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1 Whatis GloptiPoly ?

Gloptipoly 3 is intended to solve, or at least approximdte,Generalized Problem of Moments
(GPM), an infinite-dimensional optimization problem whicdn be viewed as an extension of

the classical problem of moments [10]. The GPM can be fortadlas follows:

miny (or max Z/K 9ok (X)d i (X)

(1)
st. Z/K hik(X)d(x) > (or =)bj, j=0,1,...

where measurgg are supported on basic semialgebraic sets
Ky ={xe R : gk(x) >0, i=12...}.

In the above notationgk(X), hjk(x) are given real polynomials aryj are given real constants.
From a theoretical viewpoint, the GPM has developments apéct in various areas of math-
ematics such as algebra, Fourier analysis, functionayaisaloperator theory, probability and
statistics, to cite a few. In addition, and despite a ratiepke and short formulation, the GPM
has a large number of important applications in variousdislath as optimization, probability,
finance, control, signal processing, chemistry, crisgafphy, tomography, etc. For an account
of various methodologies as well as some of potential aggdins, the interested reader is re-

ferred to [1, 2] and the nice collection of papers [6].
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The approach is similar to that used in the former version &loptiPoly [3]. The software
allows to build up a hierarchy of semidefinite programminBRP$, or linear matrix inequality
(LMI) relaxations of the GPM, whose associated monoton@iesece of optimal values con-
verges to the global optimum. For more details on the apprdhe interested reader is referred
to [10].

2 Installation

GloptiPoly 3 is a freeware subject to the General Public hoee(GPL) policy. It is available
for Matlab 7.2 (Release 2006) and later versions. It can benttmded at

www.laas.fr/  ~henrion/software/gloptipoly3

The package, available as a compressed archive, consstgafal m-files and subdirectories,
and it contains no binaries. Extracted files are placedglomipoly3  directory that should

be declared in the Matlab working path, using e.g. Matlabmmand
>> addpath gloptipoly3

GloptiPoly 3 uses by default the semidefinite programminges&eDuMi [13], so this package
should be properly installed. Other semidefinite solvers @lao be used provided they are
installed and interfaced through YALMIP [12].

3 Getting started
Please type the command
>> gloptipolydemo

to run interactively the basic example that follows.



Consider the classical problem of minimizing globally tmetdimensional six-hump camel
back function [3]
. 1
MiNgo(X) = 4% 4 Xqxp — 4%5 — 2.1 + 4x5 + X8,
xeR2 3

The function has six local minima, two of them being globahimia.

Using GloptiPoly 3, this optimization problem can be modede a moment problem as follows:

>> mpol x1 x2

>> 0 = 4*x12+x1*x2-4*x2°2-2.1*x1"4+4*Xx2"4+x1"6/3
Scalar polynomial
4X1°2+X1x2-4x272-2.1x1"4+4x2°4+0.33333x176

>> P = msdp(min(g0));

GloptiPoly 3.0

Define moment SDP problem
(GloptiPoly output suppressed)
Generate moment SDP problem

>> P

Moment SDP problem

Measure label =1
Relaxation order =3
Decision variables = 27

Semidefinite inequalities = 10x10

Once the moment problem is modeled, a semidefinite solvebearsed to solve it numerically.
Here we use SeDuMi [13] which is assumed to be installed andsadle from the Matlab

working path:

>> [status,0bj] = msol(P)

GloptiPoly 3.0



Solve moment SDP problem
kkkkkkkkkkkkkkkkkkkhkkkkhkkkkkkkkkkkkkkkkkhkkkkkkhk **%
Calling SeDuMi

SeDuMi 1.1R3 by AdvOL, 2006 and Jos F. Sturm, 1998-2003.

