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REVIEW

Globe-Trotting Aedes aegypti and Aedes albopictus:
Risk Factors for Arbovirus Pandemics

Olivia Wesula Lwande,1–3 Vincent Obanda,2,4 Anders Lindström,5 Clas Ahlm,3,6 Magnus Evander,1,3

Jonas Näslund,7 and Göran Bucht7

Abstract

Introduction: Two species of Aedes (Ae.) mosquitoes (Ae. aegypti and Ae. albopictus) are primary vectors for
emerging arboviruses that are a significant threat to public health and economic burden worldwide. Distribution
of these vectors and the associated arboviruses, such as dengue virus, chikungunya virus, yellow fever virus,
and Zika virus, was for a long time restricted by geographical, ecological, and biological factors. Presently,
arbovirus emergence and dispersion are more rapid and geographically widespread, largely due to expansion
of the range for these two mosquitoes that have exploited the global transportation network, land perturba-
tion, and failure to contain the mosquito population coupled with enhanced vector competence. Ae. aegypti and
Ae. albopictus may also sustain transmission between humans without having to depend on their natural res-
ervoir forest cycles due to arthropod adaptation to urbanization. Currently, there is no single strategy that is
adequate to control these vectors, especially when managing arbovirus outbreaks.
Objective: This review aimed at presenting the characteristics and abilities of Ae. aegypti and Ae. albopictus,
which can drive a global public health risk, and suggests strategies for prevention and control.
Methods: This review presents the geographic range, reproduction and ecology, vector competence, genetic
evolution, and biological and chemical control of these two mosquito species and how they have changed and
developed over time combined with factors that may drive pandemics and mitigation measures.
Conclusion: We suggest that more efforts should be geared toward the development of a concerted multi-
disciplinary approach.
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Introduction

Members of the mosquito genus Aedes (Ae.) are asso-
ciated with transmission of many arboviruses. Pre-

sently, Ae. mosquitoes, specifically Ae. (Stegomyia) aegypti
(Linnaeus 1762) andAe. (Stegomyia) albopictus (Skuse 1894),
are of main interest due to their association with emerging and
reemerging infectious diseases with serious public health
consequences (Weaver and Reisen 2010). These twomosquito
vectors are competent vectors of four major arboviruses, for

example, dengue virus, chikungunya virus, yellow fever virus,
and Zika virus, which cause heavy health burden and eco-
nomic losses globally. For many years, these vectors and
viruses have been endemic and restricted to particular regions,
but now they are spreading into new tropical, subtropical, and
temperate areas, thus expanding the global coverage, a situa-
tion that may escalate large-scale epidemics (Kraemer et al.
2015). A fundamental question is whether it is plausible for
these globally spread Ae. species to trigger a global epidemic
comprising of simultaneous outbreaks of these arboviruses. In
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addition, is there a multinational response and containment
strategy?

By this review, we present some basic characteristics and
abilities of Ae. aegypti and Ae. albopictus to colonize and
establish populations in new geographical areas along with
their associated arboviruses, expose the potential risk to global
health, and give some recommendations for vector control and
risk minimization. In essence, there is a need for a combined
effective strategy to manage arbovirus epidemics worldwide.

Geographic Range of Ae. aegypti and Ae. albopictus

For many years, Ae. aegypti and Ae. albopictus were
geographically restricted to the African continent and
Southeast Asia, respectively (Womack 1993, Mousson
et al. 2005, Scholte and Schaffner 2007), but presently, they
have colonized almost all continents (Kraemer et al. 2015),
see Figs. 1 and 2. As suggested in this article, the major
drivers for geographic expansion of invasive mosquito
species are globalization and changes in the environment
(including climate change).

To our knowledge, there are only a few geostatistical
methods to explore sympatric Ae. aegypti and Ae. albopictus
populations. In an article by Duncombe et al. (2013), they
found that although Aedes mosquitoes reside sympatrically,
they prefer different locations (Duncombe et al. 2013). In bi-
ology, two related species or populations are considered sym-
patric when they exist in the same geographic area and
frequently encounter one another. It is important to remember

that cryptic speciesmay bemedically important in vector-borne
disease transmission, vector ecology, and evolutionary biology.

