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1 What is GloptiPoly ?

Gloptipoly 3 is intended to solve, or at least approximate, the Generalized Problem of Moments

(GPM), an infinite-dimensional optimization problem whichcan be viewed as an extension of

the classical problem of moments [10]. The GPM can be formulated as follows:

minµ (or max) ∑
k

Z

Kk

g0k(x)dµk(x)

s.t. ∑
k

Z

Kk

h jk(x)dµk(x) ≥ (or =)b j , j = 0,1, . . .
(1)

where measuresµk are supported on basic semialgebraic sets

Kk = {x∈ R
nk : gik(x) ≥ 0, i = 1,2. . .}.

In the above notations,gik(x), h jk(x) are given real polynomials andb j are given real constants.

From a theoretical viewpoint, the GPM has developments and impact in various areas of math-

ematics such as algebra, Fourier analysis, functional analysis, operator theory, probability and

statistics, to cite a few. In addition, and despite a rather simple and short formulation, the GPM

has a large number of important applications in various fields such as optimization, probability,

finance, control, signal processing, chemistry, cristallography, tomography, etc. For an account

of various methodologies as well as some of potential applications, the interested reader is re-

ferred to [1, 2] and the nice collection of papers [6].
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The approach is similar to that used in the former version 2 ofGloptiPoly [3]. The software

allows to build up a hierarchy of semidefinite programming (SDP), or linear matrix inequality

(LMI) relaxations of the GPM, whose associated monotone sequence of optimal values con-

verges to the global optimum. For more details on the approach, the interested reader is referred

to [10].

2 Installation

GloptiPoly 3 is a freeware subject to the General Public Licence (GPL) policy. It is available

for Matlab 7.2 (Release 2006) and later versions. It can be downloaded at

www.laas.fr/ ∼henrion/software/gloptipoly3

The package, available as a compressed archive, consists ofseveral m-files and subdirectories,

and it contains no binaries. Extracted files are placed in agloptipoly3 directory that should

be declared in the Matlab working path, using e.g. Matlab’s command

>> addpath gloptipoly3

GloptiPoly 3 uses by default the semidefinite programming solver SeDuMi [13], so this package

should be properly installed. Other semidefinite solvers can also be used provided they are

installed and interfaced through YALMIP [12].

3 Getting started

Please type the command

>> gloptipolydemo

to run interactively the basic example that follows.

2



Consider the classical problem of minimizing globally the two-dimensional six-hump camel

back function [3]

min
x∈R2

g0(x) = 4x2
1 +x1x2−4x2

2−2.1x4
1+4x4

2 +
1
3

x6
1.

The function has six local minima, two of them being global minima.

Using GloptiPoly 3, this optimization problem can be modeled as a moment problem as follows:

>> mpol x1 x2

>> g0 = 4*x1ˆ2+x1*x2-4*x2ˆ2-2.1*x1ˆ4+4*x2ˆ4+x1ˆ6/3

Scalar polynomial

4x1ˆ2+x1x2-4x2ˆ2-2.1x1ˆ4+4x2ˆ4+0.33333x1ˆ6

>> P = msdp(min(g0));

GloptiPoly 3.0

Define moment SDP problem

...

(GloptiPoly output suppressed)

...

Generate moment SDP problem

>> P

Moment SDP problem

Measure label = 1

Relaxation order = 3

Decision variables = 27

Semidefinite inequalities = 10x10

Once the moment problem is modeled, a semidefinite solver canbe used to solve it numerically.

Here we use SeDuMi [13] which is assumed to be installed and accessible from the Matlab

working path:

>> [status,obj] = msol(P)

GloptiPoly 3.0
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Solve moment SDP problem

*************************************************** **

Calling SeDuMi

SeDuMi 1.1R3 by AdvOL, 2006 and Jos F. Sturm, 1998-2003.

...

(SeDuMi output suppressed)

...

2 globally optimal solutions extracted

>> status

status =

1

>> obj

obj =

-1.0316

>> x = double([x1 x2]);

x(:,:,1) =

0.0898 -0.7127

x(:,:,2) =

-0.0898 0.7127

The flagstatus = 1 means that the moment problem is solved successfully and that Glop-

tiPoly can extract two globally optimal solutions reachingthe objective functionobj = -1.0316 .

