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GLORIFIED OPTICS AND WAVE PROPAGATION IN NONPLANAR 
STRUCTURE 

BY TAI-LIN HONG AND DONALD V. HELMBERGER 

ABSTRACT 

Waves propagating in varying nonplanar structure can produce many inter- 
esting phenomena, such as focusing, caustics, and triplications. A high-fre- 
quency technique based on the first-motion approximation, referred to as glori- 
fied optics, has been developed to generate synthetic seismograms for these 
types of problems. The technique, in its simplest form, uses the spreading rate 
of a beam with transmission and reflection coefficients along each possible ray 
path. The time behavior of each arrival is either that of the original pulse or its 
Hilbert transform depending on the position of caustics. The geophysically 
interesting structure of a soft basin over a half-space is investigated in detail by 
this method. Synthetic seismograms appropriate for various locations are com- 
pared with the results of finite difference and finite element methods. The 
technique appears rich in insight and should prove very useful in modeling 
problems. 

INTRODUCTION 

In recent years there has been a substantial increase in the number of seismic 
wave-form inversion studies. These efforts are characterized by matching a set of 
records by computing synthetic wave forms for the forward problem and matching 
the observations by a trial and error procedure. The fits for some of the more 
diligent efforts are sufficiently good to allow the application of linearized inversion 
techniques (see for example Burdick and Mellman, 1976). Unfortunately, in many 
studies the matching procedure can be frustrating due to the presence of scattered 
waves which can be readily detected by particle motion plots. However, one does 
not need to do much soul searching to discover abundant causes, such as basins and 
ridges above the source and/or similar receiver structure. The effects of basins, for 
example, have been well studied by Aki and Larner (1970) and Boore et al. (1971). 
But, because these numerical methods are so expensive one can hardly perform a 
parameter search to use in wave-form inversion studies especially when these wave 
forms contain high frequency. Furthermore, most numerical methods do little to 
develop ones insight with respect to the physics of the problem. Thus, we have 
developed a technique of generating synthetics by simply tracking rays. The method 
is based on first-motion approximations and is, therefore, a high-frequency solution 
but appears to compare favorably to numerical experiments even at long periods in 
many situations. 

THEORY 

Solving rigorously the boundary value problem involving complicated geometry 
is not possible, so we have jumped directly to an approximate form of the solution. 
The approximation is based on the understanding of the connection between the 
physical behavior of rays and the mathematical formulation for the solution of 
simple structures. We will introduce our technique by first reviewing the interface 
problem, followed by multi-dipping layers, and then generalize to smoothly varying 
interfaces. 
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Fluid interface problem. We assume a point  source with t ime history given by  fit) 
with the  geomet ry  specified in Figure 1. Applying generalized ray  theory  we can 
write down the high-frequency solution, He lmberger  (1968) 

~(r, z, t) = f i t )* -~ ~ ~ I m  T(p) ---~ - ~  r (1) 

where ~ is a scalar potent ia l  

T(p) = t ransmission coefficient 
p -= complex ray  p a r a m e t e r  
F = de-Hoop contour  

' / / i =  ~ / 2 - - p 2  . 

\ \ 

T d, ~ ~' 

FIG. 1. Diagram displaying the infinitesimal phenomena of geometric spreading for the simple 
interface problem. The area A' is the product of £% and So where ~e = R1 dSdcos 82/cos 81) + R2 d82 
and £~ = R1 dO sin 81 + R2 dO sin 82. 

This  solution can be simplified fur ther  by construct ing the f irs t-motion approxima-  
tion for t imes near  the direct arrival, t00)o) 

Up i_ (d2 t~  -1/2 

dt ~ ( 2 ( t -  to)) 1/2 \dp2]t=t ° " 
(2) 

But  f rom the geomet ry  given in Figure 1 we can show tha t  the spreading factor, Sr 

t=t o 

where Ao is the original cross-sectional area  of the beam of rays  a t  unit  distance and 
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A is the  p ro jec t ed  a rea  a t  t he  receiver.  T o  show this  we no te  t h a t  

~23V22] 

