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ABSTRACT

An absolute, supraphysiologic elevation in GFR is observed early in the natural

history in 10%–67% and 6%–73% of patients with type 1 and type 2 diabetes,

respectively. Moreover, at the single-nephron level, diabetes-related renal hemo-

dynamic alterations—as an adaptation to reduction in functional nephronmass and/

or in response to prevailing metabolic and (neuro)hormonal stimuli—increase glo-

merular hydraulic pressure and transcapillary convective flux of ultrafiltrate and

macromolecules. This phenomenon, known as glomerular hyperfiltration, classically

has been hypothesized to predispose to irreversible nephron damage, thereby con-

tributing to initiation and progression of kidney disease in diabetes. However, ded-

icated studies with appropriate diagnostic measures and clinically relevant end

points are warranted to confirm this assumption. In this review, we summarize the

hitherto proposed mechanisms involved in diabetic hyperfiltration, focusing on

ultrastructural, vascular, and tubular factors. Furthermore, we review available ev-

idence on the clinical significance of hyperfiltration in diabetes and discuss currently

available and emerging interventions that may attenuate this renal hemodynamic

abnormality. The revived interest in glomerular hyperfiltration as a prognostic and

pathophysiologic factor in diabetes may lead to improved and timely detection of

(progressive) kidney disease, and could provide new therapeutic opportunities in

alleviating the renal burden in this population.

J Am Soc Nephrol 28: ccc–ccc, 2017. doi: 10.1681/ASN.2016060666

Driven by the ever-increasing prevalence

of diabetes, diabetic kidney disease

(DKD) has become the most common

cause of CKD, leading to ESRD, cardio-

vascular events, and premature death in

developed and developing countries.1 In

order to reduce the onset and progres-

sion of DKD, current management fo-

cuses on prevention, early identification,

and treatment. Diabetes and nephrology

guidelines advocate strict glycemic

and BP targets, the latter for which renin-

angiotensin system (RAS) inhibitors are

recommended in diabetes patients with2

and without3 albuminuria. Despite in-

creased efforts that stabilized incidence

rates for ESRD attributable to DKD in

the United States over the last 5 years,

the number of patients with renal impair-

ment due to diabetes is still increasing.4

Therefore, improved and timely strategies

are needed.

In addition to albuminuria, reduced

GFR is a pivotal marker in predicting the

risk for ESRDand renal death in diabetes,

whereas the role of increased GFR is un-

certain. In the classic, five-stage, protei-

nuric pathwayofDKD, the initial phase is

characterized by an absolute, supraphy-

siologic increase in whole-kidney GFR

(i.e., the sum of filtration in all function-

ing nephrons) (Figure 1). This early

clinical entity, known as glomerular hy-

perfiltration, is the resultant of obesity

and diabetes-induced changes in struc-

tural and dynamic factors that deter-

mine GFR.5 Reported prevalences of

hyperfiltration at the whole-kidney level

vary greatly: between 10% and 67% in

type 1 diabetes mellitus (T1DM) (with

GFRvalues up to 162ml/minper 1.73m2),

and 6%–73% in patients with type 2 dia-

betes (T2DM) (up to 166 ml/min per

1.73 m2, Table 1). In general, GFR in-

creases by about 27% and 16% in recently

diagnosed patients with T1DM6 and

T2DM,7 respectively. The prevailing hy-

pothesis is that hyperfiltration in diabetes

precedes the onset of albuminuria and/or

decline in renal function, and predisposes

to progressive nephron damage by increas-

ing glomerular hydraulic pressure (PGLO)

and transcapillary convective flux of

ultrafiltrate and, although modestly,
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macromolecules (including albumin).

Furthermore, increased GFR in single

remnantnephrons—to compensate for re-

duced nephron numbers8,9 and/or caused

by stimuli of the diabetes phenotype—is

proposed to accelerate renal function de-

cline in longer-standing diabetes.

This review summarizes proposed

factors that underlie hyperfiltration in

diabetes, and addresses evidence of this

phenomenon as predictor and patho-

physiologic factor inDKD. Furthermore,

we discuss lifestyle and (emerging)

pharmacologic interventions that may

attenuate hyperfiltration.

