
Globally Trained Handwritten Word

Recognizer using Spatial Representation,

Convolutional Neural Networks and

Hidden Markov Models

Yoshua Bengio ...
Dept. Informatique et Recherche Operationnelle

Universite de Montreal
Montreal, Qc H3C-3J7

Donnie Henderson
AT&T Bell Labs

Holmdel NJ 07733

Abstract

Yann Le Cun
AT&T Bell Labs

Holmdel NJ 07733

We introduce a new approach for on-line recognition of handwrit
ten words written in unconstrained mixed style. The preprocessor
performs a word-level normalization by fitting a model of the word
structure using the EM algorithm. Words are then coded into low
resolution "annotated images" where each pixel contains informa
tion about trajectory direction and curvature. The recognizer is a
convolution network which can be spatially replicated. From the
network output, a hidden Markov model produces word scores. The
entire system is globally trained to minimize word-level errors.

1 Introduction

Natural handwriting is often a mixture of different "styles", lower case printed,
upper case, and cursive. A reliable recognizer for such handwriting would greatly
improve interaction with pen-based devices, but its implementation presents new

*also, AT&T Bell Labs, Holmdel NJ 07733

937

938 Bengio, Le Cun, and Henderson

technical challenges. Characters taken in isolation can be very ambiguous, but con
siderable information is available from the context of the whole word. We propose
a word recognition system for pen-based devices based on four main modules: a
preprocessor that normalizes a word, or word group, by fitting a geometrical model
to the word structure using the EM algorithm; a module that produces an "anno
tated image" from the normalized pen trajectory; a replicated convolutional neural
network that spots and recognizes characters; and a Hidden Markov Model (HMM)
that interprets the networks output by taking word-level constraints into account.
The network and the HMM are jointly trained to minimize an error measure defined
at the word level.

Many on-line handwriting recognizers exploit the sequential nature of pen trajec
tories by representing the input in the time domain. While these representations
are compact and computationally advantageous, they tend to be sensitive to stroke
order, writing speed, and other irrelevant parameters. In addition, global geometric
features, such as whether a stroke crosses another stroke drawn at a different time,
are not readily available in temporal representations. To avoid this problem we
designed a representation, called AMAP, that preserves the pictorial nature of the
handwriting.

In addition to recognizing characters, the system must also correctly segment the
characters within the words. One approach, that we call INSEG, is to recognize
a large number of heuristically segmented candidate characters and combine them
optimally with a postprocessor (Burges et al 92, Schenkel et al 93). Another ap
proach, that we call OUTSEG, is to delay all segmentation decisions until after the
recognition, as is often done in speech recognition. An OUTSEG recognizer must
accept entire words as input and produce a sequence of scores for each character at
each location on the input. Since the word normalization cannot be done perfectly,
the recognizer must be robust with respect to relatively large distortions, size vari
ations, and translations. An elastic word model -e.g., an HMM- can extract word
candidates from the network output. The HMM models the long-range sequential
structure while the neural network spots and classifies characters, using local spatial
structure.

2 Word Normalization

Input normalization reduces intra-character variability, simplifying character recog
nition. This is particularly important when recognizing entire words. We propose a
new word normalization scheme, based on fitting a geometrical model of the word
structure. Our model has four "flexible" lines representing respectively the ascen
ders line, the core line, the base line and the descenders line (see Figure 1). Points
on the lines are parameterized as follows:

y = fk(X) = k(x - XO)2 + s(x - xo) + YOk (1)

where k controls curvature, s is the skew, and (xo,Yo) is a translation vector. The
parameters k, s, and Xo are shared among all four curves, whereas each curve has
its own vertical translation parameter YOk. First the set of local maxima U and
minima L of the vertical displacement are found. Xo is determined by taking the
average abscissa of extrema points. The lines of the model are then fitted to the
extrema: the upper two lines to the maxima, and the lower two to the minima.
The fit is performed using a probabilistic model for the extrema points given the
lines. The idea is to find the line parameters 8* that maximize the probability of

Globally Trained Handwritten Word Recognizer 939

--' -------

Figure 1: Word Normalization Model: Ascenders and core curves fit y-maxima
whereas descenders and baseline curves fit y-minima. There are 6 parameters: a
(ascenders curve height relative to baseline), b (baseline absolute vertical position),
c (core line position), d (descenders curve position), k (curvature), s (angle).

generating the observed points.

