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Abstract A first assessment of GLONASS CDMA L3

ambiguity resolution and positioning performance is pro-

vided. Our analyses are based on GLONASS L3 data from

the satellite pair SVNs 755-801, received by two JAVAD

receivers at Curtin University, Perth, Australia. In our

analyses, four different versions of the two-satellite model

are applied: the geometry-free model, the geometry-based

model , the height-constrained geometry-based model, and

the geometry-fixed model. We study the noise character-

istics (carrier-to-noise density, measurement precision), the

integer ambiguity resolution performance (success rates

and distribution of the ambiguity residuals), and the posi-

tioning performance (ambiguity float and ambiguity fixed).

The results show that our empirical outcomes are consis-

tent with their formal counterparts and that the GLONASS

data have a lower noise level than that of GPS, particularly

in case of the code data. This difference is not only seen in

the noise levels but also in their onward propagation to the

ambiguity time series and ambiguity residuals distribution.

Keywords GLONASS � CDMA � Integer ambiguity

resolution � GPS � PDOP � ADOP

Introduction

A first assessment of GLONASS CDMA L3 ambiguity

resolution and positioning performance is provided. The

navigation signals of the GLONASS system are tradition-

ally transmitted on the basis of the frequency division

multiple access (FDMA) technique (ICD-GLONASS

2008). As a consequence of the FDMA technique, inter-

frequency biases are present that impede a straightforward

integer resolution of the double-differenced (DD) ambi-

guities (Leick et al. 2015; Hofmann-Wellenhof et al. 2013).

To resolve this issue, special calibration procedures have

been proposed aimed at realizing GLONASS FDMA

integer ambiguity resolution (Takac 2009; Yamada et al.

2010; Reussner and Wanninger 2011; Wanninger 2009).

With the advent, however, of the GLONASS code division

multiple access (CDMA) signals, double differences of the

carrier-phase ambiguities become integer themselves and

standard methods of integer ambiguity resolution can

directly be applied to realize ambiguity-resolved precise

positioning.

In February 2011, following the launch of the first

GLONASS-K1 satellite, SVN 801 (R26) (IAC 2016), the

Russian satellite system commenced transmitting CDMA

signals on L3 (1202.025 MHz) (Urlichich et al. 2010;

Thoelert et al. 2011; Oleynik 2012). The current constel-

lation (March 2016) consists of 28 satellites of which 26

are of GLONASS-M series, and two are of GLONASS-K

series, subseries GLONASS-K1 (IAC 2016). This con-

stellation has four CDMA-transmitting satellites, i.e.,

SVNs 801 (R26) and 802 (R17) of series K, 755 (R21) and

the newly launched 751 of series M, among which SVN

801 is undergoing a flight test (IAC 2016). All the satellites

of the GLONASS-K series as well as the last seven satel-

lites of the GLONASS-M series will be capable of
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transmitting CDMA signals on the L3 frequency (Oleynik

2012; Montenbruck et al. 2015).

It is expected that the last satellites of the GLONASS-M

series will be launched by 2017 and that of the GLONASS-

K1 series, 11 satellites will be launched through 2020. The

GLONASS-K2 satellites will be launched in early 2017

(GPS World 2015). All these satellites will be able to

transmit CDMA signals. Providing signals on the fre-

quencies used by the other GNSSs (GPS L5 and L1) is also

part of the future plan (Karutin 2012). An overview of

these signals was presented in Urlichich et al. (2010, 2011)

and Karutin (2012), and Thoelert et al. (2011) assessed the

signal quality and the modulation quality of the L3 CDMA

civil signal of SVN 801 received by a high-gain antenna.

We provide for the first time an analysis of the GLO-

NASS L3 ambiguity resolution and corresponding posi-

tioning performance. Our analyses are based on L3 data of

the GLONASS satellite pair R21–R26, received by two

JAVAD receivers at Curtin University, Perth, Australia.

We also compare our results with corresponding results

obtained for the GPS L1 observables from the satellite pair

G21–G29, having almost the same trajectories as those of

R21–R26 for the periods considered in this contribution.

We start first with the formulation of the four versions of

the two-satellite models used in our analyses. These four

versions are the geometry-free model, the geometry-based

model, the height-constrained geometry-based model and

the geometry-fixed model. We then study the noise char-

acteristics of the GLONASS CDMA data and compare it to

their GPS L1 counterparts. We present results on the car-

rier-to-noise density and on the estimated zenith-referenced

measurement precision. Next, double-differenced (DD)

ambiguity resolution is taken up. This is done for all four

models, both for GLONASS and GPS. In this analysis, we

present the empirical results and compare them for con-

sistency with their formal counterparts. Following the

ambiguity resolution analyses, the positioning performance

is discussed. This is done both for the ambiguity float case

as well as for the ambiguity fixed case. Besides, we illus-

trate a case of a near rank-deficiency and demonstrate that

the PDOP and ADOP characteristics can be quite distinct

and that one therefore should not confuse a poor PDOP

with poor ambiguity resolution capabilities. Finally, a

summary and conclusions are provided.