(SeDuMi output suppressed)

2 globally optimal solutions extracted
>> status
status =
1

>> obj
obj =

-1.0316
>> x = double([x1 x2]);
X(:,,,1) =

0.0898  -0.7127
X(y:2) =

-0.0898 0.7127

The flagstatus = 1 means that the moment problem is solved successfully arndsloa-

tiPoly can extract two globally optimal solutions reachihg objective functionb] = -1.0316

4 From version 2 to version 3

The major changes incorporated into GloptiPoly when pagdsom version 2 to 3 can be sum-

marized as follows:

e Use of native polynomial objects and object-oriented progning with specific classes
for multivariate polynomials, measures, moments, andesponding overloaded opera-

tors. In contrast with version 2, the Symbolic Toolbox forthaa (gateway to the Maple
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kernel) is not required anymore to process polynomial data.

e Generalized problems of moments featuring several messgutie semialgebraic support
constraints and linear moment constraints can be processkdolved. Version 2 was

limited to moment problems on a unique measure without mowe@mstraints.

e Explicit moment substitutions are carried out to reducenilvaber of variables and con-

straints.

e The moment problems can be solved numerically with any seimnite solver, provided

it is interfaced through YALMIP. In contrast, version 2 usedy the solver SeDuMi.

5 Solving generalized problems of moments

GloptiPoly 3 uses advanced Matlab features for objectrtet programming and overloaded

operators. The user should be familiar with the followingibabjects.

5.1 Multivariate polynomials (mpol)

A multivariate polynomial is an affine combination of monatsi each monomial depending

on a set of variables. Variables can be declared in the Mattaking space as follows:

>> clear

>> mpol x

>> X

Scalar polynomial

X

>> mpol y 2

>> y

2-by-1 polynomial vector
(1.1):y(1)

(2,1):y(2)



>> mpol z 3 2

>> 7

3-by-2 polynomial matrix

(1,1):z(1,1)
(2,1):2(2,1)
(3,1):z(3,1)
(1,2):z(1,2)
(2,2):2(2,2)
(3,2):2(3,2)

Variables, monomials and polynomials are defined as obpéaisssmpol .
All standard Matlab operators have been overloadethfof objects:
>> yry'-7"*7+X"3

2-by-2 polynomial matrix
(1,1):y(1)°2-2(1,1)°2-2(2,1)"2-2(3,1)"2+x"3

y(
(2.1):y(1)y(2)-2(1,1)2(1,2)-2(2,1)2(2,2)-2(3,1)z(3, 2)+x3
(1,2):y(1)y(2)-2(1,1)2(1,2)-2(2,1)2(2,2)-2(3,1)z(3, 2)+x3
(2,2):y(2)°2-2(1,2)"2-2(2,2)"2-2(3,2)"2+X"3

Use the instruction
>> mset clear

to delete all existing GloptiPoly variables from the Matlabrking space.

5.2 Measures fieas)

Variables can be associated with real-valued measuregrandariable is associated with only
one measure. For GloptiPoly, measures are identified wittbel| a positive integer. When

starting a GloptiPoly session, the default measure has$ laligy default, all created variables



are associated with the current measure. Measures can tketavith the classeas as fol-

lows:

>> mset clear

>> mpol x

>> mpol y 2

>> meas

Measure 1 on 3 variables: x,y(1),y(2)
>> meas(y) % create new measure
Measure 2 on 2 variables: y(1),y(2)
>> m = meas

1-by-2 vector of measures
1:Measure 1 on 1 variable: x
2:Measure 2 on 2 variables: y(1),y(2)
>> m(1)

Measure number 1 on 1 variable: x

The above script creates a measur@lx) onR and a measung(dy) onR?.

Use the instruction
>> mset clearmeas

to delete all existing GloptiPoly measures from the worlgpgce. Note that this does not delete

existing GloptiPoly variables.

