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Globe: A Wide-Area
Distributed System

frastructure is still lacking. We propose
Globe: a novel scalable infrastructure for a
massive worldwide distributed system. 

Currently, designers build applications
on top of a limited number of communi-
cation services. On the Internet, for exam-
ple, this means that applications com-
municate mainly through transmission-
control protocol (TCP) connections, but
otherwise must implement all additional
services themselves, including services for
naming, replication, migration, fault tol-
erance, and security.

As a further example, consider the World
Wide Web (see the sidebar on World Wide
Web documents). The Web implements its
own communication protocol, hypertext-
transfer protocol (HTTP), on top of TCP.
It uses a tailor-made naming system based
on uniform resource locators (URLs).
Replication is supported in the form of
caches that are part of Web proxies—they
cannot be used for other applications
(cache-coherence protocols rely on Web-
page attribute fields). Unfortunately, few
measures have been taken to handle broken
links and server crashes. Although security
has been proposed in the form of a univer-
sal HTTP extension, proprietary solutions
such as SSL from Netscape are taking

shape. Other Internet applications such as
e-mail and Usenet news each have their
own software models and infrastructure, but
no commonality exists among any of them. 

Consequently, building new wide-area
applications is difficult. First, too much
effort is repeatedly spent on implement-
ing common or standard services that
should have already been there. Second,
with application-specific services, inter-
operability between different applications
can be difficult or even impossible. 

Instead, we propose a different ap-
proach. Rather than developing applica-
tions directly on top of the transport layer,
we want a software infrastructure that pro-
vides us with a set of common distribution
services. The main requirement is that this
infrastructure, or middleware, can scale to
support a billion users all over the world.

Scalable middleware
requirements
Our solution lies in the development of a
wide-area distributed system called Globe
(visit http://www.cs.vu.nl/~steen/globe/). We
aim to meet three major design objectives:
provide a uniform model for distributed
computing, support a flexible implemen-
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tation framework, and ensure worldwide
scalability.

UNIFORM MODEL
A distributed system should provide a
consistent and uniform view of how 
to organize applications built on top 
of it. DCOM and DCE, for example, 
support client-server computing using
only remote procedure calls (RPCs).1,2

CORBA provides a remote-object model
for all its applications.3 Applications built
on top of AFS are offered a wide-area file

system based on location-transparent
naming.4 The Web offers a model of
worldwide distributed documents tied
together through hyperlinks.

A uniform model contributes to a sin-
gle-system view. In addition, it should
integrate common services such as com-
munication, naming, replication, and so
on. Moreover, these services should be
included in such a way that all aspects
related to the distribution of data, com-
putations, and coordination are effec-
tively hidden from users. In other words,

a model should provide distribution trans-
parency. Worldwide systems that inte-
grate common services and support all
types of distribution transparency do not
currently exist.

More importantly, distribution ser-
vices at present generally have a single
wired-in general-purpose policy. For
example, all proxy caches in the Web
work the same way. The same holds for
caching in AFS. In CORBA and DCE,
client proxies are always the same: they
forward requests and handle replies.

To illustrate the benefits of our ap-
proach, we consider how Globe facili-
tates support for scalable Web docu-
ments. A Web document is taken to be
a collection of logically related pages,
including their icons, sounds, applets,
and so on.

Proposals for caching or replicating
Web documents tend to treat pages
alike in the sense that the semantics of a
document are not taken into account.
Documents and their pages are treated
differently only by considering metadata
such as access statistics, times of modifi-
cation, and other relevant information.
Alternatively, some solutions are tailored
to a specific class of documents and are
not universally applicable.

As Web documents are becoming
more diverse, it is clear that it will be
hard to find a single solution to use in
all situations. For example, current
caching and replication schemes for the
Web assume that pages are modified
at only one location. They are not
suited to support Web pages several
users actively share, such as shared
whiteboards and pages manipulated
through groupware editors. Likewise,
it is hard to tailor a replication scheme
to just a single document, as is needed
with mail-distribution lists.