Two-satellite observational model

As our analyses are based on data from the GLONASS

satellites R21 and R26, we first formulate the underlying

two-satellite model. In the following, this formulation will

be presented for four different models of different

strengths, i.e., geometry-free, geometry-based, height-

constrained geometry-based, and geometry-fixed model.

From geometry-free to geometry-fixed

With the expectation E{.} and dispersion D{.}, the corre-

sponding two-satellite double-differenced (DD) system of

observation equations reads

Ef
p

u

" #

g ¼
1 0

1 k

� �

q

a

" #

Df
p

u

" #

g ¼ 1

w

r2p 0

0 r2u

" # ð1Þ

with p and u being the DD code and phase observable,

respectively, q the DD receiver-satellite range and a the

DD integer ambiguity in cycles. The ambiguity a is linked

to the DD phase observable through the signal wavelength

k. With the elevation-dependent weighting functions, wh1

and wh2 (see 4), for the first and the second satellite with

elevation angles h1 and h2, respectively, the final weight

becomes w ¼ 1
2
½w�1

h1 þ w�1
h2 �

�1
. The zenith-referenced stan-

dard deviations of the undifferenced code and phase

observables are denoted as rp and ru, respectively.

We will be working with four different models (Teu-

nissen 1997). They are arranged in ascending order of

strength:

1. Geometry-free model (GFr): This is the model as

formulated in (1). As it is parametrized in q, it is free

from the receiver-satellite geometry;

2. Geometry-based model (GB): This model follows

from linearizing (1) with respect to the unknown

receiver coordinates. The receiver-satellite geometry

is then taken into account through the parametriza-

tion

dq ¼ �cT db ð2Þ

with dq being the receiver-satellite range increment,

c the 3-vector containing the between-satellite single-

differenced (SD) receiver-satellite unit direction vec-

tors, and db = [dN, dE, dH]T the unknown between-

receiver baseline increment vector;

3. Height-constrained geometry-based model (H-GB):

This model follows if one adds the (weighted) height

constraint to the geometry-based model,

Efdhg ¼ ½0; 0; 1�db; Dfdhg ¼ r2h ð3Þ
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4. Geometry-fixed model (GFi): In this model the

positions of the receiver and the satellite, and thus

receiver-satellite range q, are assumed known.

Note that both the geometry-free and geometry-fixed

model are solvable on an epoch-by-epoch basis, i.e.,

instantaneously. This is, however, not the case for the

unconstrained and height-constrained geometry-based

models. Two or more epochs are then needed for these

models to be solvable.

Two-satellite positioning

Our solutions of the unconstrained and height-constrained

geometry-based models are based on data from three

epochs each. To realize a sufficient change of receiver-

satellite geometry, the three epochs are every time chosen

from three distinct segments of the satellite trajectories. In

the skyplot of Fig. 1, this process is schematically shown

for the satellites R21–R26. In this figure, the location of the

satellites over the stated sub-periods is distinguished using

different colors. Each position solution makes use of one

pair of the DD observable (phase and code) over the red

period, one pair over the blue period and one pair over the

green period. For example, the satellites location indicated

with the same markers in Fig. 1 are associated with those

instants of which the observables are used in one position

solution. Thus, each solution computed is in fact a triple-

epoch solution, for which the ambiguities as well as

baseline coordinates are assumed constant. As the sampling

rate of the epoch-triples is 1 s, the so obtained ambiguity

and position time series also has a 1 Hz rate.

Noise characteristics

In this section, we study the noise characteristics of the

GLONASS CDMA data and compare it to their GPS L1

counterparts. We present results on the carrier-to-noise

density, the estimated zenith-referenced measurement

precision and on the influence of multipath.

Measurement experiment

The data used in our analyses were collected by the two

stations CUT3 and CUCC of an eight-meter baseline at

Curtin University. Each station is equipped with a JAVAD

receiver, capable of tracking GLONASS L3 CDMA signals

as well as GPS L1 signals. The signals of the GLONASS

satellite pair R21–R26 and of the GPS satellite pair G21–

G29 were tracked. Their receiver-satellite geometry over

the observation time span is shown in the skyplot of Fig. 2.

For both the GLONASS and the GPS satellites, the

broadcast ephemeris data are used. Further information is
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Fig. 1 Skyplot of the GLONASS CDMA-transmitting satellites at

Perth, Australia, during UTC [04:47:00–06:55:00] on DOY 21 of

2016, with the cutoff elevation angle of 10�. The whole period is

divided into three sub-periods distinguished using different colors.