An initially interbreeding population that splits into two or
more distinct species sharing a common range exemplifies
sympatric speciation. Such speciation may be a product of
reproductive isolation—which prevents hybrid offspring
from being viable or able to reproduce, thereby reducing gene
flow—that results in genetic divergence. Sympatric specia-
tion does not imply secondary contact, which is speciation or
divergence in allopatry, followed by range expansions,
leading to an area of sympatry. Sympatric species or taxa in
secondary contact may or may not interbreed.

To exemplify, the introduction of Ae. aegypti to Asia in
the 19th century led to this species becoming the dominant
dengue fever vector in cities in which it was better adapted for
than native Ae. albopictus (Lounibos 2002, Gratz 2004).
Since then, Ae. albopictus has adjusted to urban environ-
ments, although it still favors areas of dense vegetation,
and the two species reside sympatrically throughout Asia.
Generally, wherever the density of Ae. aegypti was found to
be high, the density of Ae. albopictuswas low, and vice versa.
However, it would be interesting to foresee whether the
global distribution of Ae. aegypti and Ae. albopictus species
leads to sympatric coexistence or competitive exclusion.

It is generally believed that the first incursion of Ae. ae-
gypti from Africa to the Americas occurred during the slave
trade era in the 1600s (Tabachnick 1991, Eisen and Moore
2013, Brown et al. 2014). The spread to Australia, Europe,
and Southeast Asia took place later during the 20th century

FIG. 1. Global distribution of Ae. aegypti using climatic and surveillance data collected up to 2015. Color images are
available online.
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(Halstead 1966, 2006, Guzman and Kouri 2003, Gratz 2004,
Hapuarachchi et al. 2010, Dick et al. 2012, Brown Evans
et al. 2014). Inherently, Ae. aegypti is less tolerant to
stressful climatic conditions such as temperatures below
10�C, implying that present and future incursion and estab-
lishment into subtropical and temperate regions are linked to
climate change (Almeida et al. 2007, Liu-Helmersson et al.
2016). On the other hand, factors driving the disappearance
of Ae. aegypti in the 1970s from the Mediterranean, Black
Sea, and Macaronesian and Atlantic Ocean regions (i.e.,
Madeira, Canary Islands, and the Azores) have been con-
nected to establishment of appropriate water infrastructure
and improved hygiene through development of piped water
systems (Saliternik 1958, Holstein 1967). Furthermore, the
use of insecticides such as dichlorodiphenyltrichloroethane
(DDT), as part of malaria control, has significantly contrib-
uted to elimination of Ae. aegypti. It has also been suggested
that the vector has undergone natural extinction (Holstein
1967). Since then, Ae. aegypti has reestablished in southern
Russia, Madeira, Georgia, and northeastern Turkey (Al-
meida et al. 2007, Scholte et al. 2009, Akiner et al. 2016).

Ae. albopictus is an indigenous species of Southeast Asia
that has successively expanded its presence to Africa, Eur-
ope, Australia, the Americas, and Middle East (Gratz 2004,
Benedict et al. 2007). Currently, Ae. albopictus is more
geographically widespread than Ae. aegypti in Southeast
Asia and Southeastern United States (Medlock et al. 2015).
The first reported observations of Ae. albopictus outside Asia
were in Albania, Texas, and Brazil in 1979, 1985, and 1986,

respectively (Forattini 1986, Sprenger and Wuithiranyagool
1986, Adhami and Reiter 1998). Later, it became established
also in other parts of the Americas, West and Central Africa,
the Pacific and Indian Ocean islands, Australia, New Zeal-
and, and the Caribbean islands (Gratz 2004, Derraik 2006,
Paupy et al. 2009). However, in some countries such as New
Zealand, Barbados, and Trinidad, the vector is presently ab-
sent, perhaps due to effective entomological surveillance
programs situated at the ports of entry (Lambrechts et al.
2010). Currently, Ae. albopictus is considered as one of the
most invasive mosquito species (Bonizzoni et al. 2013).