The approach followed in Globe is
radically different. Rather than search-
ing for generally applicable replication
schemes, each distributed object can
adopt its own strategy. Globe offers a
library of different replication subob-
jects (see Figure 2 in the main text) that
can be adopted and subsequently fine-
tuned separately for each distributed
object. When required, new ones can
be constructed.

For example, consider the current

major application of the Web, namely
providing information through a logi-
cal Web site, also called a home page. A
home page is related to a person, pro-
ject, consortium, or organization, and
is generally the entry point of an entire
hypertext document consisting of mul-
tiple pages. Typically, in Globe, this doc-
ument would be modeled as one dis-
tributed shared object. The state of
such a document consists of the rooted
directed graph of individual pages that
make up the hypertext document.

Web sites can be very different with
respect to the kind of documents they
manage. Pages of a personal site rarely
require any replication and possibly
only short-lived caching. In Globe, the
owner of a personal site would group
the pages into a single document and
provide only a single contact address.
When a user binds to that document,
its pages (including icons, images, text,
and graphics) are transferred to the
user’s browser, possibly in parts as in
current practice, and are subsequently
written to the user’s private cache. Note
that there is generally no need to write
pages of such a document to a site-wide
cache as Web proxies do.

On the other hand, an organization’s
Web site might be of an entirely differ-
ent nature. First, we might assume that
its popularity is much higher than that
of personal Web sites. Also, in the case
of multinational organizations, readers
will come from all over the world. In
these cases, a primary-backup approach
where pages are replicated to a num-
ber of mirror sites is useful. The organi-
zation’s Web site could be constructed
as one or more Web documents, where
each document is registered at the
location service with multiple contact

addresses. The nearest address is always
returned to a user. Note that, in Globe,
the name of a Web document can be
the same everywhere. Also, there is no
need to tell the user that there are mir-
ror sites and where these sites are. In
contrast to personal Web documents,
site-wide caching, as is done by current
Web proxies, might now be useful.

There are also Web sites whose con-
tent changes rapidly and which might
require active replication schemes. For
example, Web documents of online
news providers might want to use a
publish/subscribe type of replication by
which subscribers to a provider’s docu-
ment are notified when news updates
occur. This also holds for Web docu-
ments related to conferences and other
types of timely events. In the current
Internet infrastructure, mailing lists can
automatically propagate updates to
users. Such lists are highly inefficient. In
Globe, notification would be an inte-
gral part of the Web document, using a
multicasting scheme appropriate for
that document. Of course, notification
could be combined with actively repli-
cating the updates, but this might not
be appropriate in all cases.

What we see here are similar Web
documents that require very different
replication strategies. Personal home
pages need not be replicated and
should be cached on a per-user basis.
Organizational home pages can apply
primary-backup replication and should
be cached per site. Home pages related
to timely events might benefit from a
publish-and-subscribe type of replica-
tion where clients are notified when
updates occur. Unfortunately, such dis-
tinctions are presently impossible to
make. In Globe, however, each Web
document can use a replication strat-
egy tailored to its own characteristics.

An example: scalable World Wide Web documents
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There is no straightforward way to build
more sophisticated proxies.

We need mechanisms for imple-
menting object-specific policies (see
the “Related work” sidebar). An object
should entirely encapsulate such poli-
cies. In Globe, we tackle these prob-
lems by providing a model of distributed
shared objects. The two main distinctions
with existing models are that our ob-
jects can be physically distributed, and
each object fully encapsulates its own
policy for replication, migration, and
so on. In Globe, an object is completely
self-contained, so that objects for dif-
ferent applications can have replication
(and sometimes policies) carefully tai-
lored to their needs. Nevertheless, all
implementation aspects are hidden
behind its interfaces to achieve distri-
bution transparency. 

FLEXIBLE IMPLEMENTATION
FRAMEWORK
The heterogeneity inherent to a wide-
area system should preferably be trans-
parent to applications. However, com-
plete transparency is not always a good
idea. For example, we might want to
make use of a parallel computer in some

computations, so where we do the com-
putation matters. A wide-area distrib-
uted system should thus make special-
ized facilities available to applications
when needed. For similar reasons, as-
pects of the underlying network should
be made visible—when bandwidth is
scarce, it might be better to move data
and computations from server to client,
as in the case of Java applets.

