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1. INTRODUCTION

The Internet has grown dramatically over the past few years. Document sources
are available everywhere, both within the internal networks of organizations and
on the Internet. This growth represents an incredible wealth of information. Our
goal is to help an end user find documents of interest across potential sources on
the Internet.

There are a number of options for searching over a large and distributed collection
of documents, each with its own strengths and weaknesses. Solutions fall into
two broad categories: single versus distributed search engines. A single search
engine builds a full index of the entire collection, by scanning all documents. Some
systems (e.g., Web search engines) discard the documents and only retain the index
with pointers to the original documents; other systems warehouse the documents
themselves, providing users with access to both the index and the documents (e.g.,
Dialog, Mead Data). The index may be partitioned by topic or sub-collection, but
is managed by a single search engine.

The second option is to index documents through multiple engines, each run by
the organization owning each source of documents. A global search is managed by
a meta-searcher that interacts with the individual source engines. One alternative
for meta-searching is to send a user query to all engines, and collect the results
(e.g., MetaCrawler [Selberg and Etzioni 1995]). The user can then be directed to
sites that have matching documents or to particular documents at those sites.

Another option for the multiple source scenario, one we explore in depth in this
paper, is to obtain from the engines in advance metadata that can guide queries
to sources that have many matching documents. This requires the cooperation of
the engines, i.e., they must export metadata describing their collection. When the
meta-searcher receives a user query, it consults its collected metadata and suggests
to the user sources to try. This solution may not be as accurate as submitting the
query to all sources, since the suggestions are only based on collection metadata.
However, the query overhead is much less since queries are not executed everywhere.
We call the problem of identifying document sources based on exported metadata
the text-source discovery problem.

In this paper we focus on the multiple-engine scenario, and study solutions to the
text-source discovery problem. We call our family of solutions GlOSS, for Glossary-
of-Servers Server. In particular GlOSS meta-searchers use statistical metadata,
i.e., how many times each term occurs at each source. As we will show, these
“summaries” are small relative to the collection, and because they only contain
statistics, will be much easier to export by a source. Statistical summaries can be
obtained mechanically, and hence are superior to manually produced summaries
that are often out of date. Similarly, since they summarize the entire collection,
they are better than summaries based on a single field (such as titles). As we will
see, GlOSS works best with a large collection of heterogeneous data sources. That
is, the subject areas covered by the different data sources are very distinct from each
other. In this case, the statistical summaries used by GlOSS strongly discriminate
each source from the others.

It is important to note that in this paper we do not compare the single and
multiple engine scenarios. First, in many cases one is not given a choice. For
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example, the documents may be owned by competing organizations that do not
wish to export their full collections. On the Web, for instance, growing numbers of
documents are only available through search interfaces, and hence unavailable to
the crawlers that feed search engines. Second, if we do have a choice, the factors to
consider are very diverse: copyright issues regarding the indexing or warehousing
of documents, the cost and scalability (storage, operations) of maintaining a single
index, the frequency at which new documents are indexed, and the accuracy of
the results obtained. Instead, we only consider a multiple-engine scenario, and
study GlOSS solutions to the text-discovery problem. We compare the “accuracy”
of these solutions to what could be obtained by sending a query to all underlying
search engines.

Also note that in this paper we do not study how a user submits queries to the
individual sources. That is, once GlOSS suggests sources, the user must submit the
query there. The user or some translation service must express the query using the
particular syntax and operators used by a source. Similarly, the user may wish to
combine and rank the results obtained at different sources. These are hard problems
that are addressed in other papers [Chang et al. 1996; Gravano et al. 1997; Gravano
and Garćıa-Molina 1997].

In summary, the contributions of this paper are as follows:

—We present a version of GlOSS (vGlOSS) that works with vector-space search
engines [Salton 1989; Salton and McGill 1983]. (These engines treat both the
documents and the queries themselves as weight vectors.)

—We describe a text-source discovery service for Boolean engines, bGlOSS. These
engines, while not as sophisticated, are still widely used.

—We define metrics for evaluating text-source discovery services.

—We experimentally evaluate vGlOSS and bGlOSS, using real document databases.
We note that even though discovery schemes for Internet sources have been pro-
posed and implemented by others, it is rare to find an experimental evaluation
like ours that carefully compares the various options.