4 From version 2 to version 3

The major changes incorporated into GloptiPoly when passing from version 2 to 3 can be sum-

marized as follows:

• Use of native polynomial objects and object-oriented programming with specific classes

for multivariate polynomials, measures, moments, and corresponding overloaded opera-

tors. In contrast with version 2, the Symbolic Toolbox for Matlab (gateway to the Maple
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kernel) is not required anymore to process polynomial data.

• Generalized problems of moments featuring several measures with semialgebraic support

constraints and linear moment constraints can be processedand solved. Version 2 was

limited to moment problems on a unique measure without moment constraints.

• Explicit moment substitutions are carried out to reduce thenumber of variables and con-

straints.

• The moment problems can be solved numerically with any semidefinite solver, provided

it is interfaced through YALMIP. In contrast, version 2 usedonly the solver SeDuMi.

5 Solving generalized problems of moments

GloptiPoly 3 uses advanced Matlab features for object-oriented programming and overloaded

operators. The user should be familiar with the following basic objects.

5.1 Multivariate polynomials (mpol )

A multivariate polynomial is an affine combination of monomials, each monomial depending

on a set of variables. Variables can be declared in the Matlabworking space as follows:

>> clear

>> mpol x

>> x

Scalar polynomial

x

>> mpol y 2

>> y

2-by-1 polynomial vector

(1,1):y(1)

(2,1):y(2)
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>> mpol z 3 2

>> z

3-by-2 polynomial matrix

(1,1):z(1,1)

(2,1):z(2,1)

(3,1):z(3,1)

(1,2):z(1,2)

(2,2):z(2,2)

(3,2):z(3,2)

Variables, monomials and polynomials are defined as objectsof classmpol .

All standard Matlab operators have been overloaded formpol objects:

>> y*y’-z’*z+xˆ3

2-by-2 polynomial matrix

(1,1):y(1)ˆ2-z(1,1)ˆ2-z(2,1)ˆ2-z(3,1)ˆ2+xˆ3

(2,1):y(1)y(2)-z(1,1)z(1,2)-z(2,1)z(2,2)-z(3,1)z(3, 2)+xˆ3

(1,2):y(1)y(2)-z(1,1)z(1,2)-z(2,1)z(2,2)-z(3,1)z(3, 2)+xˆ3

(2,2):y(2)ˆ2-z(1,2)ˆ2-z(2,2)ˆ2-z(3,2)ˆ2+xˆ3

Use the instruction

>> mset clear

to delete all existing GloptiPoly variables from the Matlabworking space.

5.2 Measures (meas)

Variables can be associated with real-valued measures, andone variable is associated with only

one measure. For GloptiPoly, measures are identified with a label, a positive integer. When

starting a GloptiPoly session, the default measure has label 1. By default, all created variables
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are associated with the current measure. Measures can be handled with the classmeas as fol-

lows:

>> mset clear

>> mpol x

>> mpol y 2

>> meas

Measure 1 on 3 variables: x,y(1),y(2)

>> meas(y) % create new measure

Measure 2 on 2 variables: y(1),y(2)

>> m = meas

1-by-2 vector of measures

1:Measure 1 on 1 variable: x

2:Measure 2 on 2 variables: y(1),y(2)

>> m(1)

Measure number 1 on 1 variable: x

The above script creates a measureµ1(dx) onR and a measureµ2(dy) onR
2.

Use the instruction

>> mset clearmeas

to delete all existing GloptiPoly measures from the workingspace. Note that this does not delete

existing GloptiPoly variables.

5.3 Moments (mom)

Linear combinations of moments of a given measure can be manipulated with themomclass as

follows:

>> mom(1+2*x+3*xˆ2)
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Scalar moment

I[1+2x+3xˆ2]d[1]

>> mom(y*y’)

2-by-2 moment matrix

(1,1):I[y(1)ˆ2]d[2]

(2,1):I[y(1)y(2)]d[2]

(1,2):I[y(1)y(2)]d[2]

(2,2):I[y(2)ˆ2]d[2]

The notationI[p]d[k] stands for
R

p dµk wherep is a polynomial of the variables associated

with measureµk, andk is the measure label.