The black circles indicate the satellite positions at the first epoch of

each sub-period, whereas the black pentagrams indicate them at

1000th epoch of each sub-period
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Fig. 2 Skyplot of the GLONASS CDMA-transmitting satellites

(purple) and GPS satellites (blue) at Perth, Australia, during UTC

[04:47:00–09:31:00] on DOY 21 of 2016, with the cutoff elevation

angle of 10�
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provided in Table 1. Note that the observation time spans

are listed in three different days (DOYs 13, 21, 37). They

were chosen such that the receiver-satellite geometries of

GPS and of GLONASS repeat.

Carrier-to-noise density

To get insight into the noise characteristics of the GLO-

NASS CDMA L3 signal, we first consider its carrier-to-

noise density (C/N0). Figure 3 shows the observed C/N0 of

the GLONASS L3 and GPS L1 (all the visible satellites)

signals. While the GLONASS L3 signal has a BPSK(10)

modulation (Urlichich et al. 2011), the GPS L1 (C/A)

signal has a BPSK(1) modulation (GPSD 2013). The C/N0

graph of the GLONASS L3 signal has a similar signature to

that of GPS L5-signal (see Nadarajah et al. (2015)), which

also has a BPSK(10) modulation.

Estimated precision (time correlation)

As another step to characterize the noise of the GLONASS

L3 and the GPS L1 observables, we apply the least-squares

variance component estimation (LS-VCE) method (Teu-

nissen and Amiri-Simkooei 2008). The LS-VCE is applied

to the short-baseline phase and code observables of the

CUT3-CUCC receiver pair. Use was made of the expo-

nential weighting function

wh ¼ 1þ 10 exp � h

10

� �� ��2

ð4Þ

so as to capture the elevation dependency, where h is the

elevation of the satellite in degrees (Euler and Goad 1991).

Incorporation of this elevation dependency in the LS-VCE

allows one to estimate the zenith-referenced standard

deviations of the undifferenced code and phase observ-

ables, rp and ru. The corresponding VCE results are shown

in Table 2. Note that the precision of the GLONASS L3

signal is significantly better than its GPS L1 counterpart.

This is consistent with what was concluded from the C/N0

graph of Fig. 3. Also note that the table shows results for

multipath-corrected standard deviations. The more detailed

information on multipath correction is given in the next

section. The so-obtained improvement is significant for

both the GLONASS and GPS code observables, but most

pronounced for GLONASS.

Multipath

We now describe how the above-mentioned multipath was

determined and how it was used as a means to correct the

data. Consider the code-phase vector

mp

mu

" #

¼
p

u

" #

�
1 0

1 k

" #

q

a

" #

ð5Þ

This vector is a zero-mean noise vector in case model

(1) is correct, e.g., in case multipath is absent. In the

presence of multipath, however, it captures the multipath

on code, mp, as well as the multipath on phase mu.

In our case, the epoch-by-epoch time series of the DD

multipath vector [mp, mu]
T was determined by computing
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Fig. 3 Carrier-to-noise density (C/N0) for GPS L1 and GLONASS

L3 signals tracked by JAVAD TRE_G3TH_8 receiver, connected to

TRM59800.00 SCIS antenna at Perth, Australia, on DOY 21 of 2016

during UTC [04:47:00–09:31:00]

Table 1 Characteristics of the experiment conducted for this study

# antennas 2

Antenna type TRM59800.00 SCIS

Receiver type JAVAD TRE_G3TH_8

Location Curtin University, Perth, Australia

Data type GLONASS L3, GPS L1

Satellites R21–R26, G21-G29

Cutoff angle 10�

Date and time UTC [05:20:00–10:03:00] on DOY 13 of 2016

UTC [04:47:00–09:31:00] on DOY 21 of 2016

UTC [03:42:00–08:26:00] on DOY 37 of 2016

Table 2 Estimated zenith-referenced standard deviations of the

undifferenced original (multipath-corrected) code rp and phase ru
observables

Frequency rp[m] ru[mm]

GPS L1 0.25 (0.22) 1 (1)

GLONASS L3 0.11 (0.05) 2 (1)
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q from the known receiver and satellite positions, while the

reference integer a was computed using the very strong

multi-epoch geometry-fixed model. Figure 4 displays the

so-obtained DD code and phase multipath time series for

the GLONASS L3 (R21–R26) and the GPS L1 (G21–G29)

signals over the three time periods given in Table 1. Note

that in all cases the time series of the three periods on

DOYs 13, 21 and 37 indeed completely overlap each other.

As a further confirmation that the time series of the three

DOYs 13, 21 and 37 capture the same phenomena, we now

consider their day differences. These should then be

showing zero-mean noise behavior with a variability that

reflects the measurement precision. To do so, we first form

the day-differenced DD code and phase multipaths, dmp

and dmu, by subtracting the DD multipath of DOY 37 from

those of DOYs 13 and 21. Since the observables are highly

dependent on the elevation of the satellites, the day-dif-

ferenced DD multipaths are then normalized using the

weight dw ¼ w
2
. While w captures the DD observable

weight of (1), the factor 2 in the denominator takes care of

the differencing between the 2 days.