—We analyze the GlOSS storage requirements, showing that a GlOSS index is
significantly smaller than a full conventional index. We also discuss ways to
further reduce storage needs.

—We briefly describe how GlOSS services can form a hierarchy. In such a case,
services that only index a fraction of the sources can be accessed by a higher level
GlOSS service.

We start in Sections 2 and 3 by presenting and evaluating our vGlOSS and
bGlOSS services. In Section 4 we discuss storage requirements, hierarchical dis-
covery schemes, and other issues. Finally, in Section 5 we briefly survey related
techniques, some of which could work in conjunction with GlOSS.

2. CHOOSING VECTOR-SPACE DATABASES

In this section we present vGlOSS, a text-source discovery service that deals with
vector-space databases and queries [Gravano and Garćıa-Molina 1995a].
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2.1 Overview of the Vector-Space Retrieval Model

Under the vector-space model, documents and queries are conceptually represented
as vectors [Salton 1989]. If m distinct words are available for content identifica-
tion, a document d is represented as a normalized m-dimensional vector, D =
〈w1, . . . , wm〉, where wj is the “weight” assigned to the j-th word tj . If tj is
not present in d, then wj is 0. For example, the document with vector D1 =
〈0.5, 0, 0.3, . . . , 〉 contains the first word in the vocabulary (say, by alphabetical
order) with weight 0.5, does not contain the second word, and so on.

The weight for a document word indicates how statistically important it is.
One common way to compute D is to first obtain an un-normalized vector D′ =
〈w′

1, . . . , w
′
m〉, where each w′

i is the product of a word frequency (tf) factor and an
inverse document frequency (idf) factor. The tf factor is equal (or proportional) to
the frequency of the ith word within the document. The idf factor corresponds to
the content discriminating power of the ith word: a word that appears rarely in
documents has a high idf, while a word that occurs in a large number of documents
has a low idf. Typically, idf is computed by log n

di
, where n is the total number

of documents in the collection, and di is the number of documents having the ith

word. (If a word appears in every document, its discriminating power is 0. If a
word appears in a single document, its discriminating power is as large as possible.)
Once D′ is computed, the normalized vector D is typically obtained by dividing
each w′

i term by
√∑m

i=1(w
′
i)2.

Queries in the vector-space model are also represented as normalized vectors over
the word space, Q = 〈q1, . . . , qm〉, where each entry indicates the importance of the
word in the search. Often queries are written by a user in natural language. In this
case, qj is typically a function of the number of times word tj appears in the query
string times the idf factor for the word. The similarity between a query q and a
document d, sim(q, d), is defined as the inner product of the query vector Q and
the document vector D. That is,

sim(q, d) = Q · D =
m∑

j=1

qj · wj

Notice that similarity values range between zero and one, inclusive, because Q and
D are normalized.

Ideally, a user would like to find documents with the highest similarity to some
query. It is important to notice that similarity is always relative to some collection.
That is, the same document may be given different vectors by two different search
engines, due to the different idf factors used. Thus, one engine may judge the
document relevant to a query, while the second one may not.

2.2 Evaluating Databases

Given a query, we would like to rank the available vector-space databases according
to their “usefulness,” or goodness for the query. In this section we present one
possible definition of goodness, with its associated ideal database rank. (The next
section explores how vGlOSS will try to rank the databases as closely as possible to
this ideal rank.) The goodness of a database depends on the number of documents
in the database that are reasonably similar to the given query, and on their actual
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similarity to the query. The best databases are those with many documents that
are highly similar to the query in hand. However, a database might also have a
high goodness value if it holds a few documents with very high similarity, or many
documents with intermediate similarity to the query.

Our goodness definition is based solely on the answers (i.e., the document ranks
and their scores) that each database produces when presented with the query in
question. This definition does not use the relevance of the documents to the end
user who submitted the query. (The effectiveness of information retrieval searching
is based on subjective relevance assessments [Salton and McGill 1983].) Using rel-
evance would be appropriate for evaluating the search engines at each database;
instead, we are evaluating how well vGlOSS can predict the answers that the
databases return. In Section 2.6 we discuss our choice further, and analyze some of
the possible alternatives that we could have used.