Note that it makes no sense to define moments over several measures, or nonlinear moment

expressions:

>> mom(x*y(1))

??? Error using ==> mom.mom

Invalid partitioning of measures in moments

>> mom(x)*mom(y(1))

??? Error using ==> mom.times

Invalid moment product

Note also the distinction between a constant term and the mass of a measure:

>> 1+mom(x)

Scalar moment

1+I[x]d[1]

>> mom(1+x)

Scalar moment

I[1+x]d[1]

>> mass(x)

Scalar moment

I[1]d[1]
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Finally, let us mention three equivalent notations to referto the mass of a measure:

>> mass(meas(y))

Scalar moment

I[1]d[2]

>> mass(y)

Scalar moment

I[1]d[2]

>> mass(2)

Scalar moment

I[1]d[2]

The first command refers explicitly to the measure, the second command is a handy short-cut

to refer to a measure via its variables, and the third commandrefers to GloptiPoly’s labeling of

measures.

5.4 Support constraints (supcon )

By default, a measure onn variables is defined on the wholeRn. We can restrict the support of

a mesure to a given semialgebraic set as follows:

>> 2*xˆ2+xˆ3 == 2+x

Scalar measure support equality

2xˆ2+xˆ3 == 2+x

>> disk = (y’*y <= 1)

Scalar measure support inequality

y(1)ˆ2+y(2)ˆ2 <= 1

Support constraints are modeled by objects of classsupcon . The first command means that

variablex must satisfyx3 + 2x2− x−2 = (x−1)(x+ 1)(x+ 2) = 0, i.e. measureµ1 must be

discrete, a linear combination of three Dirac at 1,−1 and−2. The second command restricts

measureµ2 within the unit disk.
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Note that it makes no sense to define a support constraint on several measures:

>> x+y(1) <= 1

??? Error using ==> supcon.supcon

Invalid reference to several measures

5.5 Moment constraints (momcon)

We can constrain linearly the moments of several measures:

>> mom(xˆ2+2) == 1+mom(y(1)ˆ3*y(2))

Scalar moment equality constraint

I[2+xˆ2]d[1] == 1+I[y(1)ˆ3y(2)]d[2]

>> mass(x)+mass(y) <= 2

Scalar moment inequality constraint

I[1]d[1]+I[1]d[2] <= 2

Moment constraints are modeled by objects of classmomcon.

For GloptiPoly an objective function to be minimized or maximized is considered as a particular

moment constraint:

>> min(mom(xˆ2+2))

Scalar moment objective function

min I[2+xˆ2]d[1]

>> max(xˆ2+2)

Scalar moment objective function

max I[2+xˆ2]d[1]

The latter syntax is a handy short-cut which directly converts anmpol object into anmomcon

object.
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5.6 Floating point numbers (double )

Variables in a measure can be assigned numerical values:

>> m1 = assign(x,2)

Measure 1 on 1 variable: x

supported on 1 point

which is equivalent to enforcing a discrete support for the measure. Hereµ1 is set to the Dirac

at the point 2.

Thedouble operator converts a measure or its variables into a floating point number:

>> double(x)

ans =

2

>> double(m1)

ans =

2

Polynomials can be evaluated similarly:

>>double(1-2*x+3*xˆ2)

ans =

9

Discrete measure supports consisting of several points canbe specified in an array:

>> m2 = assign(y,[-1 2 0;1/3 1/4 -2])

Measure 2 on 2 variables: y(1),y(2)

supported on 3 points

>> double(m2)

ans(:,:,1) =
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-1.0000

0.3333

ans(:,:,2) =

2.0000

0.2500

ans(:,:,3) =

0

-2

5.7 Moment SDP problems (msdp)

GloptiPoly 3 can manipulate and solve Generalized Problemsof Moments (GPM) as defined in

(1). The decision variables in the GPM are measuresµk(x), and GloptiPoly 3 allows to optimize

over them through their moments

yαk =

Z

Kk

xαkdµk(x), αk ∈ N
nk

where theαk are multi-indices.

