proc. Int. IEEE Symp. Precis. Clock

Synchronization Meas. Control Commun., 2014. [Online]. Available:
http://archive.ispcs.org/2014/presentations.html

[42] M. Lipinski et al., “Performance results of the first White Rabbit
installation for CNGS time transfer,” in Proc. Int. IEEE Symp. Precis.

Clock Synchronization Meas. Control Commun., Sep. 2012, pp. 1–6.

[43] E. Mallada, X. Meng, M. Hack, L. Zhang, and A. Tang, “Skewless
network clock synchronization,” in Proc. 21st IEEE Int. Conf. Netw.

Protocols, Oct. 2013, pp. 1–10.

[44] W. M. Mellette et al., “RotorNet: A scalable, low-complexity, optical
datacenter network,” in Proc. SIGCOMM, 2017, pp. 267–280.

[45] D. L. Mills, “Internet time synchronization: The network time protocol,”
IEEE Trans. Commun., vol. 39, no. 10, pp. 1482–1493, Oct. 1991.

[46] T. Mizrahi and Y. Moses, “Software defined networks: It’s about time,”
in Proc. IEEE Int. Conf. Comput. Commun., Apr. 2016, pp. 1–9.

1416 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 4, AUGUST 2019

[47] P. Moreira, J. Serrano, T. Wlostowski, P. Loschmidt, and G. Gaderer,
“White rabbit: Sub-nanosecond timing distribution over Ethernet,” in
Proc. Int. IEEE Symp. Precis. Clock Synchronization Meas. Control
Commun., Oct. 2009, pp. 1–5.

[48] B. Ogden, J. Fadel, and B. White, IBM System Z9 109 Technical

Introduction. Armonk, NY, USA: IBM Redbooks, 2005.
[49] P. Ohly, D. N. Lombard, and K. B. Stanton, “Hardware assisted precision

time protocol. Design and case study,” in Proc. 9th LCI Int. Conf. High-

Perform. Clustered Comput., 2008, pp. 1–19.
[50] A. Pásztor and D. Veitch, “PC based precision timing without GPS,”

in Proc. ACM SIGMETRICS Int. Conf. Meas. Modeling Comput. Syst.,
2002, pp. 1–10.

[51] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal,
“Fastpass: A centralized ‘zero-queue’ datacenter network,” in Proc. ACM
Conf. SIGCOMM, 2014, pp. 307–318.

[52] F. B. Schneider, “Understanding protocols for Byzantine clock syn-
chronization,” Cornell Univ., Ithaca, NY, USA, Tech. Rep. TR87-859,
Aug. 1987.

[53] V. Shrivastav et al., “Shoal: A network architecture for disaggregated
racks,” in Proc. NSDI, 2019, pp. 255–270.

[54] A. Sobeih, M. Hack, Z. Liu, and L. Zhang, “Almost peer-to-peer clock
synchronization,” in Proc. IEEE Int. Parallel Distrib. Process. Symp.,
Mar. 2007, pp. 1–10.

[55] D. Veitch, S. Babu, and A. Pàsztor, “Robust synchronization of software
clocks across the Internet,” in Proc. 4th ACM SIGCOMM Conf. Internet

Meas., 2004, pp. 219–232.
[56] R. Zarick, M. Hagen, and R. Bartoš, “The impact of network latency

on the synchronization of real-world IEEE 1588-2008 devices,” in Proc.
Int. IEEE Symp. Precis. Clock Synchronization Meas. Control Commun.,
Sep. 2010, pp. 135–140.

[57] R. Zarick, M. Hagen, and R. Bartos, “Transparent clocks vs. enterprise
Ethernet switches,” in Proc. Int. IEEE Symp. Precis. Clock Synchroniza-
tion Meas., Control Communication, Sep. 2011, pp. 62–68.

[58] H. Zeng et al., “Libra: Divide and conquer to verify forwarding tables in
huge networks,” in Proc. 11th USENIX Symp. Networked Syst. Design
Implement., 2014, pp. 87–99.

Vishal Shrivastav received the bachelor’s degree
from IIT Kharagpur, and the M.S. degree in com-
puter science from Cornell University in 2017,
where he is currently pursuing the Ph.D. degree with
the Department of Computer Science. He is advised
by Prof. H. Weatherspoon. He is broadly inter-
ested in computer networking. He especially likes
to integrate concepts from networking and com-
puter architecture to design novel network hardware
architectures that expose generic and programmable
primitives. He also likes to design novel network

protocols and algorithms that efficiently leverage the underlying hardware
primitives for high performance.

Ki Suh Lee received the B.S. degree in com-
puter science and engineering from Seoul National
University, the M.S. degree in computer science
from Columbia University, and the Ph.D. degree
in computer science from Cornell University. His
research interests include data centers, network mea-
surements, time synchronization, and network rout-
ing. He is currently with the Mode Group.

Han Wang received the bachelor’s degree in com-
puter system engineering from the University of
Auckland, New Zealand, in 2007, and the M.S. and
Ph.D. degrees in electrical engineering and computer
science from Cornell University, Ithaca, NY, USA,
in 2016. He is currently a Software Engineer with
Barefoot Networks Inc. His research interests are in
software-defined networks, P4 language, and recon-
figurable computing. He is a member of the IEEE.

Hakim Weatherspoon received the bachelor’s
degree from the University of Washington, and the
Ph.D. degree from the University of California,
Berkeley, CA, USA. He is currently an Associate
Professor with the Department of Computer Science,
Cornell University, and the Associate Director of
Cornell’s Initiative for Digital Agriculture (CIDA).
His research interests cover various aspects of fault-
tolerance, reliability, security, and performance of
internet-scale systems such as cloud and distributed
systems. Since 2011, he has organized the annual

SoNIC Summer Research Workshop to help prepare between students from
underrepresented groups to pursue their Ph.D. in computer science. He serves
as the Vice President of the USENIX Board of Directors and serves on
the Steering Committee for the ACM Symposium on Cloud Computing. He
has received awards for his many contributions, including the University
of Washington, the Allen School of Computer Science and Engineering,
the Alumni Achievement Award; the Alfred P. Sloan Research Fellowship;
the National Science Foundation CAREER Award; and the Kavli Fellowship
from the National Academy of Sciences. He has also been recognized for his
work to promote diversity, earning Cornell’s Zellman Warhaft Commitment
to Diversity Award.