0* = argmax log P(X I 0) + log P(O)
(J

(2)

The above conditional distribution is chosen to be a mixture of Gaussians (one
per curve) whose means are the y-positions obtained from the actual x-positions
through equation 1:

3

P(Xi, Yi 1 0) = log L WkN(Yi; fk(xd, (J'y) (3)
k=O

where N(x; J1, (J') is a univariate Normal distribution of mean J1 and standard devi
ation (J'. The Wk are the mixture parameters, some of which are set to 0 in order to
constrain the upper (lower) points to be fitted to the upper (lower) curves. They are
computed a-priori using measured frequencies of associations of extrema to curves
on a large set of words. The priors P(O) on the parameters are required to prevent
the collapse of the curves. They can be used to incorporate a-priori information
about the word geometry, such as the expected position of the baseline, or the
height of the word. These priors for each parameter are chosen to be independent
normal distributions whose standard deviations control the strength of the prior.
The variables that associate each point with one of the curves are taken as hidden
variables of the EM algorithm. One can thus derive an auxiliary function which can
be analytically (and cheaply) solved for the 6 free parameters O. Convergence of
the EM algorithm was typically obtained within 2 to 4 iterations (of maximization
of the auxiliary function).

3 AMAP

The recognition of handwritten characters from a pen trajectory on a digitizing
surface is often done in the time domain. Trajectories are normalized, and local

940 Bengio, Le Cun, and Henderson

geometrical or dynamical features are sometimes extracted. The recognition is
performed using curve matching (Tappert 90), or other classification techniques such
as Neural Networks (Guyon et al 91). While, as stated earlier, these representations
have several advantages, their dependence on stroke ordering and individual writing
styles makes them difficult to use in high accuracy, writer independent systems that
integrate the segmentation with the recognition.

Since the intent of the writer is to produce a legible image, it seems natural to
preserve as much of the pictorial nature of the signal as possible, while at the same
time exploit the sequential information in the trajectory. We propose a representa
tion scheme, called AMAP, where pen trajectories are represented by low-resolution
images in which each picture element contains information about the local proper
ties of the trajectory. More generally, an AMAP can be viewed as a function in a
multidimensional space where each dimension is associated with a local property of
the trajectory, say the direction of motion e, the X position, and the Y position of
the pen. The value of the function at a particular location (e, X, Y) in the space
represents a smooth version of the "density" of features in the trajectory that have
values (e, X, Y) (in the spirit of the generalized Hough transform). An AMAP is a
multidimensional array (say 4x10x10) obtained by discretizing the feature density
space into "boxes". Each array element is assigned a value equal to the integral of
the feature density function over the corresponding box. In practice, an AMAP is
computed as follows. At each sample on the trajectory, one computes the position
of the pen (X, Y) and orientation of the motion () (and possibly other features, such
as the local curvature c). Each element in the AMAP is then incremented by the
amount of the integral over the corresponding box of a predetermined point-spread

function centered on the coordinates of the feature vector. The use of a smooth
point-spread function (say a Gaussian) ensures that smooth deformations of the
trajectory will correspond to smooth transformations of the AMAP. An AMAP can
be viewed as an "annotated image" in which each pixel is a feature vector.

A particularly useful feature of the AMAP representation is that it makes very few
assumptions about the nature of the input trajectory. It does not depend on stroke
ordering or writing speed, and it can be used with all types of handwriting (capital,
lower case, cursive, punctuation, symbols). Unlike many other representations (such
as global features), AMAPs can be computed for complete words without requiring
segmentation.

4 Convolutional Neural Networks

Image-like representations such as AMAPs are particularly well suited for use in
combination with Multi-Layer Convolutional Neural Networks (MLCNN) (Le Cun
89, Le Cun et al 90). MLCNNs are feed-forward neural networks whose architectures
are tailored for minimizing the sensitivity to translations, rotations, or distortions
of the input image. They are trained with a variation of the Back-Propagation
algorithm (Rumelhart et al 86, Le Cun 86).