5.8 Solving moment problemsmsol

Once a moment problem is defined, it can be solved numericallywith the instructionmsol . In

the sequel we give several examples of GPMs handled with GloptiPoly 3.

5.8.1 Unconstrained minimization

Following [7], given a multivariate polynomialg0(x), the unconstrained optimization problem

min
x∈Rn

g0(x)

can be formulated as a linear moment optimization problem

minµ
R

g0(x)dµ(x)

s.t.
R

dµ(x) = 1
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where measureµ lives in the spaceBn of finite Borel signed measures onRn. The equality

constraint indicates that the mass ofµ is equal to one, or equivalently, thatµ is a probability

measure.

In general, this linear (hence convex) reformulation of a (typically nonconvex) polynomial prob-

lem is not helpful because there is no computationally efficient way to represent measures and

their underlying Borel spaces. The approach proposed in [7]consists in using convex semidef-

inite representations of the spaceB
n truncated to finite degree moments. GloptiPoly 3 allows

to input such moment optimization problems in an user-friendly way, and to solve them using

existing software for semidefinite programming (SDP).

In Section 3 we already encountered an example of an unconstrained polynomial optimization

solved with GloptiPoly 3. Let us revisit this example:

>> mset clear

>> mpol x1 x2

>> g0 = 4*x1ˆ2+x1*x2-4*x2ˆ2-2.1*x1ˆ4+4*x2ˆ4+x1ˆ6/3

Scalar polynomial

4x1ˆ2+x1x2-4x2ˆ2-2.1x1ˆ4+4x2ˆ4+0.33333x1ˆ6

>> P = msdp(min(g0));

...

>> msol(P)

...

2 globally optimal solutions extracted

Global optimality certified numerically

This indicates that the global minimum is attained with a discrete measure supported on two

points. The measure can be constructed from the knowledge ofits first moments of degree up

to 6:

>> meas

Measure 1 on 2 variables: x1,x2

with moments of degree up to 6, supported on 2 points
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>> double(meas)

ans(:,:,1) =

0.0898

-0.7127

ans(:,:,2) =

-0.0898

0.7127

>> double(g0)

ans(:,:,1) =

-1.0316

ans(:,:,2) =

-1.0316

When converting to floating point numbers with the operatordouble , it is essential to make the

distinction betweenmpol andmomobjects:

>> v = mmon([x1 x2],2)’

1-by-6 polynomial vector

(1,1):1

(1,2):x1

(1,3):x2

(1,4):x1ˆ2

(1,5):x1x2

(1,6):x2ˆ2

>> double(v)

ans(:,:,1) =

1.0000 0.0898 -0.7127 0.0081 -0.0640 0.5079

ans(:,:,2) =

1.0000 -0.0898 0.7127 0.0081 -0.0640 0.5079

>> double(mom(v))

ans =

1.0000 0.0000 -0.0000 0.0081 -0.0640 0.5079
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The first instructionmmongenerates a vector of monomialsv of classmpol , so the command

double(v) calls the convertor@mpol/double which evaluates a polynomial expression on the

discrete support of a measure (here two points). The last commanddouble(mom(v)) calls

the convertor@mom/double which returns the value of the moments obtained after solving the

moment problem.

Note that when inputing moment problems on a unique measure whose mass is not constrained,

GloptiPoly assumes by default that the measure has mass one,i.e. that we are seeking a proba-

bility measure. Therefore, ifg0 is the polynomial defined previously, the two instructions

>> P = msdp(min(g0));

and

>> P = msdp(min(g0), mass(meas(g0))==1);

are equivalent. See also Section 5.3 for handling masses of measures and Section 5.8.2 for more

information on mass constraints.