DEFINITION AND MEASUREMENT

“Whole-Kidney” Hyperfiltration

Although a generally accepted definition

is lacking, reported thresholds to define

hyperfiltration vary between 130 and

140 ml/min per 1.73 m2 in subjects

with two functioning kidneys,10 which

corresponds to a renal function that ex-

ceeds two SD above mean GFR in

healthy individuals.11 Notably, use of

any set GFR cutoff does not consider

differences between sexes and distinct

ethnic populations,10 nephron endow-

ment at birth,12 and age-related GFR

decline.10,13 Identification of hyperfil-

tration in clinical practice and systematic

studies is complicated by intra- and

interday GFR fluctuations,14,15 and the

inaccuracy of available serum creati-

nine–based GFR estimates.16 As such,

the Cockroft–Gault, Modification of

Diet in Renal Disease, and Chronic Kid-

neyDisease Epidemiology Collaboration

2009 equations systematically underesti-

mate GFR in diabetes, and progres-

sively more so with increasing GFR.16

This seems due to changes in tubular

creatinine secretion in the setting of obe-

sity, hyperglycemia, and hyperfiltration,

although high glucose concentrations

also lead to overestimation of serum cre-

atinine when the Jaffe reaction is used.16

eGFR on the basis of serum cystatin C is

suggested to more accurately reflect re-

nal function in patients with diabetes

and normal or elevated GFR.17,18 Never-

theless, renal clearance techniques using

inulin, or its more widely used alternative

sinistrin, are required for gold standard

measurement of GFR.19However, because

inulin and sinistrin require labor-intensive

analysis, alternative well recognized, al-

though less accurate, exogenous filtration

markers across GFR values are widely used

in clinical practice and research, such as

(125I-labeled) iothalamate, iohexol, 51Cr-

labeled ethylenediaminetetra-acetic acid,

and 99mTc-labeled diethylenetriaminepenta-

acetic acid.19,20

“Single-Nephron” Hyperfiltration

The definition of hyperfiltration at the

whole-kidney level disregards conditions

in single nephrons, for which two distinct

(frequently co-occurring) elements seem

to be involved. First, in the natural history

of DKD, with irreversible damage to

progressively more glomeruli, remnant

nephrons undergo functional and struc-

tural hypertrophy (glomeruli and associ-

ated tubules), thereby striving to maintain

whole-kidney filtration and reabsorption

within the normal range.21 Second, and

regardless of renal mass, metabolic and

(neuro)hormonal stimuli that prevail in

diabetes and/or obesity (as discussed be-

low) enhance filtration in single nephrons,

even when whole-kidney GFR does

not exceed 130–140 ml/min per 1.73 m2

(Figure 1). Given these considerations, hy-

perfiltration has also been defined as a fil-

tration fraction11,22 (FF; the ratio between

GFR and effective renal plasma flow

[ERPF]) above 17.7%62.8%, i.e., the

mean6SD in healthy 22–25–year-old hu-

mans.23 In support of such a definition, a

mean FF of 24% is observed in adolescents

with uncomplicated T1DM and a

GFR of 178 ml/min per 1.73 m2, whereas

FF is 17% in those with a GFR of

111 ml/min per 1.73 m2.24 ERPF is mea-

sured using para-aminohippuric acid,

radioiodine-labeled hippuran, or 99mTc-

labeled mercaptoacetyltriglycine, which

are removed from the circulation

during a single pass through the kidney

by approximately 90%,25 75%,25 or

55%,26 respectively. Whether FF is a valid

approximation of PGLO is subject to

debate, as the latter can only be directly

measured by micropuncture. However, in

humans there is no alternative,27 other

than estimation with Gomez equations

(usingmeasuredGFR and ERPF, and total

protein).28,29 Some authors propose that a

Figure 1. Classic course of whole-kidney GFR and UAE according to the natural (proteinuric)
pathway of DKD. PeakGFRmay be seen in prediabetes or shortly after diabetes diagnosis, and
can reach up to 180 ml/min in the case of two fully intact kidneys. Strict control of HbA1c and
initiation of other treatments (such as RAS inhibition) mitigate this initial response. Two normal
filtration phases can be encountered, in which GFR may be for instance 120 ml/min (indicated
with the gray line): one at 100% of nephron mass and one at approximately 50% of nephron
mass. Thus, whole-kidney GFRmay remain normal even in the presence of considerable loss of
nephron mass, as evidenced by a recent autopsy study.121 Assessing renal functional reserve
and/orUAEmayhelp identify theextent of subclinically inflicted loss of functional nephronmass.
*Whole-kidney hyperfiltration is generally defined as a GFR that exceeds approximately
135 ml/min, and is indicated with the red line. Heterogeneity of single-nephron filtration
rate and nonproteinuric pathway122 of DKD are not illustrated.
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stress test, which is capable of exploiting

the entire filtration capacity of the kidneys

(known as the renal functional reserve; i.

e., by means of a high-protein load, or in-

fusion of amino acids or dopamine),

could be a significant tool to identify a

hyperfiltering state in patients with

whole-kidney GFR within normal range,

assuming that a preexisting elevation of

PGLO and ERPF will prevent a rise in

GFR (Figure 2).30,31 However, utility

of such a diagnostic measure remains

uncertain, as variability of renal functional

reserve testing makes an impaired GFR

response to a stimulus difficult to identify

and hard to interpret.