What we need is a flexible implemen-
tation framework: a set of cooperating
mechanisms that make up a reusable
design for wide-area distributed appli-
cations.5 It is here that an object-based
approach will help. By strictly separat-
ing an object’s interface from its imple-
mentation, we can construct reusable
designs by considering only interfaces.
We can tailor design toward a specific
application by choosing the appropriate
object implementations and, where nec-
essary, extending the design with other
objects.6 This is the approach we fol-
lowed in Globe.

WORLDWIDE SCALABILITY
A worldwide-scalable distributed system
is capable of offering adequate perfor-
mance in the face of high network laten-

cies, congestion, overloaded servers, lim-
ited resource capacity, unreliable com-
munication, and so on. To achieve world-
wide scalability, we at least need to provide
extensive support for partitioning and
replicating objects.7

Adequate support for scaling tech-
niques is precisely what current middle-
ware lacks. DCOM, DCE, and CORBA
do not provide the tools for replicating
objects. In those cases where caching or
replication is supported, such as in AFS
and the Web, policies are fixed. How-
ever, we can find efficient solutions that
scale worldwide only if we take appli-
cation-level consistency into account.
Again, this calls for flexibility.

The Globe system
Globe is a wide-area distributed system
that we constructed as a middleware
layer on top of the Internet, various Unix
systems, and Windows NT. We recently
finished our initial architectural design,
which consists of an object model and a
collection of basic support services. The
object model allows for the construction
of worldwide scalable objects that a vast
number of processes can share. Support

Related work 

There is much academic and industrial activity on the design
and implementation of shared data and objects. A shared-data
model offers a small set of primitives for reading and writing
bytes to shared regions of storage. Typical examples of shared-
data models are network file systems and distributed shared
memory implementations. The main problem is achieving per-
formance and scalability while keeping data consistent. DSM
and storage systems such as Munin and Khazana follow an
approach similar to Globe by attaching replication policies on
a per-region basis.1,2 In most DSM systems, performance is
improved by relaxing memory consistency.3 The main draw-
back of the shared-data model is that it simply does not pro-
vide the level of abstraction needed for developing distributed
applications. Therefore, much attention is being paid to object-
based approaches.

Objects come with an architectural model that lends itself
well to distributed systems. An object can be seen as a fine-
grained service provider. To most developers, this means that
an object is naturally implemented through its own server
process, which handles requests from clients. This view leads to
the remote-object model in which a remote-method invoca-
tion is made transparent using RPC-like techniques, as is done
in DCOM.4 However, this approach is the major obstacle to
scale worldwide. The problem is that remote-object invoca-
tions cannot adequately deal with network latencies. Addi-
tional mechanisms such as object replication and asynchronous

method invocations are therefore necessary.
In the Legion system, objects are located in different address

spaces, and method invocation is implemented nontranspar-
ently through message passing.5 The Legion approach is one
of the few that explicitly addresses wide-area scalability. The
Globus project has developed global pointers to support flex-
ible implementations.6 A global pointer is a reference to a
remote compute object. The pointer identifies a number of
protocols to communicate with the object, of which one is to
be selected by the client. Global pointers offer a higher degree
of flexibility than the Legion approach.

When it comes to distribution transparency, Legion and
Globus fall short. Object request brokers explicitly address
transparency. An ORB is a mediator between objects and their
clients. Basic ORBs provide only support for language-inde-
pendent and location-transparent method invocation. CORBA-
compliant ORBs offer additional distribution services such as
naming, persistence, transactions, and so on. 7 Unfortunately,
CORBA has not yet defined services for transparently replicat-
ing objects or for keeping replicas consistent.

When an ORB is responsible for distribution services, we
require additional mechanisms independent of the core object
model. One such mechanism is the subcontract used in the
Spring system.8 A subcontract implements an invocation pro-
tocol: it describes the effect of a method invocation at the
client side in terms of the method invocation at the object’s
side. For example, in the case of replication, method invoca-
tion by a client might result in the invocation of that method



services include services for naming and
locating objects.