The units in MCLNNs are only connected to a local neighborhood in the previous
layer. Each unit can be seen as a local feature detector whose function is determined
by the learning procedure. Insensitivity to local transformations is built into the
network architecture by constraining sets of units located at different places to use
identical weight vectors, thereby forcing them to detect the same feature on different
parts of the input. The outputs of the units at identical locations in different feature
maps can be collectively thought of as a local feature vector. Features of increasing

Globally Trained Handwritten Word Recognizer 941

complexity and globality are extracted by the neurons in the successive layers.

This weight-sharing technique has two interesting side effects. First, the number
of free parameters in the system is greatly reduced since a large number of units
share the same weights. Classically, MLCNNs are shown a single character at the
input, a.nd have a single set of outputs. However, an essential feature of MLCNNs
is that they can be scanned (replicated) over large input fields containing multiple
unsegmented characters (whole words) very economically by simply performing the
convolutions on larger inputs. Instead of producing a single output vector, SDNNs
produce a series of output vectors. The outputs detects and recognize characters at
different (and overlapping) locations on the input. These multiple-input, multiple
output MLCNN are called Space Displacement Neural Networks (SDNN) (Matan
et al 92).

One of the best networks we found for character recognition has 5 layers arranged
as follows: layer 1: convolution with 8 kernels of size 3x3, layer 2: 2x2 subsampling,
layer 3: convolution with 25 kernels of size 5x5, layer 4 convolution with 84 kernels
of size 4x4, layer 5: 2x2 subsampling. The subsampling layers are essential to the
network's robustness to distortions. The output layer is one (single MLCNN) or
a series of (SDNN) 84-dimensional vectors. The target output configuration for
each character class was chosen to be a bitmap of the corresponding character in a
standard 7x12 (=84) pixel font. Such a code facilitates the correction of confusable
characters by the postprocessor.

5 Post-Processing

The convolutional neural network can be used to give scores associated to characters
when the network (or a piece of it corresponding to a single character output) has
an input field, called a segment, that covers a connected subset of the whole word
input. A segmentation is a sequence of such segments that covers the whole word
input. Because there are in general many possible segmentations, sophisticated
tools such as hidden Markov models and dynamic programming are used to search
for the best segmentation.

In this paper, we consider two approaches to the segmentation problem called IN
SEG (for input segmentation) and OUTSEG (for output segmentation). The post
processor can be generally decomposed into two levels: 1) character level scores and
constraints obtained from the observations, 2) word level constraints (grammar,

dictionary). The INSEG and OUTSEG systems share the second level.

In an INSEG system, the network is applied to a large number of heuristically
segmented candidate characters. A cutter generates candidate cuts, which can po
tentially represent the boundary between two character segments. It also generates
definite cuts, which we assume that no segment can cross. Using these, a number
of candidate segments are constructed and the network is applied to each of them
separately. Finally, for each high enough character score in each of the segment, a
character hypothesis is generated, corresponding to a node in an observation graph .
The connectivity and transition probabilities on the arcs of the observation graph
represent segmentation and geometrical constraints (e.g., segments must not over
lap and must cover the whole word, some transitions between characters are more
or less likely given the geometrical relations between their images).

In an OUTSEG system, all segmentation decisions are delayed until after the recog-

942 Bengio, Le Cun, and Henderson

nition, as is often done in speech recognition. The AMAP of the entire word is
shown to an SDNN, which produces a sequence of output vectors equivalent to (but
obtained much more cheaply than) scanning the single-character network over all
possible pixel locations on the input. The Euclidean distances between each output
vector and the targets are interpreted as log-likelihoods of the output given a class .
To construct an observation graph, we use a set of character models (HMMs) . Each
character HMM models the sequence of network outputs observed for that charac
ter . We used three-state HMMs for each character, with a left and right state to
model transitions and a center state for the character itself. The observation graph
is obtained by connecting these character models , allowing any character to follow
any character.