Figure 5 shows, for the 2 day pairs DOY 37-DOY 13

and DOY 37-DOY 21, the histograms obtained from the

epoch-by-epoch time series of
ffiffiffiffiffiffiffi

dw
p

dmp and
ffiffiffiffiffiffiffi

dw
p

dmu for

both GLONASS and GPS. The red curve in each panel

shows the normal probability density function (PDF) with

its standard deviation given by the values of Table 2 and

with its mean equal to the mean of the histogram. For both

GLONASS and GPS, the 2 day pairs show a good con-

sistency between the histograms and the formal PDFs. This

consistency supports the conclusion that the time series of

(5) indeed captures the mentioned multipath. Also note that

Fig. 5 illustrates again the difference in measurement

precision between the GLONASS and GPS signals.

For the results of Table 2, as well as for the results in the

sections following, the data of DOYs 13 and 21 have been

multipath-corrected on an epoch-by-epoch basis using the

multipath time series of DOY 37. This epoch-by-epoch

correction ensures that no time correlation enters. The

doubling in noise that enters through the correction is

accounted for in the analyses that follow.

Ambiguity resolution

In this section, the ambiguity resolution performance of the

GLONASS L3 observables will be assessed and compared

with that of the GPS L1 observables. Our assessment will

be carried out using four different models: the geometry-

free model, the unconstrained and height-constrained

geometry-based model, and the geometry-fixed model.

From geometry-free to geometry-fixed

The data used for our analysis is that of DOY 21 of 2016

over the time period UTC [04:47:00-06:55:00]. The solu-

tions computed are triple-epoch solutions as explained

earlier (see Fig. 1). Each of these solutions are obtained

with a 1 Hz sampling rate, thus producing a time series of

3500 solutions. As there is only one unknown DD ambi-

guity in each case, the ambiguity resolution can be done

through simple integer rounding. We denote the float
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Fig. 4 DD code multipath (top) and DD phase multipath (bottom) for

receiver pair CUT3-CUCC on DOY 13 during UTC

[05:20:00–10:03:00] (blue), DOY 21 during UTC [04:47:00-

09:31:00] (red) and DOY 37 during UTC [03:42:00–08:26:00]

(green). Also, L3-signal of R21–R26 (left) and L1-signal of G21–

G29 (right)
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ambiguity as â, the fixed (integer rounded) ambiguity as ǎ,

and the reference ambiguity as a. The reference DD

ambiguity a has been obtained, as mentioned earlier,

through the multi-epoch solution of the geometry-fixed

model.

Figure 6 shows, for the receiver pair CUT3-CUCC, the

time series of â - a and ǎ - a for both the GLONASS

satellite pair R21–R26 (left column) and the GPS satellite

pair G21-G29 (right column). Float solutions are shown in

gray, correctly fixed solutions in green, and incorrectly

fixed solutions in red. These time series are given, from top

to bottom, for the geometry-free model, the geometry-

based model, the height-constrained geometry-based

models using rh = 0.2 m and rh = 0.15 m, respectively,

and the geometry-fixed model.

The results clearly show a much better ambiguity res-

olution performance for the GLONASS data than for the

GPS data. This is due to the lower noise level of the

GLONASS code data and the longer wavelength of L3. If

we start with the geometry-free model (top in Fig. 6), we

observe many incorrectly fixed solutions, both for GLO-

NASS and GPS. The geometry-free model is simply too

weak for successful ambiguity resolution. The variation in

incorrectly fixed solutions is, however, much smaller for

GLONASS than it is for GPS. In case of GLONASS, the

range is only ǎ - a [ {-2, -1, 1, 2}.

The ambiguity resolution performance improves if we

switch to the stronger (unconstrained) geometry-based

model (second row in Fig. 6). The incorrectly fixed GPS

ambiguities do, however, still vary over a much larger

range than their GLONASS counterparts. The performance

improves further if we include a weighted height constraint

(3rd and 4th row in Fig. 6). Now GLONASS and GPS have

the same range of incorrectly fixed ambiguities, although

the number of incorrectly fixed GLONASS solutions is of

course still smaller than that of GPS. Finally, with the

strongest model of all, being the geometry-fixed model

(bottom row in Fig. 6), both GLONASS and GPS have all

ambiguities correctly fixed. Thus, despite the larger noise

level of the GPS ambiguities (compare the variability in the

GLONASS and GPS float time series), all fixed ambigui-

ties are now correct.

Distribution of the ambiguity residuals

So far we considered the float and fixed time series

â - a and ǎ - a, respectively (Fig. 6). We now consider

the ambiguity residual, i.e., the difference between the float

and corresponding fixed solution, �e ¼ â - ǎ. The ambigu-

ity residuals form the basis for ambiguity validation

(Verhagen and Teunissen 2013). Figure 7 displays the

histograms of the DD ambiguity residuals for the five
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Fig. 5 Histograms (blue) and formal PDF (red) of the weighted day-differenced DD code and phase multipath for GLONASS (left) and GPS

(right)
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different models considered. The domain of the histograms

is [-0.5, ?0.5]. Note that the shape of the histograms

changes when one goes from the weaker model (geometry-

free) to the stronger model (geometry-fixed). Hence, the

ambiguity residuals are not normally distributed, i.e., they

are not normally distributed even if the data are.