Reproduction and Ecology of Ae. aegypti

and Ae. albopictus

Ae. aegypti and Ae. albopictus thrive in warm and humid
climate and they are predominantly day feeders (Van Kleef
et al. 2010). Ae. albopictus undergoes estivation, and in
some cases, the eggs may survive temperatures below 0�C,
whereas Ae. aegypti is intolerant to lower temperatures, es-
pecially freezing temperatures (Romi et al. 2006, Gould and
Higgs 2009, Rios and Maruniak 2011, Thomas et al. 2012).
Ae. aegypti females lay multiple batches of eggs, whereas
Ae. albopictus lay single batches after a bloodmeal. Although
these two mosquito species are container-inhabiting mos-
quitoes, Ae. aegypti has a preference for human settlements,
whereas Ae. albopictus is inclined to periurban and rural
environments (Christophers 1960, Chan et al. 1971, Braks
et al. 2003, Tsuda et al. 2006). During favorable conditions,

FIG. 2. Global distribution of Ae. albopictus using climatic and surveillance data collected up to 2015. Color images are
available online.
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especially at high temperatures and flooding, eggs of both
Ae. aegypti and Ae. albopictus hatch within a few days into
larvae. The larvae undergo thereafter four molts, which may
take between 9 and 13 days. The male mosquitoes develop
faster than the females and molt earlier into pupae. After a
period of *2 days, the pupae develop further into adult
mosquitoes; see Fig. 3.

Research based on bloodmeal analysis of Ae. aegypti and
Ae. albopictus demonstrates that both mosquito species feed
on a wide range of vertebrate hosts (Eritja et al. 2005, Barrera
et al. 2012). However, Ae. aegypti is more anthropophilic
than Ae. albopictus, hence a more efficient vector in urban
areas (Paupy et al. 2009, Valerio et al. 2010). Some studies
have indicated a decline of the Ae. aegypti population and a
simultaneous increase of the Ae. albopictus population, es-
pecially in regions where they coexist (Christophers 1960,
O’meara et al. 1995, Lounibos et al. 2016). This observation
could be attributed to interspecies competition beside the
control Ae. aegypti population by intensive vector control
methods such as environmental sanitation and population
reduction using Ae aegypti-targeted traps, mainly the sentinel
autocidal gravid ovitraps in urban settings (Barrera et al.
2018). A suggested explanation for the competitive dis-
placement of Ae. aegypti by Ae. albopictus is satyrization, a
mating interference method where males of one species mate
with females of another species, hence decreasing their fit-
ness without generating hybrids (Tripet et al. 2011).

Vector Competence

Vector competence (ability for infection, dissemination,
and transmission of virus) differs between mosquitoes of
different species and among virus strains. Ae. aegypti and
Ae. albopictus are known to transmit all four dengue virus
serotypes, yellow fever virus, chikungunya virus, and Zika
virus and suggested to be potential vectors of Venezuelan
equine encephalitis virus (Larsen and Ashley 1971, Fontenille
et al. 1997, Gratz 2004, de Lamballerie et al. 2008, da Moura
et al. 2015, Ferreira-de-Brito et al. 2016, Seixas et al. 2018).
Ae. albopictus feeds on a wide range of hosts and is known to
be a significant biting irritant with the potential to become a
serious health threat as a bridge vector for many zoonotic
pathogens to humans (Benedict et al. 2007). This mosquito

vector is able to transmit at least 22 arboviruses, including
dengue, yellow fever, chikungunya, Rift Valley fever, Japa-
nese encephalitis, West Nile, and Sindbis viruses (Gubler and
Rosen 1976, Savage et al. 1992, Mitchell 1995, Moore and
Mitchell 1997, Schaffner et al. 2013, Medlock et al. 2015, Xia
et al. 2018). Furthermore, Potosi virus, Cache Valley virus, La
Crosse virus, Eastern equine encephalitis virus, Venezuelan
equine encephalitis virus, and Mayaro virus may also be
transmitted by these twomosquito species (Larsen andAshley
1971, Turell et al. 2005, Long et al. 2011). In addition, Ae.
albopictus has been shown experimentally to transmit other
arboviruses as well, such as Ross River, Western equine en-
cephalitis, Oropouche, Jamestown Canyon, San Angelo, and
Trivittatus viruses (Moore and Mitchell 1997).

Vector competence studies infer that Ae. albopictus has
become a more effective vector for CHIKV and is currently
able to cause disease within a few days postingestion of in-
fected blood (Moutailler et al. 2009, Rohani et al. 2009). In-
terestingly, a single amino acid change in the envelope 1 gene
(E1), at position 226 (A226V), was found to be responsi-
ble for the increased adaptability and improved transmis-
sion of CHIKV by Ae. albopictus compared with Ae. aegypti
(Tsetsarkin et al. 2007). Studies also demonstrate that
Ae. albopictus and Ae. aegypti, when coinfected with DENV
and CHIKV, are able to replicate and disseminate both viruses
independently (Vazeille et al. 2010, Nuckols et al. 2015).