PATHOGENESIS OF

HYPERFILTRATION IN DIABETES

Pathogenesis of hyperfiltration in diabe-

tes is complex, comprising numerous

mechanisms and mediators, with a

prominent role for hyperglycemia and

distorted insulin levels,32 especially in

early diabetes33 and prediabetes.34 As

such, prevalence of diabetes-related hy-

perfiltrationmay have been dropped due

to earlier diagnosis and modern day

stricter control of hyperglycemia and

other factors (e.g., angiotensin II by

means of RAS blockade). For example,

reducing glycated hemoglobin A1c

(HbA1c) from 10% to 7%, which could

be considered adequate glycemic con-

trol,35 normalized measured GFR from

149 to 129 ml/min per 1.73 m2 (16% re-

duction) in patients with T1DM on in-

sulin pump therapy, whereas no effect

on GFR was observed in the control

group that continued conventional insu-

lin treatment without changes in

HbA1c.36Notably, independent of diabe-

tes and glucose levels,37 body weight also

augments GFR (by about 15% in obese37

to about 56% in severely obese nondia-

betic subjects38,39). Thus, especially in

T2DM, hyperfiltration likely develops af-

ter and on top of body weight–induced

increases in GFR, although such longitudi-

nal data are not available. Themechanisms

of hyperfiltration, which may overlap and

act in concert, are briefly discussed at ul-

trastructural, vascular, and tubular level.

Ultrastructural Changes

From the onset of diabetes, the kidneys

grow large due to expanded nephron size

(particularly hypertrophy of the proxi-

mal tubule).32,40 This phenomenon is

most likely caused by various cytokines

and growth factors in response to hyper-

glycemia,41 although obesity may also

independently contribute to nephrome-

galy.11,42 Although increased kidney

size36,43 and filtration surface area per

glomerulus44 have been linked to hyper-

filtration, it has been proven difficult to

separate cause from effect.40 Some have

suggested that (compensatory) hyper-

trophy occurs as a result of hyperfiltra-

tion.45 However, in animal studies,

hypertrophy precedes hyperfiltration.41

Inhibition of the rate-limiting enzyme

ornithine decarboxylase to reduce early

diabetic tubular hypertrophy and—

likely subsequent—proximal hyper-

reabsorption of sodium (see below)

diminishes hyperfiltration in direct pro-

portion to the effect on kidney size in

diabetic rats.46 Because tubular growth

reverses slowly, and normalization of

kidney size may not be achieved in

patients with diabetes even after strict

glycemic control, hyperfiltration could

endure due to persistent tubular enlarge-

ment and changes in tubular functions.

Vascular Theory

According to the “vascular theory,” hy-

perfiltration results from imbalance of

vasoactive humoral factors that control

pre-and postglomerular arteriolar tone

leading to hyperfiltration, as depicted

in Figure 3.8,32 Preferential sites of action

of these factors are derived from infu-

sion or blockade studies in preclinical

models and humans, in which reduced

FF is frequently related to a vasodilatory

effect on the efferent arteriole or vaso-

constrictive effect on the afferent arteri-

ole. However, FF reduces also with

Figure 2. Schematic representation of renal functional reserve. Renal functional reserve is
defined as the capacity of the kidney to compensate or increase its function in states of
demand (e.g., high protein or fluid intake, pregnancy) or disease (e.g., diabetes, CKD).31 In
early diabetes, when nephron mass is still.50%, renal functional reserve may be reduced
due to prevailing metabolic and (neuro)hormonal factors that increase baseline GFR. In
later stages, additional renal hemodynamic adaptations occur in response to reduced renal
mass, leading to continuous maximal use of glomerular filtration capacity.

4 Journal of the American Society of Nephrology J Am Soc Nephrol 28: ccc–ccc, 2017
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proportional decreases in efferent and

afferent arteriolar resistance (as the

former decreases FF more than the latter

increases FF), which denotes that

changes in FF are not necessarily indic-

ative for selective alteration in segmental

vascular resistance (Supplemental Fig-

ure 1).47 As various vasoactive mediators

are released or activated after a meal,

they may be effectors in postprandial hy-

perfiltration (Figure 3).48 In addition,

amino acids from digested proteins

may directly49,50 and indirectly48 in-

crease tubular reabsorption of sodium

and subsequently inactivate tubuloglo-

merular feedback (TGF; see below).