5.3 Moments (mon)

Linear combinations of moments of a given measure can bepukatéed with thenomclass as

follows:

>> mom(1+2*x+3*X"2)



Scalar moment
I[1+2x+3x"2]d[1]

>> mom(y*y’)

2-by-2 moment matrix
(1,1):11y(1)2]d[2]
(2,1):1y(1)y(2)ld[2]
(1,2):1y(1)y(2)ld[2]
(2,2):11y(2)2]d[2]

The notation[p]dlk]  stands for| pdk wherep is a polynomial of the variables associated

with measureqy, andk is the measure label.

Note that it makes no sense to define moments over severalimeasr nonlinear moment

expressions:

>> mom(x*y(1))

??? Error using ==> mom.mom

Invalid partitioning of measures in moments
>> mom(x)*mom(y(1))

??? Error using ==> mom.times

Invalid moment product
Note also the distinction between a constant term and the ofasmeasure:

>> 1+mom(x)
Scalar moment
1+I[x]d[1]

>> mom(1+x)
Scalar moment
I[1+x]d[1]

>> mass(x)
Scalar moment
[1]d[1]



Finally, let us mention three equivalent notations to rédehe mass of a measure:

>> mass(meas(y))
Scalar moment
I[1]d[2]

>> mass(y)
Scalar moment
I[1]d[2]

>> mass(2)
Scalar moment
I[1]d[2]

The first command refers explicitly to the measure, the seoc@mmand is a handy short-cut
to refer to a measure via its variables, and the third commeiieds to GloptiPoly’s labeling of

measures.

5.4 Support constraints gupcon )

By default, a measure anvariables is defined on the whdR'. We can restrict the support of

a mesure to a given semialgebraic set as follows:

>> 2%X"2+X°3 == 2+X

Scalar measure support equality
2X2+X°3 == 2+x

>> disk = (y*y <= 1)

Scalar measure support inequality
y(1)2+y(2)2 <= 1

Support constraints are modeled by objects of ctagson . The first command means that
variablex must satisfyx® +2x? — x — 2 = (x — 1)(x+1)(x+2) = 0, i.e. measurgy must be
discrete, a linear combination of three Dirac at-1l, and—2. The second command restricts

measuregl, within the unit disk.



Note that it makes no sense to define a support constrainvvenadeneasures:

>> x+y(1) <=1
??? Error using ==> supcon.supcon

Invalid reference to several measures

5.5 Moment constraints (nomcon

We can constrain linearly the moments of several measures:

>> mom(x"2+2) == 1+mom(y(1)"3*y(2))
Scalar moment equality constraint
I[2+x°2]d[1] == 1+[y(1)"3y(2)]d[2]

>> mass(x)tmass(y) <= 2

Scalar moment inequality constraint
I[1]d[1]+I[1]d[2] <= 2

Moment constraints are modeled by objects of chagscon

For GloptiPoly an objective function to be minimized or nraxied is considered as a particular

moment constraint:

>> min(mom(x"2+2))

Scalar moment objective function
min 1[2+x"2]d[1]

>> max(X"2+2)

Scalar moment objective function
max [[2+X"2]d[1]

The latter syntax is a handy short-cut which directly cotszanmpol object into anmomcon

object.
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5.6 Floating point numbers @double )

Variables in a measure can be assigned numerical values:

>> ml = assign(x,2)
Measure 1 on 1 variable: x

supported on 1 point

which is equivalent to enforcing a discrete support for treasure. Herg is set to the Dirac

at the point 2.

Thedouble operator converts a measure or its variables into a floatig pumber:

>> double(x)
ans =

2
>> double(ml)
ans =

2

Polynomials can be evaluated similarly:

>>double(1-2*x+3*x"2)
ans =
9

Discrete measure supports consisting of several pointbeapecified in an array:

>> m2 = assign(y,[-1 2 0;1/3 1/4 -2))
Measure 2 on 2 variables: y(1),y(2)
supported on 3 points

>> double(m2)

ans(:,;,1) =

11



-1.0000
0.3333
ans(:,;,2) =
2.0000
0.2500

ans(:,;,3) =

5.7 Moment SDP problems ifisdp)

GloptiPoly 3 can manipulate and solve Generalized ProbtEivoments (GPM) as defined in
(1). The decision variables in the GPM are measpkés), and GloptiPoly 3 allows to optimize

over them through their moments

Yo :/ x*kdp(x), ok e N
Kk

where thexy are multi-indices.