F (I,t=tlV=l 1 [ cosO,] I/2 1 
711 ~ - R1 d01 + R2 d02 " L kldp I] J,=,o ~ cos0~3 ~ 1  

a n d  
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(4) 

[RisinOl+R2sin02]'/2 
= s-in 8~ ,/E,. 

t = t  o 

i 

. 12 

FIG. 2. Diagram displaying the infinitesimal phenomena of geometric spreading for dipping interfaces. 
The area A'  is the product of A~0 and Z ,  where 

Azo = R1 d01[(cos 0'2 cos ~'a)/(cos 81 cos 02)] 
+ R2 dO2(cos 6'a/cos 82) + R3 dOa 

sin 0'2 . sin Ws sin 8'2 
~0 = R] sin 0] d@ + R~ sin 02 ~ d~ + R3 sm 03 

sm ~2 sin Oa sin 02 
- -  d @ .  

T h u s  

Sf = [ (Rl sin Ol dd~ + R2 sin O2 dd~)(Rl dOl + R2 dO2 cos Oa/cos 02) ] -1/2 
s in  81 d81 dO (5) 

b u t  if we let  A = A '  cos 81/c0s 02 or the  p ro jec t ion  of A '  on to  the  or iginal  o r i e n t a t i on  
we o b t a i n  

st= L A o I  . 
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The solution becomes 

1 d [ 1 *  t ~ _ t o ] ~ e ( T ( p o ) ) . S  f O = f(t) * -~ ~- t --~ _ (6) 

which reduced to 

/ A \-'/2 
O = f ( t -  to)|-~-I +e[T(po)]. 

\z~0/ 
(7) 

Note that the velocity contrast across the interface changes d~l to d02 or the 
spreading rate in the P-direction, whereas do remains the same. 

-I0 km 0 km +10 

Fro. 3. Diagram showing the bending of geometric ray paths caused by a periodic semicircular 
interface. 

Dipping structure. We now consider a more general case, namely two nonparallel 
planar interfaces. This problem was studied earlier by Hong and Helmberger {1977) 
assuming a line source excitation. For a point source, we require an additional 
complication due to spreading in the azimuthal direction. For flat structure this 
correction is simply x/p/r but for dipping structure we must represent it in terms of 
parameters in local Cartesian coordinates 

d 1 [ 3 dm\-l/2 dpl~ 
O = f i t )*  -- dt * I m  T(p).t~__l~-~ ) 71 dt ]r (8) 

where p,~ is the local ray parameter of the m-th ray segment and dm is the projection 
of the geometric path onto the local Cartesian coordinates, as shown in Figure 2. 



The justification for this factor along with the details of the contour F are given in 
our earlier paper. Again, we take the first motion approximation by letting 

dpl i ( d2tl~ -1/~ 
dt ~ (2(t - to)) 1/2 \1@121] (9) 

(lO) 

and after some algebra (see Appendix) we obtain 

d2 t 1/2_ 
'171 Up12 

1 [ cosS1 cos02 c0s8~]1/2 1 
~ 1  R1 d81 + R2 d02 ~ + Ra d 8 3 - - -  - -  

cos O'a cos 0'2 

79 

f 
2 
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FIG. 4. Diagramdisp•ayingthein•nitesima•phen•mena•fge•metricspreadingf•racurvedb•undary. 
The parameters are a = 5 kin, ro = 5 km, the upper velocity (vl) is 1 km/sec and the lower velocity (v2) 
is 3 km/sec, and the density is assumed constant. 

and 

thus 

where 

(m~__l dm~l/2 ~--- 
pm] (sin 01)1/2 

t . ,.~, \ 1/2 
dl + d2 sin 0___A2 + d3 sin 8'3 sm ~2~ 

sin 02 sin 03 ~ ~ ]  "(vl)1/2 

dm~-1/21 ([d2 t ~ - 1 / 2  ( A ~ - 1 / 2  

Sf~- lpm] ~7-~1 \]Up12 ] \Ao] 

cos 8i cos 82 
A = A ' - -  

COS ~'2 COS ~'3 

(11) 