Tubular Theory

The “tubular theory” of hyperfiltration

describes diabetes-related abnormalities

in the close interaction between the glo-

merulus and tubule. It proposes that en-

hanced proximal tubular sodium (and

glucose) reabsorption, paralleled by

tubular growth32 and upregulation of

sodium-glucose cotransporters (SGLTs)

and sodium-hydrogen exchanger (NHE)

3, leads to a reduction in afferent arteri-

olar resistance and increase in single-

nephron GFR through inhibition of

TGF (Figure 3).32,42,51 The raised intra-

renal pressure in obese patients—due to

increased intra-abdominal pressure

and accumulation of peri-renal fat—

compresses the thin loops of Henle,

which may add to enhanced tubular

sodium reabsorption.52–54 Finally,

diabetes-associated tubular hyperplasia

and hypertrophy32 and proximal tubular

hyper-reabsorption reduce intratubular

pressure and hydraulic pressure in

Bowman’s space, which further perpet-

uates hyperfiltration by increasing the

net hydraulic pressure gradient.55,56

CLINICAL SIGNIFICANCE OF

HYPERFILTRATION IN DIABETES

Elucidating the significance of hyperfil-

tration as an independent renal risk

factor in diabetes is complicated by the

complex multifactorial etiology of DKD,

and the lack of dedicated studies that as-

sess the influence of sustained or altered

whole-kidney hyperfiltration and FF on

long-term renal outcome. Hyperfiltra-

tion per se does not seem to fully explain

adverse renal outcome, as the risk for

ESRD in transplant donors (in which

Figure 3. Schematic (net) effect of factors implicated in the pathogenesis of glomerular hyperfiltration in diabetes. Several vascular and
tubular factors32,48,123–126 are suggested to result in a net reduction in afferent arteriolar resistance, thereby increasing (single-nephron)
GFR. Effects of insulin per se seem to depend on insulin sensitivity.96,97 A net increase in efferent arteriolar resistance—leading to in-
creased GFR—is proposed for other vascular factors.32,42,71,124,127 Growth hormone128 and insulin-like growth factor-1129 likely increase
filtration by augmenting total renal blood flow, without specific arteriolar preference. Glucagon and vasopressin seem to (principally) act
through TGF.48 Intrinsic defects of electromechanical coupling or alterations in signal transduction in afferent arterioles may impair va-
soactive responses to renal hemodynamic (auto)regulation.32 Augmented filtration by increases in the ultrafiltration coefficient, and net
filtration pressure via reduction in intratubular volume and subsequent hydraulic pressure in Bowman’s space are not depicted. Several
vascular factors may be released or activated after a (high-protein) meal (e.g., nitric oxide, cyclooxygenase-2 prostanoids, angiotensin
II),48,50,130 whereas TGF becomes (further) inhibited, through increased amino acid- (and glucose) coupled sodium reabsorption in the
proximal tubule49,50 and/or increased glucagon/vasopressin-dependent sodium reabsorption in the thick ascending limb.48 These
changes may collectively play a part in postprandial hyperfiltration. COX-2, cyclooxygenase-2; ETA, endothelin A receptor.
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single-nephron GFR is typically in-

creased by about 60%–70%)57 is very

low.58 However, it may be suggested

that the stimulus and/or prevailing dia-

betes play a part in the pathogenesis of

hyperfiltration-induced renal damage.

As such, an evaluation of 52,998 living

kidney donors revealed that non-insulin-

dependent diabetes was among the stron-

gest predictors of developing ESRD after

15-years of follow up (hazard ratio, 3.01;

95% confidence interval, 1.91 to 4.74).59

To date, studies that report on the effects

of whole-kidney level hyperfiltration in

diabetes are observational in nature,

whereas the clinical significance of single-

nephron hyperfiltration in all phases of

DKD is best deduced from RAS blockade

trials. Finally, a potential pathophysiologic

role of postprandial hyperfiltration in

DKD is suggested in small-sized studies.

We will discuss the significance of diabetic

hyperfiltration using this somewhat artifi-

cial distinction.