Assuming the data to be normally distributed, the

ambiguity residuals have the distribution given by Teu-

nissen (2002) as

f
e
_ðxÞ ¼

X

z2Z

1
ffiffiffiffiffiffi

2p
p

râ
expf� 1

2

x� z

râ

� �2

g ð6Þ

with x [ [-0.5, 0.5]. This distribution has also been

shown (red curve) for the five cases in Fig. 7. It

demonstrates the consistency between the empirical and

formal distributions. The distribution (6) has two limiting

cases. The distribution tends to the uniform distribution

when râ gets larger and it tends to the impulse function

when râ gets smaller. This behavior is indeed clearly

present in Fig. 7 when one goes from the rather weak

geometry-free model toward the much stronger geometry-

fixed model.

The ambiguity success rates

We computed the ambiguity success rates for the above

five cases for GLONASS L3, GPS L1 and GPS L2, both

formally as well as empirically. Being the probability of

correct integer estimation, the formal ambiguity success

rate is computed as (Teunissen 1998),

Fig. 6 DD ambiguity time series of â - a and ǎ - a for both the

GLONASS satellite pair R21–R26 (left) and the GPS satellite pair

G21-G29 (right) using data from the receiver pair CUT3-CUCC on

DOY 21 during UTC [04:47:00-06:55:00]. Float solutions â - a are

shown in gray, correctly fixed solutions in green, and incorrectly fixed

solutions in red. The time series are given, from top to bottom, for the

geometry-free (GFr) model, the geometry-based (GB) model, the

height-constrained geometry-based (H-GB) models using rh = 0.2 m

and rh = 0.15 m, respectively, and the geometry-fixed (GFi) model

GPS Solut (2017) 21:535–549 541
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Fig. 7 Histograms (blue) and

formal PDFs (red) of the DD

ambiguity residuals �e ¼ â - ǎ

that correspond with the time

series of Fig. 6, for GLONASS

(left) and GPS (right). The

formal PDF of the ambiguity

residual is given by (6)
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FormalPs ¼ 2U
1

2râ

� �

� 1 ð7Þ

with râ being the ambiguity standard deviation and

UðxÞ ¼
R x

�1
1
ffiffiffiffi

2p
p expf�1

2
m2gdm. The empirical success rate is

computed as

EmpiricalPs ¼ # correct fixedDD ambiguities

# float DD ambiguities
ð8Þ

The results of the empirical and formal success rates for

the above five cases are given in Table 3. For the compu-

tation of the formal success rate, the ambiguity standard

deviation was taken as an average of the formal standard

deviations, thus râ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
s

Ps
j¼1 r

2
âðjÞ

q

, with r2âðjÞ being the

variance of the float DD ambiguity of the jth solution. As

the results of Table 3 show, the empirical values are in

good agreement with the formal ones. Also, the stronger

the model is (from top to bottom), the larger the success

rates become. Similarly, we see an increase in success rate

with wavelength.

Positioning performance

In this section, we assess the GLONASS L3 observables

performance in positioning. All results belong to the triple-

epoch geometry-based model without any height

constraint.

Two-satellite positioning: float solution

As discussed above, we make use of the 3500 triple-epoch

solutions over the time period UTC [04:47:00-06:55:00] on

DOY 21. Shown in Fig. 8 is the horizontal scatter plot for

both the unconstrained float (gray) and correctly fixed

(green) position solutions. Note that although the scatter

plot of the fixed solutions has an ellipsoidal shape, the float

scatter plot does not. The explanation lies in the significant

change that the receiver-satellite geometry undergoes in the

observational time span. This becomes clearer if we

partition the time span in smaller time intervals and then

assign different colors to these different time intervals, see

Fig. 9. Now, we do recognize the ellipsoidal shapes in the

scatter plot.

As the confidence ellipses are the formal representatives

of the scatter plots, the change in orientation that the float

scatter plot undergoes from time interval to time interval

can be explained by means of the properties of the confi-

dence ellipses. The confidence ellipsoid of b̂, having mean

E(b̂) = b, is given as
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Fig. 8 GLONASS R21–R26 horizontal position scatter plot (triple-

epoch based) collected by the receiver pair CUT3-CUCC on DOY 21

during UTC [04:47:00–06:55:00]. Float solutions are shown in gray

and correctly fixed solutions are shown in green
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Fig. 9 GLONASS R21–R26 horizontal position scatter plot (triple-

epoch based) collected by the receiver pair CUT3-CUCC on DOY 21

during UTC [04:47:00–06:55:00]. Float solutions are shown in blue,

dark green, red, cyan, purple, beige, dark gray, each of which has a

specific orientation. Correctly fixed solutions are shown in green

Table 3 GLONASS L3, GPS L1, and GPS L2 ambiguity success

rates, empirical and (formal), for the geometry-free (GFr) model, the

geometry-based (GB) model, the height-constrained geometry-based

(H-GB) model, and the geometry-fixed (GFi) model

Model GLONASS L3 Ps GPS L1 Ps GPS L2 Ps

GFr 0.60 (0.55) 0.12 (0.11) 0.25 (0.20)