(12) 
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or the  p ro jec t ion  of  A '  given in Figure  2 back  into the  original  or ientat ion.  T h e  
solut ion becomes  

= f{t - to) ~e [T(po) ]  (13) 

where  we m u s t  c o m p u t e  the  t ransmiss ion  coefficients wi th  the  appropr i a t e  local r ay  
p a r a m e t e r  (Pro). Calcula t ing  (A/Ao) analy t ica l ly  for a large n u m b e r  of  r ay  segments  

0 I0 km 

Y 
f 

FIG. 5. Diagram showing the paths of geometric rays arriving at x = 0 kin, z = 0 km, and x = 10 kin, 
z = 0 k m .  

' °  

SO 

/ 

I0 20 30 sec 
i I , l i I 

FIG, 6. Comparison of SH displacements received at the two locations shown in Figure 5. The traces 
marked with FE are by finite element method. Those marked with GO are by glorified optics. 

is labor ious  bu t  could be done.  A m u c h  m o r e  pract ica l  a p p r o a c h  and  one we 
r e c o m m e n d  is to s imply  add  a small  (Sp) to the  p roper  r ay  pa ramete r ,  po, t h a t  p 
requ i red  to  t r ack  a r ay  f rom the  source  to  the  receiver  and  measu re  :(A'/Ao) 
numerica l ly ,  or  m o r e  precisely 

l i m ( A ~  = lim(£'~0~ I- cos ~1 . . .  cos O~ 1 
"'~Pff[ ~OS ~2 Otn*X \ Ao ] \ Ao ] o o s  I 

(14) 
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where the azimuthal  spreading 

li_m {~ }  -- p,(~ ~-~)) (15) 
can be computed  analytically. The  numerical  procedure is required to obtain the 
limiting value on A~0 when its behavior  becomes highly complicated with the 
addition of curvature as we will demonstra te  shortly. 

P e r i o d i c a l  s e m i c i r c u l a r  b o u n d a r y .  In this section we apply our technique to a 
simple curved boundary  such tha t  the limiting process can be performed analytically 
in the presence of caustics. For  convenience, we will assume a plane wave source at 
vertical incidence to eliminate AP~ contributions. The  geometrical considerations 
displaying focusing and other  complications are given in Figure 3. We begin as 

J 

i . . . . . . .  i : 

, I I I , I , I L I , 
-20 km -I0 0 +10 +20 km 

FIG. 7. Diagram showing the  pa ths  of geometric  rays; the  direct rays  on the  top; the  rays  with two 
reflections in the  middle; t he  rays  with four reflections on the  bottom. 

before by  investigating the spreading rate  for a particular ray as shown in Figure 4. 
The  functional description of the boundary  for the assumed coordinate system is 

[ z - ( a + r o ) ]  2 + x  2 = r 0  2, for - r o  _-< x_-< r. (16) 

The  angle between the local normal and vertical is 

8(x) = tan -1 (x / ( ro  2 - x2) 1/2) (17) 

and, further,  let 

~{x) = 8 - sin -1 (vl sin t~/v2) 

where vl and v2 are the velocities in the upper  and lower media, respectively. The  
spreading element,  e, is 

e -- b - [(a + ro) + (ro 2 - b2) 1/2 - z] tan b (18) 
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from the geometry given in Figure 4. Next, we perform the limiting process 

lim o ~ = l - [ a + 2 r o - z ] l i m  d tan 
b - - . 0  

(19) 

where 

[ J 
V l  

- -  c o s  0 
d 1 v2 ~%2 

d--b tan 0 -- cos2---- ~ 1 - 1/2 _ b 2)-1/2 (20) 
(1 -vlzsin20)v22 

0 km 
- 2 0  k m  - I 0  0 +10 + 2 0  k m  

I [ I I [ I i i i i 

--~e-~___~4~j~~ 

I I I I I I I I I I i 

FIG. 8. The paths of geometric rays arriving at x = 0. The top trace, (1), contains the direct ray, and 
(2) displays the ray with two reflections, etc. 