GLOBE’S OBJECT MODEL
In Globe, processes interact and commu-
nicate through distributed shared objects.
Each object offers one or more interfaces,
with each interface consisting of a set of
methods. A Globe object is physically dis-
tributed, meaning that its state might be
partitioned and replicated across multi-
ple machines at the same time. However,
processes are not aware of this: the object
completely encapsulates the state and
operations on that state. All implementa-
tion aspects, including communication
protocols, replication strategies, and state
distribution and migration, are part of the
object and are hidden behind its interface.

For a thread in a process to invoke an
object’s method, it must first bind to that
object by contacting it at one of the
object’s contact points. A contact address
describes such a point, specifying a net-
work address and a protocol through
which the binding can take place. (Bind-
ing results in an interface belonging to the
object being placed in the client’s address
space, along with an implementation of
that interface.) Such an implementation

is called a local object. Figure 1 illustrates
this model and shows a Globe object dis-
tributed across four address spaces.

A distributed object is built from local

objects, which reside in a single address
space and communicate with local objects
in other address spaces. They form a par-
ticular implementation of a distributed

Network

Local object

Address
space

Distributed
object

A1 A2

A3 A4

A5

Contact
point

Figure 1. Example of an object distributed across four address spaces. A5 is an
additional address space.

at each replica. Replicating the invocation is encapsulated in
the subcontract and hidden from the client. As a general
mechanism, subcontracts are too limited. For example, it is
hard to develop subcontracts that keep a group of objects con-
sistent for several clients to share.

An alternative approach is to fully encapsulate distribution
in an object, leading to a model of partitioned objects. Parti-
tioned objects appeared in SOS in the form of fragmented
objects.9 Globe’s distributed shared objects form another
implementation of partitioned objects, and have been derived
from the Orca programming language. 10

Fragmented objects in SOS are mostly language-indepen-
dent. Distribution is achieved manually by allowing interfaces
to act as object references that can be freely copied between
different address spaces. An important difference with Globe’s
distributed shared objects is that fragmented objects make
use of relative object references. In contrast, Globe’s object
handles are absolute and globally unique. Fragmented objects
have not been designed for wide-area networks. For exam-
ple, the communication objects have been designed and
implemented for local-area networks only. Furthermore, the
model does not provide facilities for implementing different
coherence policies, nor does it address the problem of plat-
form heterogeneity.
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object’s interface. For example, a local
object might implement an interface by
forwarding all method invocations, as 
in RPC client stubs. A local object in
another address space might implement
that same interface through operations
on a replica of the object’s state.

Our aim is to let application develop-
ers concentrate on designing and imple-
menting functionality in terms of
objects. Distribution is a different con-
cern, and should be treated separately.
For this reason, local objects are con-
structed in a modular way, to separate
issues such as replication and communi-
cation from what the object actually does
(such as its semantics). We distinguish
the following four subobjects, as shown
in Figure 2:

• A semantics subobject containing the
methods that implement the distrib-
uted shared object’s functionality,

• A communication subobject for sending
and receiving messages from other
local objects,

• A replication subobject containing the
implementation of a specific replica-
tion policy, and

• A control subobject handling the con-
trol flow within the local object.

These four subobjects are designed to
build scalable distributed shared objects.
Of course, we also need support for secu-
rity, persistence, and other services,
which are handled by separate subobjects
in our approach. As scalability is the
focus of this article, we discuss only the
four subobjects listed here.

Semantics subobject 
The semantics subobject is comparable
to objects in middleware such as DCOM
and CORBA. It implements (part of) the

same functionality the distributed shared
object has, thereby ignoring distribution
issues. In Globe, a semantics subobject
can be implemented in any language; its
methods are made available by one or
more interfaces. We expect that each
subobject implements the standard
object interface, which has a role similar
to the IUnknown interface in COM.
Like IUnknown, the standard object
interface provides a method get-
Interface that returns a pointer to a
specified interface.