5.8.2 Constrained minimization

Consider now the constrained polynomial optimization problem

min
x∈K

g0(x)

where

K = {x∈ R
n : gi(x) ≥ 0, i = 1,2, . . .}

is a basic semialgebraic set described by given polynomialsgi(x). Following [7], this (noncon-

vex polynomial) problem can be formulated as the (convex linear) moment problem

minµ
R

K
g0(x)dµ(x)

s.t.
R

K
dµ(x) = 1

where the indeterminate is a probability measureµ of B
n which is now supported on setK. In

other words
Z

Rn/K

dµ(x) = 0.
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As an example, consider the non-convex quadratic problem ofSection 4.4 in [3]:

min −2x1 +x2−x3

s.t. 24−20x1+9x2−13x3+4x2
1−4x1x2+4x1x3 +2x2

2−2x2x3 +2x2
3 ≥ 0

x1 +x2+x3 ≤ 4, 3x2 +x3 ≤ 6

0≤ x1 ≤ 2, 0≤ x2, 0≤ x3 ≤ 3

Each constraint in this problem is interpreted by GloptiPoly 3 as a support constraint on the

measure associated with variablex, see Section 5.4:

>> mpol x 3

>> x(1)+x(2)+x(3) <= 4

Scalar measure support inequality

x(1)+x(2)+x(3) <= 4

The whole problem can be entered as follows:

>> mpol x 3

>> g0 = -2*x(1)+x(2)-x(3);

>> K = [24-20*x(1)+9*x(2)-13*x(3)+4*x(1)ˆ2-4*x(1)*x(2) ...

+4*x(1)*x(3)+2*x(2)ˆ2-2*x(2)*x(3)+2*x(3)ˆ2 >= 0, ...

x(1)+x(2)+x(3) <= 4, 3*x(2)+x(3) <= 6, ...

0 <= x(1), x(1) <= 2, 0 <= x(2), 0 <= x(3), x(3) <= 3];

>> P = msdp(min(g0), K)

...

Moment SDP problem

Measure label = 1

Relaxation order = 1

Decision variables = 9

Linear inequalities = 8

Semidefinite inequalities = 4x4

The moment problem can then be solved:
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>> [status,obj] = msol(P)

GloptiPoly 3.0

Solve moment SDP problem

...

Global optimality cannot be ensured

status =

0

obj =

-6.0000

Sincestatus=0 the moment SDP problem can be solved but it is impossible to detect global op-

timality. The valueobj=-6.0000 is then a lower bound on the global minimum of the quadratic

problem.

The measure associated with the problem variables can be retrieved as follows:

>> mu = meas

Measure 1 on 3 variables: x(1),x(2),x(3)

with moments of degree up to 2

Its vector of moments can be built as follows:

>> mv = mvec(mu)

10-by-1 moment vector

(1,1):I[1]d[1]

(2,1):I[x(1)]d[1]

(3,1):I[x(2)]d[1]

(4,1):I[x(3)]d[1]

(5,1):I[x(1)ˆ2]d[1]

(6,1):I[x(1)x(2)]d[1]

(7,1):I[x(1)x(3)]d[1]

(8,1):I[x(2)ˆ2]d[1]
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(9,1):I[x(2)x(3)]d[1]

(10,1):I[x(3)ˆ2]d[1]

These moments are the decision variables of the SDP problem solved with the abovemsol

command. Their numerical values can be retrieved as follows:

>> double(mv)

ans =

1.0000

2.0000

-0.0000

2.0000

7.6106

1.4671

2.3363

4.8335

0.5008

8.7247

The numerical moment matrix can be obtained using the following commands:

>> double(mmat(mu))

ans =

1.0000 2.0000 -0.0000 2.0000

2.0000 7.6106 1.4671 2.3363

-0.0000 1.4671 4.8335 0.5008

2.0000 2.3363 0.5008 8.7247

As explained in [7], we can build a hierarchy of nested momentSDP problems, or relaxations,

whose solutions converge monotically and asymptotically to the global optimum, under mild

technical assumptions. By default the commandmsdp builds the relaxation of lowest order,

equal to half the degree of the highest degree monomial in thepolynomial data. An additional

input argument can be specified to build higher order relaxations:
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>> P = msdp(min(g0), K, 2)

...

Moment SDP problem

Measure label = 1

Relaxation order = 2

Decision variables = 34

Semidefinite inequalities = 10x10+8x(4x4)

>> [status,obj] = msol(P)

...

Global optimality cannot be ensured

status =

0

obj =

-5.6922

>> P = msdp(min(g0), K, 3)

...