Therefore 

cA '2 [ ( ) 7'2vV ro,' S f =  lim = 1 -  (a + 2 r o -  z) 1 - - -  
\ X o o /  - b-*O 

(21) 
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Note that A can be negative and there is a singular point along this geometric ray 
path with z defined by 

z = a + 2r0 - r0/(1 - vl/ve) (22) 

which is dramatically displayed in Figure 3. Our solution fails at this point but could 
be salvaged by using the third order saddle-point approximation. For 

z < a + 2ro - ro/(1 - vl/v2) 

o km 

V 

@ 

@ 

@ 

@ 

@ 

0 50 I00 sec 150 200 

FIG. 9. Diagram showing the contribution of each set of rays displayed in Figure 8 with the final 
summation at the bottom. Arrows indicate arrival times. 

we cross the caustic and for high frequencies the response can be approximated by 
a 90 ° phase shift [see Hill (1974) for a discussion of such effects]. If the receiver is 
right on the caustic, the approximation fails and the tedious third-order approxi- 
mation must be used. Physically, for an input pulse of finite duration, the response 
on the caustic should not be dramatically different from the response at nearly 
locations (see Chapman, 1976). Thus, the easiest remedy is to move the receiver 
slightly and avoid the problem. 

In cases involving multiple reflections the generalized coefficient containing the 
product of all interactions expressed simply as T(p) can become complex, so that in 
general for (A/Ao) > 0 

= f ( t -  to)~e(T(po))lS/I + f * ( t -  to)Im(T(po))[Sf[. (23) 
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16 km 
-20 km -I0 0 +10 +20 km 

I I I I [ I I I I I I 

~ L  L L L~ I I L t I I 

FIG. 10. T h e  pa th s  of geometric  rays  arriving at  x = 16 km. T h e  top trace, (1), conta ins  the  direct ray, 
and  (2) displays the  ray wi th  two reflections, etc. 
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Similarly, for (A/Ao)  < 0, the response becomes 

= f * ( t -  to)~e(T(po))lSfl  + f i t -  to)Zm(T(po))lSrl (24) 

where f * ( t  - to) is the allied function of f i t  - to), tha t  is, the same ampli tude spectra 
but  with a 90 ° phase shift. 

In the next  section we will generate synthetics for a soft basin over a half-space 
using several methods.  Thus,  as a prel iminary comparison we compute the responses 
for the periodic s t ructure at  x = 0 and x = 10 km as displayed in Figure 5. These  two 
ranges were chosen to fur ther  test  the phase shifts discussed above. Determining 

I . . . .  I ' ~ r . . . .  i ' , - ,  , i 

IG km 

@ 

@ 

@ 

® 

Q 

® 

® 

© 

0 50 I00 sec' 150 200 

Fro. 11. Diagram showing the contribution of each set of rays displayed in Figure 10 with the final 
summation at the bottom. Arrows indicate arrival times. 

the  ray paths  tha t  lead to a part icular  location is achieved by a two-stage procedure.  
First, we set up a baseline from which we illuminate the area of interest  such as 
Figure 3. T h e n  we pick the rays nearest  to an observation point  and perform a fine 
tuning i terat ion scheme to find the ray  parameter  with the required accuracy. If  we 
number  the rays left to right we see tha t  the second or middle ray is phase-shifted 
for x = 0, whereas the second and fourth rays are phase-shifted at x = 10 km. 
Glorified optics results (GO) are obtained by simply adding the rays shown in Figure 
5 applying equations (23) and (24). The  source function and its allied function are 
displayed at the bo t tom of Figure 6 with the synthetics given above  along with the 
finite e lement  results. The  comparison is good considering the nature  of the source. 
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That is, GO are expected to give the most accurate result for short periods, thus the 
drift effects occurring in the GO synthetics are caused by the large offset in the 
assumed source. There are, also, errors associated with using the flat-layer trans- 
mission coefficient which could be easily corrected for local curvature. However, we 
are primarily concerned with focusing and defocusing in this particular study since 
such effects appear dominant. 