In principle, the semantics subobjects
are the only subobjects a developer must
construct. All other parts can either be
obtained from libraries or are generated
from interface and object descriptions.
The only restriction we currently impose
is that a control thread is not allowed 
to block inside a semantics subobject.
Instead, a method should return indicat-
ing that a condition did not hold. In that
case, the control subobject will block the
invoking thread, as we explain shortly.

Replication subobject 
The distributed object’s global state is
made up of the state of its various seman-
tics subobjects. In our approach, repli-
cation and caching of the semantics sub-
objects are important techniques for
scalability. However, having several
copies leads to a consistency problem:
changes to one copy make it different
from the others. To what extent such
inconsistencies can be tolerated depends
on the distributed object and the way it
is used. Consequently, we need to sup-
port coherence protocols on a per-object
basis. The replication subobject acts as a
placeholder for different protocols and
a variety of protocol implementations.

Our basic assumption is that coher-
ence protocols can be expressed in terms
of when specific methods of a local
semantics subobject copy can be in-
voked. The replication subobject thus
decides when local invocations can take

place. Omitting specific details, it offers
an interface to the control subobject as
shown in Table 1.

In principle, all invocation requests,
whether they come from the local client
or from the network, are first passed to
the replication subobject before the
method is invoked at the semantics 
subobject. When the control subobject
receives an invocation request from the
local client, it first calls start to allow
the replication subobject to synchronize
the semantics subobject copies. For
example, the coherence protocol might
require a token to be acquired before any
method invocation at the semantics sub-
object takes place.

The start method returns a set of
actions that the control subobject should
take. The return value invoke tells the
control subobject to invoke the method
at the semantics subobject. Likewise,
send instructs the control subobject to
pass the marshalled invocation argu-
ments to the replication subobject by
subsequently calling send. So, for exam-
ple, with a replication strategy where a
method has to be invoked at all replicas,
an implementation of start might
return {Invoke,Send}, telling the
control object to do a local invocation
and pass the marshalled invocation
request so that it can be sent to other
replicas.

The final step is to invoke finish,
allowing the replication subobject to
synchronize the replicas again (if
needed). Again, the finish invocation
is determined by the replication subob-
ject, for which it returns finish after
the invocation of start or send.
Invoking finish generally returns
{Return}, telling the control subob-
ject that it can pass the method invoca-
tion’s return value to the local client.

A distinctive feature of our model is
that we allow method invocations at the
semantics subobject to block on condi-
tion failures. For example, appending

Replication
subobject

Semantics
subobject

Communication
subobject

Control
subobject

Local object

Control
callback
interface

Replication
interface User-defined

interface

Figure 2. A  distributed object’s
general implementation.

Table 1. Replication interface of a subobject as used by the 
control subobject.

METHOD DESCRIPTION

start Called to synchronize replicas of the semantics subobjects, obtain 
locks if necessary, and so on.

invoked Called after the control subobject has invoked a specific method at 
the semantics subobject.

send Provides marshalled arguments of a specific method and passes
invocation to local objects in other address spaces.

finish Called to synchronize the replicas again, release locks, and so on.



data to a bounded buffer might fail when
the buffer fills—the replication subobject
controls concurrent access to the seman-
tics subobject. After invoking a method
at the semantics subobject, the control
object always calls invoked, informing
the replication subobject whether a con-
dition failure occurred, and passing con-
trol back to the replication subobject. If
necessary, the current thread blocks
inside the replication subobject. The
replication subobject can then allow
other invocations to take place, which
might possibly change the state of the
semantics subobject such that the blocked
thread can continue successively.

Control subobject
The control subobject always invokes
the semantics subobject’s method. This
subobject controls two types of invoca-
tion requests: those coming from the
local client and those coming in through
the network. The control subobject is
also responsible for (un)marshalling
invocation requests passed between itself
and the replication subobject. The con-
trol subobject’s interface offered to the
local client is the same as the semantics
subobject’s (user-defined) interface. In
addition, it offers the callback interface
to the replication subobject shown in
Table 2.