Moment SDP problem

Measure label = 1

Relaxation order = 3

Decision variables = 83

Semidefinite inequalities = 20x20+8x(10x10)

>> [status,obj] = msol(P)

...

Global optimality cannot be ensured

status =

0

obj =

-4.0684

We observe that the moment SDP problems feature an increasing number of variables and con-

straints. They generate a mononotically increasing sequence of lower bounds on the global
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optimum, which is eventually reached numerically at the fourth relaxation:

>> P = msdp(min(g0), K, 4)

...

Moment SDP problem

Measure label = 1

Relaxation order = 4

Decision variables = 164

Semidefinite inequalities = 35x35+8x(20x20)

>> [status,obj] = msol(P)

...

2 globally optimal solutions extracted

Global optimality certified numerically

status =

1

obj =

-4.0000

>> double(x)

ans(:,:,1) =

2.0000

0.0000

0.0000

ans(:,:,2) =

0.5000

0.0000

3.0000

>> double(g0)

ans(:,:,1) =

-4.0000

ans(:,:,2) =

-4.0000
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5.8.3 Rational minimization

Minimization of a rational function can also be formulated as a linear moment problem. Given

two polynomialsg0(x) andh0(x), consider the rational optimization problem

min
x∈K

g0(x)
h0(x)

where

K = {x∈ R
n : gi(x) ≥ 0, i = 1,2, . . .}

is a basic semialgebraic set described by given polynomialsgi(x). Following [5], the corre-

sponding moment problem is given by

minµ∈Bn
R

K
g0(x)dµ(x)

s.t.
R

K
h0(x)dµ(x) = 1.

In contrast with the polynomial optimization problem of Section 5.8.2, the optimal measure

µ supported onK is not necessarily a probability measure. Denotingh0(x) = ∑α h0αxα, the

momentsyα of µ must satisfy a linear constraint

Z

K

h0(x)dµ(x) = ∑
α

h0αyα = 1.

As an example, consider the one-variable rational minimization problem [5, Ex. 2]:

min
x2−x

x2 +2x+1
.

We can solve this problem with GloptiPoly 3 as follows:

>> mpol x

>> g0 = xˆ2-2*x; h0 = xˆ2+2*x+1;

>> P = msdp(min(g0), mom(h0) == 1);

>> [status,obj] = msol(P)

...

Global optimality certified numerically

status =

1
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obj =

-0.3333

>> double(x)

ans =

0.4999

5.8.4 Several measures

GloptiPoly 3 can handle several measures whose moments are linearly related.

For example, consider the GPM arising when solving polynomial optimal control problems as

detailed in [9]. We are seeking two occupation measuresµ1(dx,du) andµ2(dx) of a state vector

x(t) and input vectoru(t) whose time variation are governed by the differential equation

dx(t)
dt

= f (x,u), x(0) = x0, u(0) = u0

with f (x,u) a given polynomial mapping andx0, u0 given initial conditions. Measureµ1 is

supported on a given semialgebraic setK1 corresponding to constraints onx andu. Measureµ2

is supported on a given semialgebraic setK2 corresponding to performance requirements. For

exampleK2 = 0 indicates that statex must reach the origin.

Given a polynomial test functiong(x) we can relax the dynamics constraint with the moment

constraint
Z

K2

g(x)dµ2(x)−g(x0) =
Z

K1

dg(x)
dx

f (x,u)dµ1(x,u)

linking linearly moments ofµ1 andµ2. As explained in [9], a lower bound on the minimum

time achievable by any feedback control lawu(x) is then obtained by minimizing the mass of

µ1 over all possible measuresµ1, µ2 satisfying the support and moment constraints. The gap

between the lower bound and the exact minimum time is narrowed by enlarging the class of test

functionsg.