NUMERICAL RESULTS FOR A BASIN 

Since our technique is a first-order approximation it is prudent to test its validity 
against other more exact techniques such as the numerical methods discussed by 

i i i i f , ( i  i I i I I i ~ i I i i i i 

\ j  v ~j' 

,,.j . ,  Glorif ied opt ics 
Finite element 

. . . . . . .  Finite di f ference 

20 ~ 

~-- i i F J I t L t I i I 
0 5 0  I 0 0  i sec 150 i 120  q 

FIG. 12. The comparison between the results of glorified optics, finite element, and finite difference. 
The later results were obtained from Larner (1970, Figure 4.9). The traces are the tangential displacement 
at surface receivers with horizontal distances of 0 to 20 km from the center of the basin. 

Aki and Larner (1970), the finite difference method, Boore et al. {1971) or the finite 
element method, Hong and Kosloff (1978). These numerical methods are basically 
long-period techniques in that the grid size must be large enough to make the 
method affordable. On the other hand, glorified optics become increasingly accurate 
as the frequency is increased, thus the various methods complement each other. 
Boore et al. {1971) have already performed a detailed comparison between the AL 
method and finite difference results for basin structures. We will attempt to match 
Boore's results using their model parameters and source description specified below. 
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The curved boundary describing the bottom of the basin is 

( ( 2)/)] z ( x ) = D + - ~  1 - c o s  2~r x -  w , fo r -~=<x_-_  - 
2 

z(x)  = D, elsewhere (25) 

where w = 50 km, D = 1 km, and C = 5 km. A plane S H  wave with source time 
function, f(t), is impinging vertically from the half-space, where 

and 

f(t) = - ~ -  a - exp (-a)  (26) 

/ /  a=6(t-&)/tT,.v) 
& = 20 sec, Tp = 18.3 sec. 

The density and velocity in the basin are pl = 2 grn/cm ~, •1 = 0.7 km/sec, 
respectively, and p2 = 3.3 gm/cm 3, fi2 = 3.5 km/sec in the half-space. 

The basin structure with the direct, and two sets of multiply reflected ray paths 
are displayed in Figure 7. The qualitative characteristics of the motion can be seen 
by observing the focusing of the multiples and development of caustics. For instance, 
the first multiples at the center of the basin focus rather strongly which will give 
rise to a large second arrival at this position. For longer times, rays begin to come 
in from the sides. Since our model is a ray method it is educational to observe the 
development of the motion as a function of ray summation for a couple of positions 
(see Figures 8 and 9 for the center position and Figures 10 and 11 for a station close 
to the edge of the basin). In Figure 8, we display the rays by the number of times 
they are reflected internally starting at the top; that is (1) contains the direct, (2) 
contains one multiple and one ray, (3) contains two multiples but three rays, etc. 
The synthetic contribution from (1), (2), (3), etc. are displayed in Figure 9 individ- 
ually with the final summation of all responses given at the bottom. Note that the 
rays bouncing vertically contribute very little after two reflections whereas the rays 
coming in from the sides are heavy contributors at large times because of the large 
low-angle reflections. The rays that enter on one side of the basin and travel across 
the basin internally and return again are sometimes large but usually small depend- 
ing on focusing. The observations at the edge, or off center, are more interesting in 
many ways due to the large contributions that come from the opposite side of the 
basin at later times, as is apparent from Figures 10 and 11. 

The results at various ranges after summing the first 10 sets of rays are displayed 
in Figure 12 along with the comparisons with numerical methods. It is relatively 
expensive to compute the numerical results at large times which is the reason for 
the truncations [see Boore et  al. (1971) and Hong and Kosloff (1978)]. Considering 
the simplicity of the glorified optics method it is rather surprising that the agreement 
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is so good. In general, the beginning portion of each record appears very accurate 
which corresponds to rays traveling nearly vertical. At later times, the GO results 
appear less accurate which corresponds to rays traveling more nearly horizontal. 
This probably means that  the curvature of the boundary becomes more important 
and higher order reflection coefficients may be necessary. Rays that travel from one 
wall of the basin to the other side without hitting the surface were also considered 
but found to be weak contributors. 