In essence, increased knowledge of vector competence and
transmission of mosquito-borne infections improves the
possibilities to predict, prevent, and respond to emerging
arbovirus threats and develop novel early warning systems
and accordingly vector control.

Genetic Evolution of Ae. aegypti and Ae. albopictus

Mitochondrial genes of mosquitoes within the Ae. genus
are relatively conserved and maternally inherited (Arctander
1995, Hudson and Turelli 2003, Hlaing et al. 2009, Behura
et al. 2011). However, some coding genes have been shown
to undergo a more rapid evolution, which is informative when
characterizing relationships between populations. Certain
genes, such as the mitochondrial cytochrome c oxidase sub-
unit 1 (COI) gene, are frequently used for species identifi-
cation of mosquitoes (Helmersson 2013, Engdahl et al.
2014). Genetic variations found in mitochondrial genes of
Ae. aegypti and Ae. albopictus indicate that both species
have haplotypes spatially distributed across the world. Po-
pulation genetic analyses of Ae. aegypti of Thailand and
North America indicated the presence of several haplotypes
also in the nicotinamide adenine dinucleotide (NADH) and
dehydrogenase subunit 4 mitochondrial DNA gene sequence
(ND4) (Bosio et al. 2005, Mousson et al. 2005). Ae. albo-
pictus populations have undergone genetic changes in the
region encoding the sodium dehydrogenase subunit 5 (ND5),
leading to distinct haplotypes (Avise 1994). This gene is a
useful marker when studying the spatiotemporal evolution of
Ae. albopictus populations. Moreover, the mitochondrial
gene ND5 has been shown to be the most variable protein-
coding sequence within the genus of Anopheles mosquitoes
(Besansky et al. 1997).

One interesting observation from population genetics is the
inferred linkage between genetic markers and vector com-
petence, for example, the susceptibility of subpopulations

FIG. 3. Ae. aegypti (left) and Ae. albopictus (right) adult
mosquitoes. Morphologically, both are dark in color with
white strips on their backs and legs. However, Ae. albo-
pictus is smaller, with a single, longitudinal, silvery dorsal
stripe, while Ae. aegypti has a silvery, lyre-shaped dorsal
pattern on its scutum (photo, Anders Lindström).
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from Ae. aegypti to DENV serotype 2 (Failloux et al. 2002).
This discovery may lead to further understanding of the es-
tablishment of mosquito populations and appropriate pre-
vention and control strategies considering that mosquitoes
may belong to different genetic lineages. A population dy-
namic study on Ae. aegypti involving genetically divergent
strains with varying insecticide resistance levels, genetic
markers, and vector competence for DENV revealed the
possibility of transmitting characteristics from one mosquito
population to another by creating new genetic variants
through random mating (Ocampo and Wesson 2004). These
variants may pose challenges to insecticide resistance, which
directly impact the control of mosquito populations, since it
results in a reduction in the susceptibility of vector popula-
tions to insecticides (Vontas et al. 2012).

Forecast of Ae. aegypti and Ae. albopictus

as Pandemic Drivers

Arboviruses constitute a global health risk when novel
viruses arise, acquire new characteristics, or are deliberately
released. Globalization has significantly increased the vulner-
ability of human and animal populations to emerging arbovirus
diseases. In recent years, we have noticed the occurrence of
traditional tropical diseases also in temperate areas, for exam-
ple, chikungunya fever in Italy in 2007, outbreaks of West Nile
fever in the United States in 1999 and Greece and Romania in
2010, and local transmission of dengue fever in France and
Croatia in 2010, (Tsai et al. 1998, Hubálek and Halouzka 1999,
Lanciotti et al. 1999, Papa et al. 2011, Lwande et al. 2015).

A wide range of risk drivers are known to exacerbate the
emergence and spread of arbovirus diseases. Themajor drivers
are globalization and changes in the environment (including
climate change). Other components are sociodemographic
factors (population aging, urbanization, social inequality, and
lifestyle), insecticide resistance, health care capacity, animal
health, and food safety. Intensive agriculture, population

density, and inadequate infrastructure, such as improper water
storage, are other risk factors that affect the impact of an
outbreak. Dissemination and expansion of Ae. aegypti and
Ae. albopictus also involve human activities such as trade of
used tires and water storage in open containers (O’meara et al.
1995). The mutual ability of Ae. aegypti and Ae. albopictus to
transmit similar pathogens and even become coinfected with
viral pathogens may have consequences for the severity of
the disease in susceptible hosts. Figure 4 illustrates an over-
view of risk drivers affecting local and/or global spread of
mosquito vectors and their accompanying arboviruses. These
risk factors exemplify topics that could be useful when rais-
ing awareness and suggest focus areas for a comprehensive
risk analysis, which then can be used for a more holistic risk
mitigation strategy.