On top of the constraints given in the observation graph , additional constraints that
are independent of the observations are given by what we call a gram mar graph,

which can embody lexical constraints. These constraints can be given in the form
of a dictionary or of a character-level grammar (with transition probabilities), such
as a trigram (in which we use the probability of observing a character in the context
of the two previous ones). The recognition finds the best path in the observation
graph that is compatible with the grammar graph. The INSEG and OUTSEG
architecture are depicted in Figure 2.

OUTSEG ARCHITECTURE
FOR WORD RECOGNITION

raw word

word
normalization

normalized

word ~-- ~ ' '''' ---"'''''1i

s~f

Mi.pf
AMAP

computation
':':":: :",:, ~~'::: .. , .. ~ : ': ::::. ::.:. :~:~: t

AMAP

SDNN

graph
ofchar~a~c~e~r -- '~ ----~

Character

candi-'r-__ f-_ _ """'II

dates

~~~} 
t} 

INSEG ARCHITECTURE 
FOR WORD RECOGNITION 

raw w0i"'r_d_""",,, ___ ~ Sec; p t 

~~~r~~~ ~,= .. . """' _-_ <5 ~ t' > r,ff: 
. Cut hypotheses
I generation

segme ~ n ~"""" _",,.. __ """"'1

graph \r"!:~'1":"IWPII"""'~W

AMAP

Convolutional
Neural Network

HMMs h
graph ~~ _ ",- __ -d! S c r i p t ~~~ar lioo a - c - te - r- ---~
of character s e n e.j ... o.T candl
cdaantedsi 5 a ... i ... u pf dates""--+ --"""",!!

Lexical Lexical
constraints constraints

wo r""'d--""""",---J " Script "
"Script" word

Figure 2: INSEG and OUTSEG architectures for word recognition.

A crucial contribution of our system is the joint training of the neural network and
the post-processor with respect to a single criterion that approximates word-level
errors. We used the following discriminant criterion: minimize the total cost (sum
of negative log-likelihoods) along the "correct" paths (the ones that yield the correct
interpretations) , while minimizing the costs of all the paths (correct or not). The
discriminant nature of this criterion can be shown with the following example. If

Globally Trained Handwritten Word Recognizer 943

the cost of a path associated to the correct interpretation is much smaller than all
other paths, then the criterion is very close to 0 and no gradient is back-propagated.
On the other hand , if the lowest cost path yields an incorrect interpretation but dif
fers from a path of correct interpretation on a sub-path, then very strong gradients
will be propagated along that sub-path , whereas the other parts of the sequence
will generate almost no gradient. \Vithin a probabilistic framework, this criterion
corresponds to the maximizing the mutual information (MMI) between the obser
vations and the correct interpretation. During global training , it is optimized using
(enhanced) stochastic gradient descent with respect to all the parameters in the sys
tem, most notably the network weights. Experiments described in the next section
have shown important reductions in error rates when training with this word-level
criterion instead of just training the network separately for each character. Similar
combinations of neural networks with HMMs or dynamic programming have been
proposed in the past, for speech recognition problems (Bengio et al 92).

6 Experimental Results

In a first set of experiments, we evaluated the generalization ability of the neural
network classifier coupled with the word normalization preprocessing and AMAP
input representation. All results are in writer independent mode (different writers
in training and testing). Tests on a da tabase of isolated characters were performed
separately on four types of characters: upper case (2.99% error on 9122 patterns),
lower case (4.15% error on 8201 patterns), digits (1.4% error on 2938 patterns), and
punctuation (4.3% error on 881 patterns). Experiments were performed with the
network architecture described above.

The second and third set of experiments concerned the recognition of lower case
words (writer independent). The tests were performed on a database of 881 words.
First we evaluated the improvements brought by the word normalization to the
INSEG system. For the OUTSEG system we have to use a word normalization
since the network sees a whole word at a time. With the INSEG system, and
before doing any word-level training, we obtained without word normalization 7.3%
and 3.5% word and character errors (adding insertions, deletions and substitutions)
when the search was constrained within a 25461-word dictionary. When using the
word normalization preprocessing instead of a character level normalization, error
rates dropped to 4.6% and 2.0% for word and character errors respectively, i.e., a
relative drop of 37% and 43% in word and character error respectively.