The results with a shorter period time function are given in Figure 13, where some 
of the amplified arrivals are more apparent such as the first multiple at x -- 0. It is 

I . . . .  I . . . .  I . . . .  I . . . .  L 

(km) 
o ,/i . . . . .  L ,  

I 

,6 . . . . . . . . . .  

'I ~''1''1'' .......... 

r ~r-. ,.,. .... ,. T. 

0 5 0  I 0 0  sec 150 2 0 0  

FIG. 13. Diagram showing the S H  displacement caused by vertically impinging plane wave with short 
pulse. The source time function is the Ricker's wavelet [see formula (26)], with Tp = 1 sec, & = 1 sec. 

relatively important for these large signals to perform the limiting process carefully. 
That is, we examine the ratio of areas for a narrow beam of area A0 and test for 
stability by considering a series of smaller and smaller values. This process is simple 
if one requires the boundaries to be smooth and one avoids examining the motion 
on a caustic. We have not been paxticularly concerned with the motion at or near 
caustics in this study since we are primarily interested in developing a methodology 
for studying seismograms to infer the broad features of structure. On the other hand, 
the fine geometric detail needed to form caustics in regions of earthquake hazards 
abound and the role of such focusing could be highly significant. 

DISCUSSION 

In general, curved boundaries introduce a number of interesting effects, namely 
frequency dependent reflection coefficients and geometrical focusing with the latter 
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being the dominant feature in the basin study. The reason for this result is chiefly 
caused by the assumption of plane waves, constant p, where we essentially assume 
infinite travel time compared to the source duration. This assumption would appear 
to be appropriate for many seismological problems; some examples are the devel- 
opment of body wave codas and wave-form complexity. The interpretation of 
recordings in terms of synthetics for these applications has been conducted almost 
exclusively on the simplifying assumption of flat layers. Given the experience 
developed in the basin study we feel it would be useful to briefly review these 
subjects. 

Most observations of nuclear explosions made at distances between 30 and 90 ° 
are quite simple, especially if the station is located on bedrock as noted by many 

SPZ 

49 K 
SPR 
54 K 

SPT 
74 K 

CPCL, &=5525 km 

I0 sec 
--,4 ~-- 

TFCL, 5=5095 km 

J31 K ~ 4 W -  

SPR 

SPT 

FIG. 14. A comparison of the three components of observed motion of the LONGSHOT nuclear 
explosion at two sites in Southern California showing the P-wave complexity of TFCL (Taft) relative to 
CPCL (Campo). 

authors (see for example Thirlaway, 1966). However, many records show a large 
complicated coda which has drawn much attention because of the use of P-wave 
complexity as a discriminant between earthquakes and explosions. An example of a 
simple and a rather complicated P wave is given in Figure 14. Possible explanations 
have been put forth by numerous authors. Douglas et al. {1971) suggest that the 
direct P has been attenuated by passing through a lower Q zone relative to the later 
arrivals. Woodhouse {1973) suggests that strong later arrivals are diffracted arrivals 
from the upper mantle transition zones. More recent studies (Simpson and Cleary, 
1977) suggest that P signal complexity is caused by random scattering along the 
entire path. It would appear to us that the type of scattering discussed in this paper 
would be a good explanation of the phenomena in that the scattering could come 
from shallow structure near the source (Figure 13 in reverse, using the reciprocity 
principle) and/or the receiver structure. For the example given in Figure 14, we 
would prefer the latter interpretation since these two stations are at nearly the same 
ray parameter. The station CPCL is sitting on bedrock whereas TFCL is near the 
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edge of the Great Valley. Our proposed technique appears ideally suited to study 
such problems. 

Another application is with wave-form complexity observed in refraction profiling, 
especially oceanic exploration with OBS receivers. It is common practice to drop 
OBS's in small basins of sediments to ensure proper coupling to the bottom. 
However, in many such situations the OBS records are much more complicated 
than hydrophone recording near the surface of the ocean (see Lewis and McClair, 
1977). In this case, converted shear waves could easily become partially trapped and 
complicate the motion. To test this hypothesis would require a more complete data 
set. However, in general, the whole question about the intensity and wave-form 
complexity in the presence of uneven bottom sedimentary cover could be handled 
with this technique. 