Societal factors, for example, health care resources and
capacities and travel or transportation restrictions, can be
adapted for emerging and suspected events to mitigate or limit
effects. Increased risk for diseases caused by arboviruses can
necessitate reorganization of care facilities in hospitals or new
arrangements for patient handling. Increased prevalence of
arbovirus infections in specific geographical areas can impose
the need for travel restrictions or relocation of larger social
events, for example, sporting events.

Strategy for Prevention and Control of Ae. aegypti

and Ae. albopictus

So far, there is no single vector prevention and control
method that is effective in controlling mosquito populations
in all settings. Therefore, a combination of vector control
methods, including biological, chemical, and genetic meth-
ods, is needed. Biological procedures are an attractive and
environmentally friendly way to control vector populations.
The use of fish feeding on mosquito larvae can be applied
in containers with stagnant water, especially when targeting
Ae. aegypti (Martinez-Ibarra et al. 2002), or micro-organisms

FIG. 4. A schematic outline of tasks and individual components to be considered for risk analysis and risk mitigation.
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such as Bacillus thuringiensis israelensis can act as biolog-
ical larvicides (de Melo-Santos et al. 2009). Sterile insect
techniques, satyrization, and Wolbachia interfere with the
reproductive mechanisms of vectors and consequently with
virus replication, with Wolbachia being the most important
(Iturbe-Ormaetxe et al. 2011, Bargielowski and Lounibos
2016, Dutra et al. 2016, Rainey et al. 2016, Chung et al. 2018,
Ritchie et al. 2018, van den Hurk 2018).

Genetic vector control methods have been used to limit
mosquito populations, yet they are too slow to affect popu-
lations and require too much infrastructure to ever be useful
for outbreaks. For example, genetic modification of Ae. ae-
gypti has been applied using self-limiting genes such as
OX513A that interfere with the survival of its offspring
(Entwistle and Dhang 2014, Carvalho et al. 2015). The
OX513A gene could also be used in combination with fluo-
rescent markers for monitoring (Wallace 2013, Gabrieli et al.
2014). This latter method has been utilized for visualization
of Ae. aegypti in Brazil, Malaysia, Cayman Islands, and the
United States, and it could potentially be applicable in the
control of Ae. albopictus mosquitoes as well (Harris et al.
2012, Subramaniam et al. 2012, Carvalho et al. 2015, Nimmo
and Beech 2015). Release of genetically modified mosqui-
toes in nature might become feasible in arbovirus-endemic
settings, for example, transgenic mosquitoes, to suppress the
occurrence of vector-competent mosquitoes and hence re-
duce transmission. In addition, the application of CRISPR/-
Cas9 enables genetic modification of mosquitoes to block
genes responsible for virus transmission and reduces vector
competence in mosquito populations (Gantz et al. 2015).
However, this method needs to be coupled with caution and
involvement with relevant stakeholders, experts, and com-
munities to avoid side effects (Knols et al. 2007).

Since the 20th century, a number of mosquitoes have de-
veloped resistance to insecticides, including natural (pyrethrum,
nicotine, and neem extracts), organic chemical compounds

(organophosphates and carbonates), and inorganic material
(metals). Presently, insecticide resistance has become a large
public health problem, especially when controlling mosquito
vectors that transmit arboviruses to humans. Resistance to
DDTwas first demonstrated in theAe. nigromaculismosquito
species by Bohart and Murray (1950). Ae. aegypti resistance
against DDT was detected in Puerto Rico in the 1960s (Fox
1961), followed by other countries and states within the
Americas (Burton 1964, Entwistle 1964, Flynn et al. 1964,
Klassen and Brown 1964). Data from the Arthropod Pesticide
Resistance Database (APRD) indicate that Ae. aegypti is re-
sistant to 24 insecticides across 41 countries. Since then,
subsequent reports of insecticide resistance in other disease
vectors such as Anopheles gambiae and Culex pipiens have
been described.