5.8 Solving moment problemsnsol

Once a moment problem is defined, it can be solved numeriaatlythe instructiormsol . In

the sequel we give several examples of GPMs handled withtiBRoly 3.

5.8.1 Unconstrained minimization

Following [7], given a multivariate polynomial(x), the unconstrained optimization problem

mingo(x)

can be formulated as a linear moment optimization problem

miny [ go(X)du(X)
st fdux)=1
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where measurg lives in the spac@" of finite Borel signed measures @f'. The equality
constraint indicates that the masspois equal to one, or equivalently, thatis a probability

measure.

In general, this linear (hence convex) reformulation ofaitally nonconvex) polynomial prob-
lem is not helpful because there is no computationally effitivay to represent measures and
their underlying Borel spaces. The approach proposed iadi$ists in using convex semidef-
inite representations of the spaB@ truncated to finite degree moments. GloptiPoly 3 allows
to input such moment optimization problems in an user-tiignvay, and to solve them using

existing software for semidefinite programming (SDP).

In Section 3 we already encountered an example of an uneamstr polynomial optimization

solved with GloptiPoly 3. Let us revisit this example:

>> mset clear

>> mpol x1 x2

>> 0 = 4*x1"2+x1*x2-4*x2°2-2.1*x1"4+4*x2"4+x1"6/3
Scalar polynomial
4X1°2+X1x2-4x272-2.1x1"4+4x2°4+0.33333x176

>> P = msdp(min(g0));

>> msol(P)

2 globally optimal solutions extracted

Global optimality certified numerically

This indicates that the global minimum is attained with aite measure supported on two
points. The measure can be constructed from the knowledge fafst moments of degree up

to 6:

>> meas
Measure 1 on 2 variables: x1,x2

with moments of degree up to 6, supported on 2 points

13



>> double(meas)
ans(;,;,1) =
0.0898
-0.7127
ans(;,;,2) =
-0.0898
0.7127
>> double(g0)
ans(:,;,1) =
-1.0316
ans(;,:,2) =
-1.0316

When converting to floating point numbers with the operdtoble , it is essential to make the

distinction betweempol andmomobjects:

>> v = mmon([xl x2],2)

1-by-6 polynomial vector

>> double(v)
ans(;,;,1) =

1.0000 0.0898  -0.7127 0.0081  -0.0640 0.5079
ans(;,;,2) =

1.0000 -0.0898 0.7127 0.0081  -0.0640 0.5079
>> double(mom(v))
ans =

1.0000 0.0000  -0.0000 0.0081  -0.0640 0.5079
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The first instructiormmongenerates a vector of monomialf classmpol, so the command
double(v) calls the converto@mpol/double which evaluates a polynomial expression on the
discrete support of a measure (here two points). The lastm@ddouble(mom(v)) calls
the converto@mom/double which returns the value of the moments obtained after sglthe

moment problem.

Note that when inputing moment problems on a unique measiosevymass is not constrained,
GloptiPoly assumes by default that the measure has massarnbat we are seeking a proba-

bility measure. Therefore, g0 is the polynomial defined previously, the two instructions

>> P = msdp(min(g0));
and
>> P = msdp(min(g0), mass(meas(g0))==1);

are equivalent. See also Section 5.3 for handling massesadumnes and Section 5.8.2 for more

information on mass constraints.