Still another interesting application of this technique is with respect to site 
amplification effects observed in earthquake studies. There is abundant evidence of 
accelerations in excess of gravity occurring during earthquakes (see for example 
Morrill, 1972). Numerous authors using numerical codes suggest that 25 per cent of 
such high values can be attributed to topography effects, Boore (1973), Trifunac 
(1973), or Bouchon (1973). However, it would appear to be quite easy to generate a 
factor of two by subsurface focusing at high frequencies of the type discussed in the 
previous section. But since the observations of large earthquakes contain informa- 
tion from 20 Hz to static offsets, we must be careful to understand the effects of 
lateral structure at all wavelengths. Thus, we have started work on including the 
effects of boundary curvature on curved wave fronts where the duration of signal 
need not be short compared to the travel time. 

In summary, we have presented a practical method of generating synthetic 
seismograms for models containing nonparallel boundaries. The method consists of 
summing generalized rays describing the various possible paths based on the ray 
construction for dipping structure discussed earlier by Hong and Helmberger (1977). 
The response of each ray is determined by its numerical behavior near its particular 
arrival time. A comparison between synthetics generated by this new method with 
those obtained by finite element for a basin structure are presented and a number 
of possible applications are discussed. 
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A P P E N D I X  

I n  order  to help  u n d e r s t a n d i n g ,  the  de r iva t ion  of e q u a t i o n  (10) is as follows 

3 
t = Z (pEdro + ~?,nhm) (A-l)  

m=l  

dp12~--~pl ~ =-~1pl m-1 dpl 
. 

~m d p l ] ]  

= m=I ~] d m - h m "  -~m dp,  2 - ~m 3 \ d p l ]  J (A-2) 

dpm dpm c~,ptm dpm-1 Up2 Up2 w 
Up1 C,p~ dpm-1 dpm-1 dpP2 Up1 

_ dpm dpm-i dp~ 

d f f f ~m dpm-i dp2 
(A-3) 

where  pm a n d  p ~  are the  r ay  p a r a m e t e r s  of the  m - t h  r ay  segment ,  associa ted 
respec t ive ly  wi th  the  local  coord ina te  sys tems  su i t ab le  to descr ibe the  local  b o u n d a r y  
cond i t ions  a t  i ts  two ends.  No te  t h a t  pm- i  = p ~ by  Snel l ' s  law. 
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A t t  = to 
sin Ore, P sin O" 

p m  = 'm = Vm Vm 

~m ---- 
COS Ora , ~  = - -  

Vm 

COS O' m 

era 

where vra is the wave velocity of the medium. 
A l s o ,  

pm 
dra - h , . - -  = O. 

~?ra 

Therefore  

__ r-<,,,,,,,,, (cos0. COS0ra--1 COS02~21 
),:,o m:z L ~  \cos 0" cos 0"_, c o s ~ / J  

3r--Umhrn COS 20m (COS 0m--1 COS 0ra--2 cos 0l~ 21 
~1 Lcos 30. cos ~01 \ cos V~ cos ~ra, cos ~ / j  

= ~ r-vmhra COS20m (Vra-l_d~m vra-2d~ra-1 Vld~2~ 
ra=' Lcos 80m COS eOa \era  d O , - ,  era--1 dora-2 V - ~ l ]  

COS Om--1 COS Ore-2 
V o i ~  cos ~m-, 

costal 
cos 02/J 

~[-Rra.~l dO., ~/COS 0ra--1 COS 0ra--2 COS 01) I 
(A-4) 

We note  tha t  dOra = dora since this quant i ty  is invariant with respect  to the rotat ion 
of coordinate system. 

Therefore  

[ I ] - - -   cosOm_,COSOm_ COSOi 
71 dpi  2 t=to ~ m=l t COS m COS ~¢rn-1 COS 

(A-5) 