GB 0.77 (0.75) 0.20 (0.19) 0.34 (0.32)

H-GB (rh=0.2 m) 0.92 (0.92) 0.76 (0.75) 0.87 (0.87)

H-GB (rh=0.15 m) 0.96 (0.96) 0.87 (0.87) 0.95 (0.95)

GFi 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
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ðb̂� bÞTQ�1

b̂b̂
ðb̂� bÞ ¼ r2 ð9Þ

With Qb̂b̂ the variance matrix of b̂ and constant r2 chosen

such that a certain confidence level is reached (e.g., 95 %).

The confidence ellipsoid of the fixed solution is obtained

by replacing b̂ and Qb̂b̂ by b̌ and Q
b
_
b
_, respectively.

The difference in shape between the float and fixed

confidence ellipsoids is determined by the difference in the

corresponding variance matrices. When solving the triple-

epoch geometry-based model, the inverse variance matri-

ces of the float and fixed solution can be shown to be

related as

Q�1

b̂b̂
¼ Q�1

b
_
b
_ �

k �w

r2u
�c�cT ðk ¼ 3Þ ð10Þ

in which �w ¼ 1
3

P3
i¼1

wðiÞ
2

and �c ¼ 1
3 �w

P3
i¼1

wðiÞ
2
cðiÞ. It is the

second term on the right-hand side of (10) that determines

the difference in orientation between the float and fixed

scatter plots. Because of the very small value of the phase

variance in the denominator of this second term, any

change over time in the rank-1 matrix �c�cT will be amplified

and thus play an important role in the determination of the

orientation of the float confidence ellipsoid.

From (9) and (10), it follows that the maximum and

minimum differences between the float and fixed ellipsoids

are realized in a direction parallel and orthogonal to the

vector �c, respectively. This is demonstrated in Fig. 10 by

the horizontal scatter plots and corresponding ellipses.

Figure 10 (top) shows the two float scatter plots (blue and

gray) for two different orientations along with their cor-

rectly fixed counterparts, and Fig. 10 (bottom) shows their

corresponding confidence ellipses. These ellipses are

computed using the average float and fixed variance

matrices over the period associated with the shown scatter

plots. The brown colored vectors indicate the correspond-

ing direction of the vector �c, thus indeed pointing in the

direction of maximum difference between the fixed and

float ellipses. It is the change over time of this direction

that makes the float scatter plot take the shape shown in

Fig. 8.

Two-satellite positioning: fixed solution

Now, we consider the scatter plot of the fixed solutions. In

Fig. 11 (top), the unconstrained correctly fixed horizontal

scatter plot along with the formal and empirical confidence

ellipses (in red and blue) are shown, while Fig. 11 (bottom)
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Fig. 10 [Top] GLONASS R21–

R26 horizontal position scatter

plots (triple-epoch based)

collected by the receiver pair

CUT3-CUCC on DOY 21

during UTC

[04:47:00–06:55:00], left first

500 solutions; right last 500

solutions. Float solutions are

illustrated in blue and dark

gray, each having a specific

orientation. Correctly fixed

solutions are shown in green.

[Bottom] The corresponding

float and fixed confidence

ellipses with the same color as

their scatter plots. The brown

vector indicates the direction of

�c in (10)
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displays the time series of the corresponding fixed height

solutions. Both graphs show a good agreement between

formal and empirical values. According to these values, the

North and Height components are estimable with a stan-

dard deviation of about 25 mm, while the standard devia-

tion of the East component is much smaller and around

5 mm.

That the East component can be determined so much

better than the other two components can be explained by

the behavior of the difference of the line-of-sight vectors to

the two satellites R21 and R29. Figure 12 shows the

absolute values of the weighted SD lines-of-sight
ffiffi

w
2

p � c

North, East, Height components for the satellites R21 and

R29 over the observational period. The larger such com-

ponent is, the better this component can be estimated. It

therefore follows from Fig. 12 that one can indeed expect

the North and Height components to be estimable with

almost equal precision (see blue and red curves), while the

East component would be much more precisely estimable

(see green curve).

Interaction of positioning and ambiguity resolution

So far, the geometries of the triple-epoch geometry-based

models have been such that the corresponding PDOP

(Position Dilution of Precision) time series showed rather

stable values over the chosen observational time periods.

When we extend this time window, however, we note a

period in which the PDOPs dramatically increase in value,

see Fig. 13 (blue curve). This dramatic increase in PDOP

must be due to a very poor relative receiver-satellite

geometry. To explain the situation, we first show under

which condition the multi-epoch geometry-based model

becomes rank defect.