To define the ideal database rank for a query q, we need to determine how good
each database db is for q. In this section we assume that all databases use the
same algorithms to compute weights and similarities. We consider that the only
documents in db that are useful for q are those with a similarity to q greater than
a user-provided threshold l. Documents with lower similarity are unlikely to be
useful, and therefore we ignore them. Thus, we define:

Goodness(l, q, db) =
∑

d ∈ Rank(l, q, db)

sim(q, d) (1)

where sim(q, d) is the similarity between query q and document d, and Rank(l, q, db) =
{d ∈ db|sim(q, d) > l}. The ideal rank of databases Ideal(l) is then determined by
sorting the databases according to their goodness for the query q.

Example 1.: Consider two databases, db1 and db2, a query q, and the answers
that the two databases give when presented with query q:

db1 : (d1
1, 0.9), (d1

2, 0.9), (d1
3, 0.1)

db2 : (d2
1, 0.8), (d2

2, 0.4), (d2
3, 0.3), (d2

4, 0.1)

In the example, db1 returns documents d1
1, d1

2, and d1
3 as its answer to q. Documents

d1
1 and d1

2 are ranked the highest in the answer, because they are the “closest” to
query q in database db1 (similarity 0.9). To determine how good each of these
databases is for q, we use Equation 1. If threshold l is 0.2 (i.e., the user is willing to
examine every document with similarity to q higher than 0.2), the goodness of db1 is
Goodness(0.2, q, db1) = 0.9 + 0.9 = 1.8, because db1 has two documents, d1

1 and d1
2,

with similarity higher than 0.2. Similarly, Goodness(0.2, q, db2) = 0.8 + 0.4 + 0.3 =
1.5. Therefore, Ideal(0.2) is db1, db2.

The goodness of a database tries to quantify how useful the database is for the
user that issued the query. It does so by examining the document-query similarities
as computed by each local source. As mentioned earlier, these similarities can
depend on the characteristics of the collection that contains the document, and
may not be “globally valid.” For example, if a database db1 specializes in computer
science, the word databases might appear in many of its documents, and its idf
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factor will be low. The word databases, on the other hand, may have a high idf
factor in a database db2 that is totally unrelated to computer science and contains
very few documents with that word. Consequently, db1 might assign its documents
a low score for a query containing the word databases, while db2 assigns a few
documents a high score for that query. The Goodness definition of Equation 1
might then determine that db2 is better than db1, while db1 is the best database for
the query. In Section 2.6 we further discuss this problem, together with alternative
ways of defining Goodness.

2.3 Ranking Databases

vGlOSS ranks the databases according to their potential usefulness for a given
query. The goal is to approximate the Ideal(l) database rank as closely as possible,
for which vGlOSS should know the number of documents in each database with
similarity to the query greater than l, and add their similarities (Section 2.2). To
perform this task, vGlOSS keeps information about the available databases. One
option would be for vGlOSS to keep complete information on each database: for
each database db and word t, vGlOSS would know what documents in db contain
t, what weight t has in each of them, and so on. Although vGlOSS’s answers
would always match the Ideal(l) ranks (if this information is kept up to date), the
storage requirements of such an approach would be too high: vGlOSS needs to index
many databases, and keeping so much information on each of them does not scale.
Furthermore, this information might not be available for commercial databases, for
example.

More reasonable solutions keep incomplete yet useful information on the databases.
In this section we explore some options for vGlOSS that require one or both of the
following matrices:

—F = (fij): fij is the number of documents in database dbi that contain word tj

—W = (wij): wij is the sum of the weight of word tj over all documents in database
dbi

In other words, for each word tj and each vector-space database dbi, vGlOSS needs
(at most) two numbers. This partial information will prove useful for estimating
database ranks that resemble the ideal one, as we will see in Section 2.5.2. Fur-
thermore, this information is orders of magnitude smaller than that required by a
full-text index of the databases (Section 4.1).

To obtain the fi∗ and wi∗ values for database dbi, vGlOSS may have to periodi-
cally run a collector program that extracts this information from the local indexes
and sends it to the vGlOSS server. An alternative architecture uses the STARTS
protocol [Gravano et al. 1997] to export summaries from the source to the server.
STARTS is an emerging protocol proposal for Internet searching coordinated by
Stanford, and that involved over 10 companies and organizations. STARTS speci-
fies that sources should export content summaries that closely resemble the vGlOSS
summaries.