In general, when a local client invokes
a method at the control subobject, the
latter will eventually invoke that method
at its local copy of the semantics subob-
ject with permission from the replication
subobject. Remote invocation requests—
that is, requests that replication subob-
jects pass in remote address spaces—are
eventually passed to the control subobject
through handle_request. The con-
trol subobject then simply does the local
invocation at the semantics subobject.

Communication subobject
The communication subobject, finally,
is responsible for handling communica-
tion between parts of the distributed
object that reside in different address

spaces. It is generally a system-provided
local object. Depending on what is
needed from the other components, the
communication subobject offers reliable
or best-effort communication, connec-
tion-oriented or connectionless com-
munication, and point-to-point or mul-
ticast facilities. Like the replication
subobject, it offers a standard interface
but allows many different implementa-
tions of that interface. The most impor-
tant methods are those for sending and
receiving messages, as well as methods
to support request and reply semantics.

The main role of our communication
subobjects is that they provide a uniform
interface to underlying networks and
operating systems concerning their com-
munication facilities. By providing a
standard interface, we can develop other
local objects in a platform-independent
way. Communication and replication
subobjects are often unaware of the
methods and state of the semantics sub-
object. This independence allows us to
define standard interfaces for all replica-
tion subobjects and communication sub-
objects. Consequently, we can imple-
ment different policies but keep the

interfaces the same. This also means that
we can now easily adopt a policy by
choosing an appropriate implementation
from a library of class objects, which con-
tain the implementation of subobjects—
we can then dynamically download that
implementation into our local object
framework.

Process-to-object binding
To communicate through a distributed
object, it is necessary for a process to first
bind to that object. The result of binding
is that the process can directly invoke the
object’s methods. In other words, a local
object implementing a distributed object’s
interface is placed in the requesting
process’s address space. Binding itself con-
sists roughly of two distinct phases: find-
ing the distributed object and installing a
local object. Figure 3 illustrates this. Find-
ing a distributed object is separated into
name and location look-up steps; installing
the local object requires that we select a
suitable contact address, as well as an
implementation for that interface.

FINDING A DISTRIBUTED OBJECT
To find a distributed object, a process
must pass the object’s name to a naming
service. The naming service returns an
object handle, which is a location-inde-

5

2

3

4

1
Name

Object handle

Addresses and
protocols

Naming service

Location service

Distributed shared object

Register address
of contact point

Make contact

Client process

Load and
instantiate

class

Class

Local object

(Trusted) implementation repository

Finding a
distributed

object

Installing a
local object

Figure 3. Binding a process to a distributed shared object.

Table 2. The control subobject’s callback interface as used by the
replication subobject.

METHOD DESCRIPTION

handle_request Called to invoke the specified method at the semantics 
subobject.

getState Returns the (marshalled) state of the semantics subobject.
setState Replaces current state of the semantics subobject with 

the state passed as an argument.
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pendent and universally unique object
identifier, such as a 128-bit number
(which is used to locate objects). It can
be passed freely between processes as an
object reference. It never changes over
time and is guaranteed to refer to the
same object even years later (if the object
still exists). The object handle is given to
a location service that returns one or
more contact addresses. Globe thus uses
a two-level naming hierarchy.

This organization allows us to sepa-
rate issues related to naming objects
from those related to contacting objects.
In particular, it is now easy to support
multiple and independent object names.
Because an object handle does not
change once it has been assigned to an
object, a user can easily bind a private or
locally shared name to an object without
ever having to worry that the name-to-
object binding will change without
notice. On the other hand, an object can
update its contact addresses at a location
service without having to consider under
which name its clients access it.

We can now remove all location infor-
mation from names, thus making 
it easier to realize distribution transparency.
However, we do require a scalable location
service that can handle frequent contact-
address updates in an efficient manner. We
have designed such a service and are cur-
rently implementing a prototype version to
test on the Internet. 8

INSTALLING A LOCAL OBJECT
Once a process knows where it can con-
tact the distributed object, it needs to
select a suitable address from the ones
the location service returns. A contact
address might be selected for its locality,
but other criteria might determine pref-
erence of one address over another. For
example, some addresses might belong
to difficult-to-reach subnets or to sub-
nets to which only low-bandwidth con-
nections can be established. Other qual-
ity-of-service aspects might need to be
considered as well. Note that an address
selection service is a local service that
builds its own administration concern-
ing contact-address quality.