Almost rank defect positioning geometry

When solving the multi-epoch geometry-based model, its

k-epoch design matrix is formed by stacking the SD

receiver-satellite unit vectors �cTðiÞ for i ¼ 1; . . .; k (see

2). Such a design matrix is rank defect if a vector d 2 R
3

can be found such that

cTðiÞd ¼ 0; i ¼ 1; . . .; k ð11Þ

According to the definition of the vector c(i), the con-

dition (11) means that at each epoch the two line-of-sight

vectors make the same angle with the direction vector

d. Geometrically this means that the rank deficiency occurs

when the receiver-satellite unit line-of-sight vectors lie, at

each epoch, on a cone having d as its symmetry axis

(Fig. 14). The symmetry axis of the cone, i.e., the vector d,

is then the direction in which the baseline solution becomes

indeterminate. It is precisely this situation that explains the

dramatic increase in PDOP values of Fig. 13.

Figure 15 (top) shows the skyplot positions of the two

GLONASS satellites R21 and R26 at the three epochs

associated with the peak in the PDOP time series of Fig. 13

which is clearly depicted in Fig. 15 (bottom). The location

of the satellites at the same epoch is shown with the same

color. As the figure shows, the red and green satellite
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Fig. 11 (Top) GLONASS R21–R26 horizontal position scatter plot

(triple-epoch based) of the correctly fixed solutions collected by the

receiver pair CUT3-CUCC on DOY 21 during UTC

[04:47:00–06:55:00]. The 95 % formal and empirical confidence

ellipses are shown in blue and red, respectively. (Bottom) Time series

of the correctly fixed height solutions. The blue dashed curves

indicate the 95 % confidence interval
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Fig. 12 Time series of the weighted SD lines-of-sight components

corresponding with the satellites R21 and R29 over UTC

[04:47:00–06:55:00] on DOY 21 of 2016
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locations of R21 and R26 all lie on the same (red and

green) cone having direction d (see 11), indicated as a

purple circle, as its symmetry axis. Although the blue

satellite locations of R21 and R26 lie on a different cone,

this (blue) cone has again the same symmetry axis

d. Hence, the geometry as shown in Fig. 15 is one in which

the design matrix of the geometry-based model becomes

(near) rank defect such that the baseline component in the

direction of vector d becomes very poorly estimable. It is

the very poor precision of this component that drives the

PDOP to such large values.

Poor PDOP, good ADOP

Although the PDOP is often used as a quick diagnostic to

infer whether the receiver-satellite geometry is favorable

for positioning, one should be aware of the fact that the

PDOP does not reveal whether or not one can expect

ambiguity resolution to be successful (Teunissen et al.

2014). For that one needs the ADOP (Ambiguity Dilution

of Precision). The ADOP is an easy-to-compute scalar

diagnostic that measures the intrinsic model strength for

successful ambiguity resolution. It is defined as the

square-root of the determinant of the ambiguity variance

matrix raised to the power of one over the ambiguity

dimension (Teunissen 1997). The ADOP has several

important properties. First, it is invariant against the

choice of ambiguity parametrization. Second, it is a

measure of the volume of the ambiguity confidence

ellipsoid. And third, the ADOP equals the geometric mean

of the standard deviations of the ambiguities, in case the

ambiguities are completely decorrelated. Hence, in the

one-dimensional case it simply reduces to the ambiguity

standard deviation itself.
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Fig. 13 Triple-epoch time series of the unconstrained PDOP (blue)

and ADOP (red), corresponding with the receiver pair CUT3-CUCC

and GLONASS satellite pair R21–R26 on DOY 21 during UTC

[04:47:00–08:10:00]
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Fig. 14 Multi-epoch two-satellite positioning is indeterminate in

direction d if the receiver-satellite unit directions ur
1(i) and ur

2(i) at

each epoch lie on a cone having d as its symmetry axis (Teunissen

1990). The red and blue cones around d are formed by the receiver-

satellite unit vectors at epoch 1 and epoch 2, respectively

0

30
6
0

9
0

1
2
0

150

180

210

2
4
0

2
7
0

3
0
0

330
15

30

45

60

75

90

R21 R26

81

81

7
27

2

R21

R26

R26

R21

1000 2000 3000 4000 5000
0

2

4

6
x 10

4

# triple−epoch samples

P
D

O
P

Fig. 15 (Top) GLONASS CDMA-transmitting skyplot for Perth, on

DOY 21 of 2016 at three epochs, namely 05:59:25 (red), 06:22:45

(blue) and 07:46:05 (green) UTC. The purple circle illustrates the

direction d along which the receiver position is poorest estimable. The

two colored contour lines show the loci of the unit vectors that make

the same 72 respective 81 degree angle with d. (Bottom) Triple-epoch

time series of the unconstrained PDOP corresponding with the

receiver pair CUT3-CUCC and GLONASS satellite pair R21–R26 on

DOY 21 during UTC [04:47:00–08:10:00]
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That the PDOP and ADOP can have a very different

behavior over time is shown in Fig. 13. There where the

PDOP increases dramatically in value, due to the near rank

defect in the geometry-based design matrix, the time series

of the ADOP still shows rather stable behavior over time.