Whole-Kidney Hyperfiltration and

Renal End Points: Observational

Studies

Several epidemiologic studies in diabe-

tes report associations between supra-

physiologic GFR in diabetes and

all-cause mortality.60,61 Furthermore,

longitudinal cohort studies of 3–18

years’ duration show that GFR declines

more rapidly in patients with T1DM

and T2DMwith whole-kidney hyperfil-

tration compared with those with nor-

mal GFR at baseline.34,62–64 However,

as GFR remained in the normal range

at end of follow-up (i.e., $100 ml/min

per 1.73 m2), it is unclear whether these

observations indicate (pharmacologic)

resolution of hyperfiltration (i.e., resto-

ration of renal functional reserve), or

loss of nephron mass. The latter is sug-

gested in a recent 6-year observational

cohort study, in which rapid eGFR

decline was associated with baseline

hyperfiltration and renal impairment

in 509 patients with T1DM.65

Additionally, numerous studies re-

portedontheassociationofwhole-kidney

hyperfiltration with onset and progres-

sion of the surrogate renal end point

albuminuria (Table 2). In a systematic

review and meta-analysis of ten cohort

studies involving 780 patients with

T1DM, followed for a mean of 11.2

years,66 the pooled odds for developing

albuminuria in patients with measured

whole-kidney hyperfiltration at baseline

was 2.71 (95% confidence interval, 1.20

to 6.11). In contrast, other large-sized

studies that estimated GFR did not detect

such an association.67,68 Moreover, sev-

eral studies suggest that the absence of

whole-kidney hyperfiltration in T1DM

has a negative predictive value of approx-

imately 95% for albuminuria develop-

ment.69,70 In a post hoc analysis of 600

patients with T2DM, patients with per-

sistent measured hyperfiltration, com-

pared with those with normofiltration

at inclusion or in whom hyperfiltration

was ameliorated by metabolic and BP

control at 6 months, were more likely to

develop microalbuminuria or macroal-

buminuria over a follow-up of 4 years

(hazard ratio, 2.23; 95% confidence in-

terval, 1.1 to 4.3).62 These observations

were maintained even after adjustment

for various risk factors, including

HbA1c, BP, and duration of diabetes.

However, other reported series in

T2DM, which were either smaller-sized

or used eGFR, are not in line with these

results (Table 2).

Despite suggestive evidence that

whole-kidney hyperfiltration could

contribute to DKD development and

progression in T1DM and perhaps

T2DM, interpretation of the data is ham-

pered by variations in metabolic control,

BP, diabetes duration, and other con-

founding factors, as well as potential

publication bias. To date, no prospective

studieswith adequatemeasuredandhard

end points have investigated the reno-

protective potential of controlling early

hyperfiltration.

Single-Nephron Hyperfiltration and
Renal End Points: RAS Blockade

Trials

Asangiotensin II induces anet increase in

postglomerular resistance,71 reducing its

action with an angiotensin converting

enzyme inhibitor or angiotensin recep-

tor blocker (ARB) lowers FF and PGLO.72

Consequently, RAS blockers are known

to variably increase serum creatinine,

which may raise up to 30% in patients

with CKD in the first month after treat-

ment initiation, and is generally reversible

after drug discontinuation.73 Further-

more, 3-week enalapril treatment reduced

GFR and FF in 11 adolescents with un-

complicated T1DM and whole-kidney

hyperfiltration.24

Pivotal trials in patients with T1DM

and T2DM, which indicated that RAS

blockade reduces the rate of developing

albuminuria and hard renal end points,

independent from BP lowering, have

placed these drugs at the cornerstone of

renoprotective management.74 Notably,

a greater initial fall in eGFR portends a

slower subsequent decline in renal func-

tion in patients with T2DM assigned to

the ARB losartan (Figure 4), which sup-

ports the notion that reducing single-

nephron hyperfiltration ameliorates

DKD risk.75 However, as there is a close

relationship between PGLO and urinary

albumin excretion (UAE),76 and RAS

blockade benefits both renal risk factors,

the independent contribution of each to

long-term renal preservation remains

unknown.

Postprandial Hyperfiltration and
Renal End Points: Speculative

Studies

The pathophysiologic role of meal-

induced increases in (single-nephron)

GFR, known as postprandial hyperfiltra-

tion, in the onset or progression of CKD

is a re-emerging field of study, especially

in the context of high-protein diets that

aim to induce weight-loss in obesity

and T2DM. As such, in a 7-day crossover

study in healthy young men, high-protein

intake (2.4 g/kg per day) compared with

normal protein intake (1.2 g/kg per day)

increasedmeasuredGFR, FF, and 24-hour

UAE.77 As humans largely reside in the

postprandial state, the excessive and pro-

longed metabolic and hormonal distur-

bances occurring after meal ingestion in

diabetes could, in theory, unfavorably in-

fluence kidney function, and predispose

to renal damage. Interestingly, a blunted

rise in GFR after amino acid infusion or

protein loading in the presence of a RAS

inhibitor has been widely described,
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suggesting an added renoprotective

benefit of these drugs.73,78,79 Yet, the

long-term effect of diet-induced renal

hemodynamic alterations (and its amelio-

ration), independent of e.g., an increased

renal acid load, on renal outcome in dia-

betes remains unclear.