A contact address describes where and
how the requested object can be reached.

The latter is expressed as a protocol
identifier. It specifies a complete stack of
protocols that should be implemented
on the client’s side to communicate with
the distributed object.

Of course, implementation selection
might fail if a (trusted) implementation can-
not be found. In that case, the binding
process returns to the address-selection step,
where the next best address is considered.

Current status

We built an initial prototype implemen-
tation of our system, concentrating on
the support for distributed shared
objects. Our initial prototype was imple-
mented in ANSI C. We are currently
developing a Java-based implementation.

Interfaces are written in an interface
definition language (IDL). The proto-
type has an interface compiler that cre-
ates a C header file for each interface def-
inition. The interface compiler also
generates skeletons for (class) object
implementations. A skeleton provides the
necessary glue to turn a method invoca-
tion on a (local) object into a C function
call. The programmer only has to imple-
ment one C function for each method.

The interface compiler also generates
composite objects. A composite object
encapsulates a collection of subobjects
and allows them to be treated as a single
entity. For example, our local object is
constructed as a composition consisting
of the four subobjects shown in Figure
2. These four subobjects are written
manually with the help of generated
skeletons. Generally, replication and
communication subobjects are selected
from a collection of subobjects supplied
with the prototype.

A class object (containing the imple-
mentation of a subobject) is stored on the
local file system and loaded at runtime
into a process’s address space. A config-
uration file specifies for each class name
the file in which the corresponding class
object is stored.

Object repositories support persistent
distributed shared objects. An object
repository provides a distributed object
with support for storing its state persis-
tently (on disk). It can activate passivated

objects—that is, objects removed from
address spaces. An object repository also
provides a factory object: a distributed
object that creates new persistent objects.
An object repository is a simple Unix
process that stores the state of the object
it manages in a Unix file system. In the
prototype, each factory creates only one
type of object. During an object reposi-
tory’s configuration, it specifies what
object types it can create.

An application uses a distributed object
by binding to it. The prototype provides
simple (Unix-style) programs that create
and delete distributed objects, list the con-
tents of directories, write and read objects,
and so on. Our largest application so far is
a Web proxy that converts HTTP requests
into method invocations on distributed
shared objects. To bind to an object, appli-
cations use both location and name ser-
vices. The location service is implemented
as a simple, centralized database. The
name service is constructed as a collection
of distributed directory objects.

INITIAL PROTOTYPING
EXPERIENCES
To allow concurrent access to objects,
Globe supports multithreading. How-
ever, it is well known that correctly pro-
gramming multithreaded applications is
difficult. To minimize problems, we fol-
low an approach in which two types of
threads are strictly separated. Pop-up
threads, which are used to handle re-
quests coming in through the network,
are allowed to invoke only methods from
callback interfaces (except for semantics
subobject methods). Likewise, threads
originating from the local client can
invoke only methods from regular inter-
faces. Furthermore, subobjects are pro-
grammed in such a way that critical
regions need never be locked while a call
is being made to another subobject.

As we explained, we have developed
and implemented an IDL. Our IDL is
similar to, for example, the CORBA IDL,
except that we can also support interface
specifications for local objects. Interfaces
in C and Java are generated from IDL
descriptions. This approach has proven
to be highly effective, leading to well-
designed subobjects. Nevertheless, the
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control subobject currently has to be
made by hand, which unnecessarily com-
plicates object construction. It is better to
specify the semantics subobject in an object
definition language, from which, together
with IDL descriptions, we can generate
the control subobject. We are currently
developing an ODL for Globe.

Being able to implement policies on a
per-object basis proved to be highly effec-
tive. For example, because we were initially
not interested in persistence, we used a sin-
gle database to store the state of different
distributed shared objects. The problem
with this approach, which is basically the
same as the one followed in CORBA, was
that too many policy decisions had to be
implemented outside the control of the
object being stored. Later, we decided to
follow the Globe paradigm more closely
(in which each object is in full control of
handling its own state). In our current pro-
totype, each object implements its own
persistence facilities, as well as the policy
that goes along with it. This approach has
turned out to be much more flexible and
easier to implement and maintain.