Example 2.: Consider a database db and the word computer. Suppose that the
following are the documents in db having the word computer in them, together with
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the associated weights:

computer : (d1, 0.8), (d2, 0.7), (d3, 0.9), (d8, 0.9)

That is, document d1 contains the word computer with weight 0.8, document d2,
with weight 0.7, and so on. Database db will not export all this information to
vGlOSS: it will only tell vGlOSS that the word computer appears in four documents
in database db, and that the sum of the weights with which the word appears in
the documents is 0.8 + 0.7 + 0.9 + 0.9 = 3.3.

vGlOSS could compare a query q and a database dbi analogously to how queries
and documents are compared. That is, it could treat dbi as a “document” with
vector D = 〈wi1, . . . , wim〉, normalize the vector, and then compute sim(q, dbi).
However, we are interested in finding the databases that contain useful documents
for the queries, not those databases that are “similar” to the given queries. The
definitions of the vGlOSS ranks below reflect this fact.

Also, note that the vectors with which vGlOSS represents each database can be
viewed as cluster centroids [Salton 1989] used in information retrieval techniques.
In these techniques, a cluster centroid is a vector that represents a collection of doc-
uments that are “near” each other according to some clustering algorithm. When
an information retrieval engine processes a query, it compares the query against
the cluster centroids using a similarity function, and retrieves the documents in the
clusters with matching centroids. Thus, GlOSS can be viewed as one such system
where each database is considered as a single document cluster represented by a
centroid.

As mentioned above, vGlOSS estimates the number of documents with similarity
to a given query greater than a threshold l, and their added similarity. Because
the information that vGlOSS keeps about each database is incomplete, it has to
make assumptions regarding the distribution of query keywords and weights across
the documents of each database. These assumptions allow vGlOSS to compute
database ranks that approximate the Ideal(l) rank. The following sections present
Max (l) and Sum(l), two such database ranks based on different underlying keyword
distribution assumptions. Max (l) assumes that query keywords occur together in
the database documents, while Sum(l) is at the other end of the spectrum, and
assumes that query keywords do not occur together in the database documents.

2.3.1 High-Correlation Scenario. To derive Max (l), the first database rank with
which vGlOSS estimates the Ideal(l) database rank of Section 2.2, vGlOSS assumes
that if two words appear together in a user query, then these words will appear in
the database documents with the highest possible correlation:

Assumption 1.: If query keywords t1 and t2 appear in fi1 and fi2 documents
in database dbi, respectively, and fi1 ≤ fi2, then every dbi document that contains
t1 also contains t2.

Because this assumption is unrealistic, in Section 2.3.2 we introduce an alternative
assumption that can be regarded as the opposite of Assumption 1. In Section 2.5
we compare experimentally these two computationally tractable extreme cases, and
we analyze the circumstances under which one outperforms the other.
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Example 3.: Consider a database dbi and the query q=computer science depart-
ment. For simplicity, let t1= computer, t2= science, and t3= department. Suppose
that fi1 = 2, fi2 = 9, and fi3 = 10: there are 2 documents in dbi with the word
computer, 9 with the word science, and 10 with the word department.

vGlOSS assumes that the 2 documents with the word computer also contain the
words science and department. Furthermore, all of the 9 − 2 = 7 documents with
word science but not with word computer also contain the word department. Finally,
there is exactly 10− 9 = 1 document with just the word department.

vGlOSS also needs to make assumptions on the weight distribution of the words
across the documents of a database:

Assumption 2.: The weight of a word is distributed uniformly over all docu-
ments that contain the word.

Thus, word tj has weight wij

fij
in every dbi document that contains tj . This assump-

tion simplifies the computations that vGlOSS has to make to rank the databases.

Example 3.: (cont.) Suppose that the total weights for the query words in
database dbi are wi1 = 0.45, wi2 = 0.2, and wi3 = 0.9. According to Assumption 2,
each of the two documents that contain word computer will do so with weight
0.45
2 = 0.225, each of the 9 documents that contain word science will do so with

weight 0.2
9 = 0.022, and so on.

vGlOSS uses the assumptions above to estimate how many documents in a
database have similarity greater than some threshold l to a given query, and their
added similarity. These estimates determine the Max (l) database rank.