CURRENT AND EMERGING

TREATMENT OPTIONS

Although glucose-lowering per se ame-

liorates diabetic hyperfiltration, espe-

cially in early-onset diabetes,80 some

antihyperglycemic drugs exhibit glu-

cose-independent properties that may

directly and/or indirectly benefit this

renal risk factor. Here, we briefly

discuss a selection of currently available

or promising emerging antihyperglyce-

mic (Table 3) and other (nonantihyper-

glycemic) (Table 4) interventions that

may favorably affect renal hemodynam-

ics in human diabetes.

Antihyperglycemic Drugs

SGLT2 Inhibitors
By concomitantly blocking glucose and

sodium reabsorption in the proximal

tubule, SGLT2 inhibitors not only im-

prove glycemic control by inducing

glycosuria in diabetes, but also increase

urinary sodium excretion. Their proxi-

mal natriuretic effect may be enhanced

by accompanied functional blockade of

NHE3.81 Thus, SGLT2 inhibition could

reduce (single-nephron) hyperfiltration

in diabetes by (1) restoring sodium-

chloride concentration at the macula

densa and subsequent TGF-mediated

afferent arteriolar vasoconstriction,82,83

and (2) increasing intraluminal volume

causing a retrograde increase in hydrau-

lic pressure in Bowman’s space, which

constrains filtration pressure.56 Further-

more, SGLT2 inhibitors consistently

reduce bodyweight and BP, and may

influence several vascular mediators of

renal hemodynamics in both the fasting

and postprandial state (e.g., a decrease in

atrial natriuretic peptide and insulin,

and an increase in glucagon, RAS com-

ponents, and glucagon-like peptide 1

[GLP–1]).

In an 8-week add-on to insulin study,

empagliflozin in uncomplicated T1DM

patients with whole-kidney hyperfiltration

(mean GFR 172623 ml/min per 1.73 m2)

demonstrated a glucose-independent 19%

decrease in GFR, which was paralleled by a

decline in ERPF and estimated PGLO and

increase in afferent arteriolar resistance, as

assessed by the Gomez equations.82,83

Finally, as the rise in circulating RAS

components may have blunted the renal

hemodynamic effect of empagliflozin in

these RAS blockade naïve T1DM pa-

tients, it is tempting to speculate that

combined use of SGLT2 inhibitors and

angiotensin converting enzyme inhibi-

tors/ARBs may lead to synergistic reno-

protective effects through combined

blockade of neurohormonal and tubular

factors.84 Surprisingly, FF increased

during euglycemic-clamp conditions in

the hyperfiltering patients, underlining

the difficulty to unambiguously assess

intrarenal hemodynamic changes. In

longer-term trials in patients with

T2DM, SGLT2 inhibitors initially re-

duce eGFR over a wide range of baseline

values, which appears to be hemody-

namically regulated as the reduction

reverses after a washout period.85 In

EMPA-REG OUTCOME, 48 months of

empagliflozin versus placebo treatment

in 7020 high-risk patients with T2DM

induced an eGFR trajectory reminiscent

of RAS blockade (Figure 5), and resulted

in a 46% reduction in the composite of

serum creatinine doubling (accompanied

by eGFR of #45 ml/min per 1.73 m2),

ESRD, or renal death.86 Notably, over

the 34 days after empagliflozin discon-

tinuation, a weekly increase in eGFR of

approximately 0.5 ml/min per 1.73 m2

was observed, as compared with a small

decrease in the placebo group. Other

long-term SGLT2 inhibition studies in

T2DM patients with primary or second-

ary renal outcomes are underway.76 Fi-

nally, the gastrointestinal effects of novel

dual SGLT2/SGLT1 inhibitors (e.g., re-

duced gastric emptying rate and intestinal

glucose uptake) could theoretically also

contribute to PGLO reduction after meal

ingestion.