The performance of our prototype,
which is currently dominated by the time
it takes for a process to bind to an object,
confirmed that the granularity of distrib-
uted shared objects should be relatively
large. For wide-area objects, network
speed and delay will additionally deter-
mine performance, while the semantics
subobject’s size determines granularity.
Unfortunately, in our model, a replication
strategy operates on the entire state as
contained in this subobject. This approach
is not always appropriate. For example,
when a semantics subobject is built from a
number of Web pages, including icons,
images, text, and graphics, we would like
to apply different strategies for different
parts of the subobject. Developing each
part as a separate distributed shared object
has an unacceptable performance penalty.
We are currently investigating how we can
support composite semantics subobjects
whose elements can have separate repli-
cation strategies.

A JAVA-BASED PROTOTYPE FOR
THE WEB
Based on our first prototyping experi-

ences, we are currently developing an
implementation of Globe tailored to sup-
port scalable Web documents.9 A Globe
Web document is a collection of logically
related Web pages. A page might consist
of text, icons, images, sounds, and ani-
mations, as well as applets, scripts, and
other forms of executable code. Each
Globe Web document is constructed as
a distributed shared object.

Instead of using C, we chose Java as
our implementation language. Con-
structing a Globe Web document pro-
ceeds as follows. The elements that con-
stitute the document (such as text, icons,
applets, and graphics) are grouped to-
gether into what is called a state archive.
As its name suggests, a state archive con-
tains the state of the semantics subobject.

A semantics subobject offers a stan-
dard interface. For example, it is possible
to add, remove, or replace elements. At
present, each element is represented as a
byte image and has an associated MIME
type. Besides a standard interface for a
semantics subobject, we offer a standard
implementation of a control subobject
and implementations for the interfaces of
the replication and communication sub-
objects. These implementations jointly
constitute a template for a Globe Web
document’s local object.

Finally, a developer has to choose Java
classes that implement the replication and
communication subobjects’ interfaces.
This leads to one or more class archives.
Basically, a class archive contains a Java
implementation of a specific replication
strategy. The state archive, local object
template, and a class archive are then
grouped together into a single file from
which a local object can be instantiated.
If no suitable class is available, the imple-
menter is free to write a new one.

To integrate our documents into the
current Web infrastructure, we use a fil-
tering gateway that communicates with
standard Web clients (browsers), as

shown in Figure 4. The gateway is a
proxy that runs on a local server machine
and accepts regular HTTP requests for
a document. In our model, Globe Web
documents are distinguished from
other Web resources through naming.
A Globe name is written as a URL 
with Globe as a scheme identifier. So, 
for example, globe://cs.vu.nl/~steen/globe/
could be the name of our project’s home
document, constructed as a distributed
shared object.

The gateway accepts all URLs. Nor-
mal URLs are simply passed to existing
(proxy) servers, whereas Globe URLs
are used to actually bind to the named
distributed shared object. Unfortunately,
existing browsers cannot handle Globe
names, which is why we embed these
names in URLs with HTTP as scheme
identifiers. In addition, we use Java
applets to support interactive docu-
ments. We are investigating the use of
browser plug-ins to allow browser exten-
sions for support of Globe’s distributed
shared objects.

WE HAVE FINISHED THE initial archi-
tectural design of our system, leaving a
number of subjects open for further
research. For example, we are currently
designing a security architecture. Fur-
thermore, we are concentrating on spe-
cific schemes for wide-area replication
and persistence, mechanisms that support
large-scale applications composed of
many distributed objects, and persistence.
Our efforts concentrate on developing a
Java-based implementation for con-
structing scalable Web documents. 

Client browser Gateway

HTTP connection

Local object

Document representative
in client’s browser

Interface

Globe Web document

Figure 4. The general organization for integrating Globe Web services into the
current Web.
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