This difference between PDOP and ADOP has an inter-

esting consequence for ambiguity resolution when weigh-

ted height-constraining is enforced. When a weighted

height constraint is imposed on the geometry-based model,

the variance of the float DD ambiguity can be shown to

improve from its unconstrained value r2âto its weighted

height-constrained value

r2â jh ¼ r2â � ½1þ r2h=r
2

ĥ
��1

r2
âĥ
r�2

ĥ
ð12Þ

with râĥ being the ambiguity-height covariance, rh the a

priori standard deviation of the height constraint, and r2
ĥ

the variance of the unconstrained estimator of the height

component. It can be seen that the ratio r2h=r
2

ĥ
governs the

benefit brought by the height constraint. One has the most

benefit when rh
2
= 0 and the least benefit when rh

2
= ?.

If rh
2 is chosen much larger than r2

ĥ
, then the bracketed

term of (12) becomes small. This means that if the recei-

ver-satellite geometry is so strong that r2
ĥ
is small, con-

straining the height with a variance rh
2 much larger than r2

ĥ

would have a negligible impact on ambiguity resolution.

On the other hand, however, ambiguity resolution can

benefit considerably from a weighted height constraint if r2
ĥ

is large. The larger r2
ĥ
is, the softer the weighted height

constraint can be to still have an impact on ambiguity

resolution. Thus, in case of a large PDOP, soft constraining

of the height can still result in a very significant

improvement of ambiguity resolution. The following

examples shown in Fig. 16 make this clear.

The first row of Fig. 16 shows the PDOP time series

(and a zoom-in) of the triple-epoch, two-satellite geometry-

Fig. 16 [Top row] Triple-epoch

time series of the unconstrained

PDOP (left) and a zoom-in of it

(right), corresponding with the

receiver pair CUT3-CUCC and

GLONASS satellites R21–R26

on DOY 21 during UTC

[04:47:00–08:10:00]. [From

second to the bottom row] The

corresponding time series of the

DD ambiguity estimations using

the multipath-corrected

observations (left) and DD

ambiguity standard deviations

(right), based on the

unconstrained and height-

constrained geometry-based

model with the standard

deviations of 2, 0.5, 0.2 and

0.1 m. Further, float solution

(gray), correctly fixed solution

(green), and incorrectly fixed

solution (red)
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based model of the GLONASS satellites R21–R26 for the

period UTC [04:47:00-08:10:00] of DOY 21 in 2016. The

second row of Fig. 16 shows in the left column the

unconstrained DD ambiguity float and fixed time series,

â - a (in gray) and ǎ - a (in green and red), and in the

right column the corresponding time series of the uncon-

strained ambiguity standard deviation. Similar time series

are also shown in the third to bottom row of Fig. 16, but

now as a result of imposing a weighted height constraint

with increasing weight.

The results in the third row show that a soft height

constraint of only rh = 2 m already has a significant

impact on ambiguity resolution at the time instances for

which the PDOPs are large. At these instances, the formal

float ambiguity standard deviation has become much

smaller, the variability in the float time series has reduced

dramatically, and the ambiguity fixed solutions are now all

correct. When we further increase the weight of the height-

constraint, the results of the fourth to sixth row of Fig. 16

show that the ambiguity resolution improvements flow over

to neighboring time instances such that finally in case of

the bottom row now almost all of the 5000 ambiguity fixed

solutions are correct.

Summary and conclusions

We provided an initial assessment of GLONASS CDMA

L3 double-differenced integer ambiguity resolution and

corresponding positioning performance. Our analyses are

based on GLONASS L3 data from the satellite pair R21–

R26 and on GPS L1 data from the satellite pair G21–

G29. We studied the noise characteristics (carrier-to-

noise density, measurement precision), the integer

ambiguity resolution performance (success rates and

distribution of the ambiguity residuals) and the corre-

sponding ambiguity float and ambiguity fixed positioning

performance. The results show that the GLONASS data

have a significantly lower noise level than that of GPS,

particularly in case of the code data. This difference is

not only seen in the noise levels but also in their onward

propagation to ambiguity time series and ambiguity

residuals distribution. We also compared all our empir-

ical results with their formal counterparts, thereby

showing the consistency between data and models. The

four different versions of the two-satellite model that

were applied are as following: the geometry-free model,

the geometry-based model, the height-constrained

geometry-based model, and the geometry-fixed model.

Finally, we demonstrated that PDOP and ADOP char-

acteristics can be quite distinct and that one therefore

should not confuse a poor PDOP with poor ambiguity

resolution capabilities.
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