In the third set of experiments, we measured the improvements obtained with the
joint training of the neural network and the post-processor with the word-level
criterion, in comparison to training based only on the errors performed at the char
acter level. Training was performed with a database of 3500 lower case words. For
the OUTSEG system, without any dictionary constraints, the error rates dropped
from 38% and 12.4% word and character error to 26% and 8.2% respectively after
word-level training, i.e., a relative drop of 32% and 34%. For the INSEG system
and a slightly improved architecture, without any dictionary constraints, the error
rates dropped from 22.5% and 8.5% word and character error to 17% and 6.3%
respectively, i.e., a relative drop of 24.4% and 25.6%. With a 25461-word dictio
nary, errors dropped from 4.6% and 2.0% word and character errors to 3.2% and
1.4% respectively after word-level training, i.e., a relative drop of 30.4% and 30.0%.
Finally, some further improvements can be obtained by drastically reducing the size
of the dictionary to 350 words, yielding 1.6% and 0.94% word and character errors.

944 Bengio, Le Cun, and Henderson

7 Conclusion

We have demonstrated a new approach to on-line handwritten word recognition
that uses word or sentence-level preprocessing and normalization, image-like repre
sentations, Convolutional neural networks, word models, and global training using
a highly discriminant word-level criterion. Excellent accuracy on various writer
independent tasks were obtained with this combination.

References

Bengio, Y., R. De Mori and G. Flammia and R. Kompe. 1992. Global Optimization
of a Neural Network-Hidden Markov Model Hybrid. IEEE Transactions on Neural
Networks v.3, nb.2, pp.252-259.

Burges, C., O. Matan, Y. Le Cun, J. Denker, L. Jackel, C. Stenard, C. Nohl and J.
Ben. 1992. Shortest Path Segmentation: A Method for Training a Neural Network
to Recognize character Strings. Proc. IJCNN'92 (Baltimore), pp. 165-172, v.3.

Guyon, 1., Albrecht, P., Le Cun, Y., Denker, J. S., and Weissman, H. 1991 design
of a neural network character recognizer for a touch terminal. Pattern Recognition,
24(2):105-119.

Le Cun, Y. 1986. Learning Processes in an Asymmetric Threshold Network. In
Bienenstock, E., Fogelman-Soulie, F., and Weisbuch, G., editors, Disordered systems
and biological organization, pages 233-240, Les Houches, France. Springer-Verlag.

Le Cun, Y. 1989. Generalization and Network Design Strategies. In Pfeifer, R.,
Schreter, Z., Fogelman, F., and Steels, L., editors, Connectionism in Perspective,
Zurich, Switzerland. Elsevier. an extended version was published as a technical
report of the University of Toronto.

Le Cun, Y., Matan, 0., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hub
bard, W., Jackel, L. D., and Baird, H. S. 1990. Handwritten Zip Code Recognition
with Multilayer Networks. In IAPR, editor, Proc. of the International Conference
on Pattern Recognition, Atlantic City. IEEE.

Matan, 0., Burges, C. J. C., LeCun, Y., and Denker, J. S. 1992. Multi-Digit
Recognition Using a Space Displacement Neural Network. In Moody, J. M., Han
son, S. J., and Lippman, R. P., editors, Neural Information Processing Systems,
volume 4. Morgan Kaufmann Publishers, San Mateo, CA.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. 1986. Learning internal rep
resentations by error propagation. In Parallel distributed processing: Explorations
in the microstructure of cognition, volume I, pages 318-362. Bradford Books, Cam
bridge, MA.

Schenkel, M., Guyon, I., Weissman, H., and Nohl, C. 1993. TDNN Solutions for
Recognizing On-Line Natural Handwriting. In Advances in Neural Information
Processing Systems 5. Morgan Kaufman.

Tappert, C., Suen, C., and Wakahara, T. 1990. The state of the art in on-line
handwriting recognition. IEEE Trans. PAM!, 12(8).