GLP-1–Based Therapies
GLP-1 receptor agonists (GLP-1RA) and

dipeptidyl peptidase (DPP)–4 inhibitors

are associated with renal hemodynamic

effects, potentially beyond glycemic

control. As such, native GLP-1 infusion

Figure 4. An acute fall in eGFR in losartan-assigned T2DM patients with DKD is inversely
correlated with the long-term eGFR slope, after correction for sex, baseline eGFR, diastolic
BP, hemoglobin, and urinary albumin-to-creatinine ratio. Data adapted fromHoltkampand
colleagues.75
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reduced creatinine clearance–measured

GFR in obese, insulin resistant, hyperfil-

tering males, 25% of whom were diag-

nosed with T2DM.87 The long-acting

GLP-1RA liraglutide reversibly reduced

measured GFR and UAE in an uncon-

trolled open-label study involving 31

patients with T2DM.88 These observa-

tions have been attributed to a GLP-1–

mediated inhibition of NHE3 (which

assembles with DPP-4 in the proximal

tubular brush border), thereby reducing

proximal sodium reabsorption and GFR

through activation of TGF.51 However,

acute administration of GLP-1RA left

GFR unaffected in patients with T2DM

with normal renal function.89,90Moreover,

treatment with liraglutide or the DPP-4 in-

hibitor sitagliptin compared with placebo

innormoalbuminuric patientswithT2DM

(mean GFR 83ml/min per 1.73m2 and FF

23.7%) did not affect eGFR after 2 weeks,

nor were there changes in inulin and para-

aminohippuric acid–measured renal he-

modynamics after 12 weeks.91 However,

although 12-weeks’ liraglutide treatment

nonsignificantly reduced mean GFR of 75

by 5ml/min per 1.73m2 in 27 albuminuric

patientswithT2DMwith albuminuria, in a

placebo-controlled crossover study, GFR

decreased by .30% in the two patients

with whole-kidney hyperfiltration.92 Of

future interest are postprandial renal

hemodynamic actions of short-acting

GLP-1RA (whichhave sustained inhibitory

effects on gastric emptying rate and gluca-

gon levels) or DPP-4 inhibitors.

Thiazolidinediones
Twelve-weeks’ treatment with the thia-

zolidinedione rosiglitazone in patients

with T2DM with and without albumin-

uria reduced GFR and FF.93 These obser-

vations were explained by vasodilator

actions at the efferent arteriole through

increased nitric oxide bioavailabil-

ity.93,94 Studies in diabetic rats suggest

that restoration of TGF signaling may

also play a role.95

Insulin
In the fasting state, insulin has been

reported to either increase GFR and

ERPF, or to have neutral effects, which

seems to be dependent on insulin sensi-

tivity.96,97 Interestingly, in T2DM with

macroalbuminuria, the fast-acting insu-

lin lispro blunted postprandial increase in

GFR and RPF versus regular insulin, possi-

bly due to inhibition of insulin-like growth

factor-1–dependent renal vasodilation.98

Glucagon Receptor Antagonists
Hyperglucagonemia in the fasting and

postprandial state contributes to elevated

blood glucose and hyperfiltration in di-

abetes.48,99 Interestingly, glucagon levels

increase in the course of DKD.100 Selec-

tive blockade of the glucagon receptor

as a novel glucose-lowering target in di-

abetes could favorably influence renal

hemodynamics.48

Nonantihyperglycemic

Interventions

Nutritional “Therapy”
Improving the diet in diabetes may ame-

liorateDKDrisk, but defining anoptimal

regime is heavily debated. Importantly,

examining its independent influence

on (postprandial) hyperfiltration and

subsequent renal outcome is virtually

impossible, as confounding factors are

legion. Nevertheless, extremes of macro-

nutrient intake, especially that of protein,

should generally be avoided to reduce

hyperfiltration and renal risk.101 As such,

in (pre)hypertensive patients of the

OmniHeart study, a high-protein diet

(+10% of energy from protein) increased

fasting eGFR by approximately 4 ml/min

per 1.73m2 comparedwith diets replacing

protein with either carbohydrate or fat.102

Furthermore, guidelines direct to reduce

sodium intake to ,2000 mg/d in order

to prevent renal disease in diabetes.76

However, clinicians may be reluctant to

advocate sodium restriction in diabetes.

This is fueled on the one hand by the

hypothesis of a “salt-paradox” in diabetes

(i.e., a rise in single nephron GFR in re-

sponse to salt restriction, due to enhanced

sensitivity of proximal tubular sodium re-

absorption and subsequent inhibition of

TGF),103 and on the other by concerns

about sympathetic nervous system and

RAS activation with a low-salt diet.104

Weight Loss
Although overweight and obesity are in-

dependently associated with increases in

GFR, ERPF, and FF,38,105 hyperfiltration

is absent in obese nondiabetic patients

Figure 5. Renal function trajectory in the EMPA-REG OUTCOME trial. In this study, 7020
patients with T2DM at high cardiovascular risk were randomly assigned to receive the
SGLT2 inhibitor empagliflozin (10 or 25 mg once daily) or placebo. After an initial drop in
eGFR documented at week 4, renal function stabilized in empagliflozin-treated patients
over the ensuing follow-up period, whereas among those patients receiving placebo, a
steady decline of 1.67 ml/min per 1.73 m2 per year in eGFR was observed. After 34 days of
cessation of the study drug, the initial decrease in eGFR in all empagliflozin-treated pa-
tients was completely reversed with an adjusted mean difference from placebo in the
change from baseline eGFR of 4.7 ml/min per 1.73 m2 (not depicted). Adapted from
Wanner and colleagues.86
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when GFR and RPF are indexed for