5.8.2 Constrained minimization

Consider now the constrained polynomial optimization pgob

mingo(x)

where
K={xeR":gi(x)>0,i=12...}
is a basic semialgebraic set described by given polynomig@ts. Following [7], this (noncon-
vex polynomial) problem can be formulated as the (convesdihmoment problem
min, [y Go(X)d(X)
st. Jgdux)=1
where the indeterminate is a probability meagug B" which is now supported on s&. In

other words

/ du(x) = 0.
R1/K
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As an example, consider the non-convex quadratic probleSeofion 4.4 in [3]:

min  —2X3 + X2 — X3
St 24— 20%1 + 9% — 13xg + 4%2 — 4xXq X + 4X1 X3 + 2X3 — 2XpX3 + 2X5 > 0
X1+X+X3<4, 3X+X3<6

0<x1<2, 0<x, 0<x3<3

Each constraint in this problem is interpreted by GloptyP®las a support constraint on the

measure associated with variaklesee Section 5.4:

>> mpol x 3

>> X(1)+x(2)+x(3) <= 4

Scalar measure support inequality
X(L)+x(2)+x(3) <= 4

The whole problem can be entered as follows:

>> mpol x 3

>> g0 = -2%(1)+x(2)-x(3);

>> K = [24-20*X(1)+9*x(2)-13*X(3)+4*x(1)"2-4*x(1)*x(2)
+4*X(1)*Xx(3)+2*x(2)"2-2*x(2)*x(3)+2*x(3)2 >= 0, ...
X(L)+x(2)+x(3) <= 4, 3*)(2)+x(3) <= 6, ...

0 <= x(1), x(1) <= 2, 0 <= x(2), 0 <= x(3), x(3) <= 3];
>> P = msdp(min(g0), K)

Moment SDP problem

Measure label =1
Relaxation order =1
Decision variables =9
Linear inequalities =8

Semidefinite inequalities = 4x4

The moment problem can then be solved:
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>> [status,0bj] = msol(P)
GloptiPoly 3.0

Solve moment SDP problem

Global optimality cannot be ensured
status =

0
obj =

-6.0000

Sincestatus=0 the moment SDP problem can be solved but it is impossibletexdglobal op-
timality. The valueobj=-6.0000 is then a lower bound on the global minimum of the quadratic

problem.

The measure associated with the problem variables canrie/est as follows:

>> mu = meas
Measure 1 on 3 variables: x(1),x(2),x(3)

with moments of degree up to 2
Its vector of moments can be built as follows:

>> mv = mvec(mu)
10-by-1 moment vector
1,2):1[1]d[1]
D:x(1)d[1]
3,1):x(2)1d[1]
4,1):[x(3)]d[1]
5,1):1[x(1)"2]d[1]
6,1):1x(1)x(2)]d[1]
7,1):[x(1)
8,1):1[x(2)°

Ix(1)x(3)]d[1]
Ix(2)"2]d[1]

(
(2
(
(
(
(
(
(
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(9,2):1[x(2)x(3)]d[1]
(10,2):1[x(3)"2]d[1]

These moments are the decision variables of the SDP proléradswith the abovensol

command. Their numerical values can be retrieved as follows

>> double(mv)
ans =
1.0000
2.0000
-0.0000
2.0000
7.6106
1.4671
2.3363
4.8335
0.5008
8.7247

The numerical moment matrix can be obtained using the faigwommands:

>> double(mmat(mu))
ans =
1.0000 2.0000 -0.0000 2.0000
2.0000 7.6106 1.4671 2.3363
-0.0000 1.4671 4.8335 0.5008
2.0000 2.3363 0.5008 8.7247

As explained in [7], we can build a hierarchy of nested mon&®IP problems, or relaxations,
whose solutions converge monotically and asymptoticallthe global optimum, under mild
technical assumptions. By default the commaredp builds the relaxation of lowest order,
equal to half the degree of the highest degree monomial ipahaomial data. An additional

input argument can be specified to build higher order relamat
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>> P = msdp(min(g0), K, 2)

Moment SDP problem

Measure label =1
Relaxation order =2
Decision variables = 34

Semidefinite inequalities = 10x10+8x(4x4)