Prevention and control of Ae. aegypti and Ae. albopictus
by biological or chemical procedures, as well as the lack of
efficacious vaccines for preventing arbovirus transmission,
are great challenges for the future and extremely important in
our efforts to avoid large-scale epidemics or pandemics.

Insights for Tackling Epidemics

The review provides an overview of existing capabilities
that (if combined properly) could greatly improve the pre-
paredness to combat mosquito-borne diseases in the future.
The solution to these problems seems not to be exclusively
dependent on new sophisticated techniques, new innovated
research findings, or more money, but to use what is existing,
combine techniques, collaborate across borders with disease
monitoring, vector surveillance, vector and pathogen identi-
fication, information sharing, and use standardized guide-
lines and procedures (SOPs) for sampling, preparation, and
transportation. Visualization of the relationship or interplay
between different resources and tasks has been demonstrated
in Fig. 5, which exemplifies relationships between resources

FIG. 5. Insights for tackling epidemics. The information in the rectangular boxes indicates how different components
involved in tackling arboviruses epidemics linked to Ae. aegypti and Ae. albopictus relate with each other for better
preparedness and strength to fight epidemics. The plus sign designates joint efforts, whereas the arrows indicate the key
activities that will help to link research outputs to early warning and response capacity outcomes and disease control.
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and tasks and how to connect for better preparedness and
strength to fight epidemics. This is highly cost-effective and
efficient. It is most important to reach out with relevant
information to the community, national authorities, and de-
cision makers. For that purpose, funded national and inter-
national programs and research communication through
workshops, conferences, stakeholder meetings, and media
are important to spread this urgent information and prepare
for awareness and capability building against large epidemics
and/or pandemics.

In addition, surveillance tools for computerized real-time
collection of data from different geographical regions and
sources are urgently needed to provide a platform for rapid
detection and response against arboviruses causing large
epidemics. The data management and data analysis plat-
form(s) must allow cross-border sharing of genomic and
disease information and links to international, regional, and
local requests. Such a common system will constitute a
powerful platform for systematic collection of surveillance
data and guide decision makers with better insights for a rapid
response and quick recovery. This tool will also allow for
improved prioritization, risk planning, and policy making.

The risk drivers shown in Fig. 4 form the basis for un-
derstanding and analyzing effects of emerging infectious
diseases and serve as inputs for risk analysis, which then can
be used for risk mitigation. Methods and standards for in-
formation exchange should be developed with the aim of
increasing coverage and awareness of potential risk and
eventualities pertaining to arbovirus outbreaks. Building ca-
pacity and institutional development will enhance a common
basis for training and education of people at different pro-
fessional levels, such as (1) training aids as manuals and
tutorials for exercises; (2) gamed-based training tools for first
responders and health care workers; (3) accredited reference
laboratories supporting reference samples to ensure delivery
of reliable results that will foster better patient management
and treatment; (4) rapid diagnostic tests that need to be de-
veloped, optimized, and incorporated as part of routine di-
agnostics, especially in hospital settings and community
health care centers located in endemic and risk areas; and (5)
application of high-throughput sequencing platforms, as part
of the point-of-care diagnostics, to enable detection of known
and suspected emerging diseases in risk populations outside
epidemics. Through next-generation sequencing (NGS),
population genetics of both vectors and emerging arbovirus
diseases will be understood. Discovery of new pathogens by
NGS will provide greater insights into pathogen, vector, and
host dynamics and will over time support risk planning and
priority setting. To ensure effective control of mosquito
vectors, a number of factors should be considered, including
the safety of the environment, health of humans, animals and
other living creatures, vector capacity, and social acceptance
by relevant authority of the community in question.

An outline of possible interventions that affect the impact
of an arbovirus outbreak is given in a phase-dependent
manner in Table 1.

Conclusions

We foresee the capability of Ae. aegypti and Ae. albopictus
in causing future epidemics and pandemics by virtue of their
extensive distribution and ability to spread different arbo-

viruses. Despite concerns addressing the global distribution
of these vectors, a comprehensive global strategy to under-
stand the implications of global occurrence—in terms of
public health (pandemic threat), population genetics of the
responsible vectors and corresponding arboviruses, and the
lack of overt prevention and response—is urgently needed.
A multidisciplinary approach is desired for prevention and
control of these two key players associated with large arbo-
virus epidemics.
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