In the following script we solve this moment problem in the case of a double integrator with

state and input constraints:

% bounds on minimal achievable time for optimal control of
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% double integrator with state and input constraints

x0 = [1; 1]; u0 = 0; % initial conditions

d = 6; % maximum degree of test function

% analytic minimum time

if x0(1) >= -(x0(2)ˆ2-2)/2

tmin = 1+x0(1)+x0(2)+x0(2)ˆ2/2;

elseif x0(1) >= -x0(2)ˆ2/2*sign(x0(2))

tmin = 2*sqrt(x0(1)+x0(2)ˆ2/2)+x0(2);

else

tmin = 2*sqrt(-x0(1)+x0(2)ˆ2/2)-x0(2);

end

% occupation measure for constraints

mpol x1 2

mpol u1

m1 = meas([x1;u1]);

% occupation measure for performance

mpol x2 2

m2 = meas(x2);

% dynamics

scaling = tmin; % time scaling

f = scaling*[x1(2);u1];

% test function

g1 = mmon(x1,d);

g2 = mmon(x2,d);
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% initial condition

assign([x1;u1],[x0;u0]);

g0 = double(g1);

% moment problem

P = msdp(min(mass(m1)),...

u1ˆ2 <= 1,... % input constraint

x1(2) >= -1,... % state constraint

x2’*x2 <= 0,... % performance = reach the origin

mom(g2) - g0 == mom(diff(g1,x1)*f)); % linear moment constr aints

% solve

[status,obj] = msol(P);

obj = scaling*obj;

disp([’Minimum time = ’ num2str(tmin)]);

disp([’LMI ’ int2str(d) ’ lower bound = ’ num2str(obj)])

For the initial conditionx0 = [1 1] the exact minimum time is equal to 3.5. In Table 1 we report

the monotically increasing sequence of lower bounds obtained by solving moment problems

with test functions of increasing degrees. We used the abovescript and the semidefinite solver

SeDuMi 1.1R3.

degree 2 4 6 8 10 12 14 16

bound 1.0019 2.3700 2.5640 2.9941 3.3635 3.4813 3.4964 3.4991

Table 1: Minimum time optimal control for double integratorwith state and input constraints:

lower bounds on exact minimal time 3.5 achieved by solving moment problems with test func-

tions of increasing degrees.
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5.9 Using YALMIP

By default GloptiPoly 3 uses the semidefinite solver SeDuMi [13] for solving numerically SDP

moment problems. It is however possible to use any solver interfaced through YALMIP [12] by

setting a configuration flag with themset command:

>> mset(’yalmip’,true)

Parameters for YALMIP, handled with the YALMIP commandsdpsettings , can be forwarded

to GloptiPoly 3 with themset command. For example, the following command tells YALMIP

to use the SDPT3 solver (instead of SeDuMi) when solving moment problems with GloptiPoly:

>> mset(sdpsettings(’solver’,’sdpt3’));

5.10 SeDuMi parameters settings

The default parameters settings of SeDuMi [13] can be altered as follows:

>> pars.eps = 1e-10;

>> mset(pars)

wherepars is a structure of parameters consistent with SeDuMi’s format.

5.11 Exporting moment SDP problems

A moment problemP of classmsdp can be converted into SeDuMi’s input format:

>> [A,b,c,K] = msedumi(P);

The SDP problem can then be solved with SeDuMi as follows:

>> [x,y,info] = sedumi(A,b,c,K);
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See [13] for more information on SeDuMi’s input data format.

Similarly, a moment SDP problem can be converted into YALMIP’s input format:

>> [F,h,y] = myalmip(P);

where variableF contains the LMI constraints (YALMIP classlmi ), h is the objective function

(YALMIP class sdpvar ) andy is the vector of moments (YALMIP classsdpvar ). The SDP

problem can then be solved with any semidefinite solver interfaced through YALMIP as follows:

>> solvesdp(F,h);

>> ysol = double(y);

5.12 Moment substitutions

By performing explicit moment substitutions it is often possible to reduce significantly the num-

ber of variables and constraints in moment SDP problems. Version 2 of GloptiPoly implemented

these substitutions for mixed-integer 0-1 problems only [3]. With version 3, these substitutions

can be carried out in full generality.

GloptiPoly 3 carries out moment substitutions as soon as theleft hand-side of a support or

moment equality constraint consists of an isolated monic monomial. Otherwise, no substitution

is achieved and the equality constraint is preserved.