>> [status,0bj] = msol(P)

Global optimality cannot be ensured
status =
0
obj =
-5.6922
>> P = msdp(min(g0), K, 3)

Moment SDP problem

Measure label =1
Relaxation order =3
Decision variables = 83

Semidefinite inequalities = 20x20+8x(10x10)

>> [status,0bj] = msol(P)

Global optimality cannot be ensured
status =

0
obj =

-4.0684

We observe that the moment SDP problems feature an incgeasmber of variables and con-

straints. They generate a mononotically increasing sespiehlower bounds on the global
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optimum, which is eventually reached numerically at thetiovelaxation:

>> P = msdp(min(g0), K, 4)

Moment SDP problem

Measure label =1
Relaxation order =4
Decision variables = 164

Semidefinite inequalities = 35x35+8x(20x20)

>> [status,0bj] = msol(P)

2 globally optimal solutions extracted
Global optimality certified numerically
status =
1
obj =
-4.0000
>> double(x)
ans(;,;,1) =
2.0000
0.0000
0.0000
ans(;,;,2) =
0.5000
0.0000
3.0000
>> double(g0)
ans(:,;,1) =
-4.0000
ans(;,:,2) =
-4.0000
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5.8.3 Rational minimization

Minimization of a rational function can also be formulatesdealinear moment problem. Given

two polynomialsyo(x) andhg(x), consider the rational optimization problem

where
K={xeR":gi(x)>0,i=12...}

is a basic semialgebraic set described by given polynomgj&ls. Following [5], the corre-

sponding moment problem is given by
Mifyepn fic Go(X)dp(X)
st. Jx ho(X)dp(x) = 1.
In contrast with the polynomial optimization problem of 8en 5.8.2, the optimal measure

p supported orK is not necessarily a probability measure. Denotig(x) = 3 4 hoax®, the

moments/y of L must satisfy a linear constraint
/ ho(X)dpu(x) = z hoaYo = 1.
K a

As an example, consider the one-variable rational minitrangroblem [5, Ex. 2]:

min Xt —x
X2+ 2x+1

We can solve this problem with GloptiPoly 3 as follows:

>> mpol x
>> g0 = X"2-2*x; h0 = X"2+2*x+1;
>> P = msdp(min(g0), mom(h0) == 1);

>> [status,0bj] = msol(P)

Global optimality certified numerically
status =
1
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obj =

-0.3333
>> double(x)
ans =

0.4999

5.8.4 Several measures

GloptiPoly 3 can handle several measures whose momeniseagly related.

For example, consider the GPM arising when solving polyrbmptimal control problems as
detailed in [9]. We are seeking two occupation measpyésx du) andpp(dx) of a state vector

X(t) and input vectou(t) whose time variation are governed by the differential eiquat

d)(;—(tt) = f(x,u), X(0) = Xo, u(0) = up

with f(x,u) a given polynomial mapping anh, up given initial conditions. Measurg; is
supported on a given semialgebraicEgtcorresponding to constraints @mandu. Measuregl,
is supported on a given semialgebraic Egtcorresponding to performance requirements. For

exampleK, = 0 indicates that statemust reach the origin.

Given a polynomial test functiog(x) we can relax the dynamics constraint with the moment
constraint

[ gk - g00) = [ “4 fxudmsxu
linking linearly moments ofyy andp. As explained in [9], a lower bound on the minimum
time achievable by any feedback control la(x) is then obtained by minimizing the mass of
Ky over all possible measures, [ satisfying the support and moment constraints. The gap
between the lower bound and the exact minimum time is nadwesnlarging the class of test

functionsg.