individuals’ body surface area (BSA) in

many,11 but not all, studies.105The ratio-

nale for BSA adjustments comes from

observations in mammals that GFR

and ERPF are proportional to kidney

size, which in turn is typically propor-

tional to body size. Also, dependency of

kidney and body size is assumed, as the

main function of the kidneys is to regu-

late total body volume and waste.106

However, BSA normalizations may not

be appropriate given that individuals

are endowed with a set number of neph-

rons, which do not change with weight

gain.106 In addition, formulas like

the Du Bois and Du Bois may not be

accurate in severely obese (T2DM) sub-

jects.106 Gastroplasty-induced weight

loss from 145 to 97 kg reduced (nonin-

dexed) GFR, ERPF, FF, and albuminuria

in nondiabetic subjects.39 Notably, bari-

atric surgery in severely obese subjects,

of whom 38% had diabetes, has recently

been shown to reduce the 4.4-year risk

for an eGFR decline of $30% and

doubling of serum creatinine or ESRD

by 58% and 57%, respectively, com-

pared with a matched nonoperated

cohort.77

Diuretics
The carbonic anhydrase inhibitor acet-

azolamide decreases sodium, chloride,

and bicarbonate reabsorption at the level

of the proximal tubule. Although acet-

azolamide is rarely used as a diuretic be-

cause its long-term natriuretic effect is

modest,107 several studies have shown

that this drug markedly reduces GFR in

T1DM with whole-kidney hyperfiltra-

tion108,109 and DKD,110 likely by TGF

activation and independent from so-

dium balance.107 Loop diuretics may

not affect TGF, because inhibition

of the Na-K-2Cl–cotransporter also

blocks solute transport into macula

densa cells,107 although discussion is

ongoing.111 Thiazide diuretics and ep-

ithelial sodium channel blockers act

distally of the macula densa and do

not influence TGF signals. However,

(novel selective nonsteroidal) mineral-

ocorticoid receptor antagonists (e.g.,

spironolactone, eplerenone, finerenone)

do induce an initial acute fall in eGFR

in T2DM,112–114 possibly by increasing

TGF sensitivity,115 which predicts a later

favorable influence on the course of renal

function.114

Endothelin-A Receptor Antagonists
Increased endothelin-1 concentrations

contribute to DKD development by in-

creasing PGLO, podocyte damage, and

permeability to albumin. Conversely,

selective endothelin-A receptor antago-

nists (e.g., avosentan and atrasentan),

which alleviate vasoconstriction of the

efferent renal arteriole, were shown to

increase renal blood flow and reduce

renal vascular resistance and FF in hy-

pertensive CKD patients.116 In line

with these hemodynamic observations,

long-term treatment with endothelin-A

receptor antagonists reduced residual

albuminuria by 35%–50% and seem-

ingly preserved renal function in pa-

tients with T2DM that were optimally

treated for their DKD.117,118 As the anti-

proteinuric effect of this drug class is al-

ready evident after 1 week of treatment,

and in concert with eGFR returns to pre-

treatment levels after cessation of

therapy, a hemodynamic nature of re-

sponse is suggested.117,119

CONCLUDING REMARKS

CKD due to diabetes continues to rise,

indicating that current strategies inman-

aging DKD do not suffice to halt renal

risk in this population. Accumulating

evidence suggests a prognostic and path-

ogenic role of glomerular hyperfiltration

in the initiation and progression ofDKD.

However, especially as hyperfiltration

and albuminuria are renal hemodynam-

ically linked,76 dedicated prospective

studies are needed to confirm whether

targeting hyperfiltration improves clini-

cally relevant end points (i.e., 30% or

40% eGFR decline,120 ESRD, and/or re-

nal death).76 Several antihyperglycemic

and nonhyperglycemic interventions

are associated with ameliorated hyperfil-

tration. Whether these treatments add

benefit in the ongoing search for renal

risk reduction in diabetes is worth

investigating in specifically designed

(renoprotection) trials using active

comparators, especially in patients with

hyperfiltration at baseline.
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