For example, consider theAW9
2 Max-Cut problem studied in [3, §4.7], with variablesxi taking

values−1 or +1 for i = 1, . . . ,9. These integer constraints can be expressed algebraically as

x2
i = 1. The following piece of code builds up the third relaxationof this problem:

>> W = diag(ones(8,1),1)+diag(ones(7,1),2)+diag([1 1],7 )+diag(1,8);

>> W = W+W’; n = size(W,1); e = ones(1,n); Q = (diag(e*W)-W)/4;

>> mset clear

>> mpol(’x’, n)

>> P = msdp(max(x’*Q*x), x.ˆ2 == 1, 3)
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GloptiPoly 3.0

Define moment SDP problem

Valid objective function

Number of support constraints = 9 including 9 substitutions

Number of moment constraints = 0

Measure #1

Maximum degree = 2

Number of variables = 9

Number of moments = 5005

Order of SDP relaxation = 3

Mass of measure 1 set to one

Total number of monomials = 5005

Perform moment substitutions

Perform support substitutions

Number of monomials after substitution = 465

Generate moment and support constraints

Generate moment SDP problem

Moment SDP problem

Measure label = 1

Relaxation order = 3

Decision variables = 465

Semidefinite inequalities = 130x130

We see that out of the 5005 moments (corresponding to all the monomials of 9 variables of

degree up to 6), only 465 linearly independent moments appear in a reduced moment matrix of

dimension 130.

With the following syntax, moment substitutions are not carried out:

>> P = msdp(max(x’*Q*x), x.ˆ2-1 == 0, 3)

...
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Mass of measure 1 set to one

Total number of monomials = 5005

Perform moment substitutions

Number of monomials after substitution = 5004

Generate moment and support constraints

Generate moment SDP problem

Moment SDP problem

Measure label = 1

Relaxation order = 3

Decision variables = 5004

Linear equalities = 6435

Semidefinite inequalities = 220x220

Only the mass is substituted, and the remaining 5004 momentslinked by 6435 linear equalities

(many of which are redundant) now appear explicitly in a full-size moment matrix of dimension

220.

6 Performance

The computational burden in GloptiPoly 3 is twofold:

• problem modeling, operations on multivariate polynomials;

• solving the resulting semidefinite programming problem.

For simple problems, it is expected that the overhead cost ofmanipulating multivariate poly-

nomials and generating the semidefinite programming problem is negligible when compared

to the cost of solving the semidefinite programming problem.However, the user should know

that GloptiPoly 3 routines for multivariate polynomials are not optimized for performance and

numerical reliability. They are essentially aimed at providing a convenient user-friendly in-

terface. If the user wants to manipulate efficiently large polynomials or polynomial matrices,
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GloptiPoly 3 is not the right tool to use. For this purpose, computer algebra software such as

Maple or Mathematica are certainly preferable. Similarly,GloptiPoly 3 does not exploit prob-

lem sparsity on its own, and other packages such as SparsePOP[14] may be more appropriate

for optimizing over sparse polynomials. However, if structured sparsity is already available,

then one may use it with GloptiPoly 3 by implementing the sparse relaxations defined in [8].

Once the generalized problem of moments and its semidefiniterelaxation are modeled, the per-

formance of GloptiPoly 3 strongly depends on the performance of the underlying semidefinite

solver. See [3] for computational times using SeDuMi on a standard computer (with GloptiPoly

2, in 2003) on a comprehensive collection of benchmark examples of non-convex polynomial

optimization problems. See also [4] for benchmark polynomial systems of equations.

Finally, the numerical behavior of solvers applied to semidefinite problems arising from gener-

alized problems of moments is not well understood. Developing a sound numerical analysis in

this context (allowing for example to evaluate or approximate the problem conditioning, and to

rescale ill-conditioned problems by an appropriate choiceof polynomial basis) remains a very

challenging research direction.
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measures and LMI relaxations.SIAM Journal on Control and Optimization, 47(4):1643-

1666, 2008.

[10] J. B. Lasserre. A semidefinite programming approach to the generalized problem of mo-

ments.Mathematical Programming, 112:65–92, 2008.

[11] M. Laurent. Sums of squares, moment matrices and optimization over polynomials. In M.

Putinar and S. Sullivant (Editors), IMA volume onEmerging Applications of Algebraic

Geometry, Vol. 149, 2008.
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