In the following script we solve this moment problem in theseaf a double integrator with
state and input constraints:

% bounds on minimal achievable time for optimal control of
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% double integrator with state and input constraints

X0 = [1; 1]; u0 = 0; % initial conditions

d = 6; % maximum degree of test function

% analytic minimum time

if x0(1) >= -(x0(2)"2-2)/2

tmin = 1+x0(1)+x0(2)+x0(2)°2/2;
elseif x0(1) >= -x0(2)"2/2*sign(x0(2))
tmin = 2*sqrt(x0(1)+x0(2)"2/2)+x0(2);
else

tmin = 2*sgrt(-x0(1)+x0(2)"2/2)-x0(2);

end

% occupation measure for constraints
mpol x1 2
mpol ul

ml = meas([x1;ul]);

% occupation measure for performance
mpol x2 2

m2 = meas(x2);

% dynamics
scaling = tmin; % time scaling
f = scaling*[x1(2);ul];

% test function
gl
g2

mmon(x1,d);

mmon(x2,d);
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% initial condition
assign([x1;ul],[x0;u0]);
g0 = double(gl);

% moment problem

P = msdp(min(mass(m1)),...

ul’2 <= 1,... % input constraint

x1(2) >= -1,... % state constraint

x2*x2 <= 0,... % performance = reach the origin

mom(g2) - g0 == mom(diff(gl,x1)*f)); % linear moment constr aints

% solve
[status,obj] = msol(P);

obj = scaling*obyj;

disp([Minimum time = ' num2str(tmin)]);
disp([LMI " int2str(d) * lower bound = ' numa2str(obj)])

For the initial conditiorkg = [1 1] the exact minimum time is equal to53 In Table 1 we report
the monotically increasing sequence of lower bounds obthlyy solving moment problems
with test functions of increasing degrees. We used the abavet and the semidefinite solver
SeDuMi 1.1R3.

degree‘ 2 4 6 8 10 12 14 16
bound‘1.0019 2.3700 2.5640 2.9941 3.3635 3.4813 3.4964 3.4991

Table 1: Minimum time optimal control for double integrateith state and input constraints:
lower bounds on exact minimal timeS3achieved by solving moment problems with test func-

tions of increasing degrees.
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5.9 Using YALMIP

By default GloptiPoly 3 uses the semidefinite solver SeDulj for solving numerically SDP
moment problems. It is however possible to use any solverfated through YALMIP [12] by

setting a configuration flag with theset command:
>> mset('yalmip’,true)

Parameters for YALMIP, handled with the YALMIP commasupsettings , can be forwarded
to GloptiPoly 3 with themset command. For example, the following command tells YALMIP

to use the SDPT3 solver (instead of SeDuMi) when solving narpeblems with GloptiPoly:

>> mset(sdpsettings('solver’,'sdpt3));

5.10 SeDuMi parameters settings

The default parameters settings of SeDuMi [13] can be altasefollows:

>> pars.eps = le-10;

>> mset(pars)

wherepars is a structure of parameters consistent with SeDuMi’s farma

5.11 Exporting moment SDP problems

A moment problen® of classmsdp can be converted into SeDuMi’s input format:
>> [Ab,c,K] = msedumi(P);
The SDP problem can then be solved with SeDuMi as follows:

>> [x,y,info] = sedumi(A,b,c,K);
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See [13] for more information on SeDuMi’s input data format.

Similarly, a moment SDP problem can be converted into YALN!IRput format:
>> [F,hy] = myalmip(P);

where variabld- contains the LMI constraints (YALMIP cla$si ), h is the objective function
(YALMIP classsdpvar ) andy is the vector of moments (YALMIP classlpvar ). The SDP

problem can then be solved with any semidefinite solverfaxted through YALMIP as follows:

>> solvesdp(F,h);
>> ysol = double(y);

5.12 Moment substitutions

By performing explicit moment substitutions it is often pie to reduce significantly the num-
ber of variables and constraints in moment SDP problemsiae of GloptiPoly implemented
these substitutions for mixed-integer 0-1 problems on)y\@th version 3, these substitutions

can be carried out in full generality.

GloptiPoly 3 carries out moment substitutions as soon adettidrand-side of a support or
moment equality constraint consists of an isolated monicenmal. Otherwise, no substitution

is achieved and the equality constraint is preserved.

For example, consider th@/\g Max-Cut problem studied in [3, 84.7], with variablgstaking
values—1 or +1 fori =1,...,9. These integer constraints can be expressed algebyaasall

x? = 1. The following piece of code builds up the third relaxatadrihis problem:

>> W = diag(ones(8,1),1)+diag(ones(7,1),2)+diag([1 1],7 )+diag(1,8);
>> W = W+W'; n = size(W,1); e = ones(1,n); Q = (diag(e*W)-W)/4;

>> mset clear
>> mpol(’x’, n)

>> P = msdp(max(x*Q*x), x."2 == 1, 3)
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GloptiPoly 3.0
Define moment SDP problem
Valid objective function
Number of support constraints = 9 including 9 substitutions
Number of moment constraints = 0
Measure #1
Maximum degree = 2
Number of variables = 9
Number of moments = 5005
Order of SDP relaxation = 3
Mass of measure 1 set to one
Total number of monomials = 5005
Perform moment substitutions
Perform support substitutions
Number of monomials after substitution = 465
Generate moment and support constraints

Generate moment SDP problem

Moment SDP problem

Measure label =1
Relaxation order =3
Decision variables = 465

Semidefinite inequalities = 130x130

We see that out of the 5005 moments (corresponding to all romials of 9 variables of
degree up to 6), only 465 linearly independent moments appeareduced moment matrix of

dimension 130.

With the following syntax, moment substitutions are notieal out:

>> P = msdp(max(x*Q*x), x."2-1 == 0, 3)
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Mass of measure 1 set to one

Total number of monomials = 5005

Perform moment substitutions

Number of monomials after substitution = 5004
Generate moment and support constraints

Generate moment SDP problem

Moment SDP problem

Measure label =1
Relaxation order =3

Decision variables = 5004
Linear equalities = 6435

Semidefinite inequalities = 220x220

Only the mass is substituted, and the remaining 5004 montiekésl by 6435 linear equalities
(many of which are redundant) now appear explicitly in a-file moment matrix of dimension
220.

6 Performance

The computational burden in GloptiPoly 3 is twofold:

e problem modeling, operations on multivariate polynomials

¢ solving the resulting semidefinite programming problem.

For simple problems, it is expected that the overhead costarfipulating multivariate poly-

nomials and generating the semidefinite programming prnoliéenegligible when compared
to the cost of solving the semidefinite programming probléfawever, the user should know
that GloptiPoly 3 routines for multivariate polynomialgarot optimized for performance and
numerical reliability. They are essentially aimed at pdivg a convenient user-friendly in-

terface. If the user wants to manipulate efficiently largé/pomials or polynomial matrices,
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GloptiPoly 3 is not the right tool to use. For this purposanpaoter algebra software such as
Maple or Mathematica are certainly preferable. Simila@igptiPoly 3 does not exploit prob-
lem sparsity on its own, and other packages such as SparddR{DRay be more appropriate
for optimizing over sparse polynomials. However, if sttued sparsity is already available,

then one may use it with GloptiPoly 3 by implementing the spaelaxations defined in [8].

Once the generalized problem of moments and its semidefelaration are modeled, the per-
formance of GloptiPoly 3 strongly depends on the perforreasfche underlying semidefinite
solver. See [3] for computational times using SeDuMi on addad computer (with GloptiPoly
2, in 2003) on a comprehensive collection of benchmark exasngf non-convex polynomial

optimization problems. See also [4] for benchmark polyradsystems of equations.

Finally, the numerical behavior of solvers applied to segfirdte problems arising from gener-
alized problems of moments is not well understood. Develgppi sound numerical analysis in
this context (allowing for example to evaluate or approxirthe problem conditioning, and to
rescale ill-conditioned problems by an appropriate choiggolynomial basis) remains a very

challenging research direction.
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