Consider database dbi with its two associated vectors fi∗ and wi∗, and query
q, with its associated vector Q. Suppose that the words in q are t1, . . . , tn, with
fia ≤ fib for all 1 ≤ a ≤ b ≤ n. Assume that fi1 > 0. From Assumption 1, the
fi1 documents in dbi that contain word t1 also contain all of the other n− 1 query
words. From Assumption 2, the similarity of any of these fi1 documents to the
query q is:

sim1 =
∑

j=1,...,n

qj ×
wij

fij

Furthermore, these fi1 documents have the highest similarity to q among the doc-
uments in dbi. Therefore, if sim1 ≤ l, then there are no documents in dbi with
similarity greater than threshold l. If, on the other hand, sim1 > l, then vGlOSS
should explore the fi2−fi1 documents (Assumption 1) that contain words t2, . . . , tn,
but not word t1. Thus, vGlOSS finds p such that:

simp =
∑

j=p,...,n

qj ×
wij

fij
> l, but (2)

simp+1 =
∑

j=p+1,...,n

qj ×
wij

fij
≤ l (3)

Then, the fip documents having (at least) query words tp, . . . , tn have an estimated
similarity to q greater than threshold l (Condition 2), whereas the documents having
only query words tp+1, . . . , tn do not.
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Using this definition of p and the assumptions above, we give the first definition
for Estimate(l, q, dbi), the estimated goodness of database dbi for query q, that
determines the Max (l) database rank:

Estimate(l, q, dbi) =
∑

j=1,...,p

(fij − fi(j−1)) × simj

= (
∑

j=1,...,p

qj × wij) + fip ×
∑

j = p + 1, . . . , n

qj ×
wij

fij
(4)

where we define fi0 = 0, and simj is the similarity between q and any document
having words tj , . . . , tn, but not words t1, . . . , tj−1. There are fij − fi(j−1) such
documents in dbi. This definition computes the added similarity of the fip docu-
ments estimated to have similarity to q greater than threshold l. (See Conditions 2
and 3, and Assumptions 1 and 2.)

Example 3.: (cont.) Assume that query q has weight 1 for each of its three
words. According to Assumption 1, the two documents with the word computer
also have the words science and department in them. The similarity of any of these
two documents to q is, using Assumption 2, 0.45

2 + 0.2
9 + 0.9

10 = 0.337. If our threshold
l is 0.2, then all of these documents are acceptable, because their similarity to q is
higher than 0.2. Also, there are 9 − 2 = 7 documents with the words science and
department but not computer. The similarity of any of these 7 documents to q is
0.2
9 + 0.9

10 = 0.112. Then these documents are not acceptable for threshold l = 0.2.
There is 10− 9 = 1 document with only the word department, but this document’s
similarity to q is even lower. Consequently, p = 1. (See Conditions 2 and 3.)
Then, according to the Max (0.2) definition of Estimate, Estimate(0.2, q, dbi) =
fi1 × (q1 × wi1

fi1
+ q2 × wi2

fi2
+ q3 × wi3

fi3
) = 2× (1× 0.45

2 + 1× 0.2
9 + 1× 0.9

10 ) = 0.674.

2.3.2 Disjoint Scenario. The Max (l) rank that vGlOSS uses to approximate
Ideal(l) assumes that query keywords tend to appear together in database doc-
uments. We now present Sum(l), a new database rank built upon the “opposite”
assumption, namely that if two words appear together in a user query, then these
words do not appear together in any database document (if possible):

Assumption 3.: The set of dbi documents with word t1 is disjoint with the set
of dbi documents with word t2, for all t1 and t2, t1 �= t2, that appear in query q.

Therefore, the words that appear in a user query are assumed to be negatively
correlated in the database documents. vGlOSS also needs to make Assumption 2,
that is, the assumption that weights are uniformly distributed.

Consider database dbi with its two associated vectors fi∗ and wi∗, and query
q, with its associated vector Q. Suppose that the words in q are t1, . . . , tn. For
any query word tj (1 ≤ j ≤ n), then the fij documents containing tj do not
contain query word tp, for all 1 ≤ p ≤ n, p �= j (Assumption 3). Furthermore, the
similarity of each of these fij documents to q is exactly qj × wij

fij
, if fij > 0 (from

Assumption 2).
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For rank Sum(l) we then define Estimate(l, q, dbi), the estimated goodness of
database dbi for query q, as:

Estimate(l, q, dbi) =
∑

j=1,...,n|(fij>0)∧(qj×
wij
fij

>l)

fij × (qj ×
wij

fij
)

=
∑

j=1,...,n|(fij>0)∧(qj×
wij
fij

>l)

qj × wij (5)

Example 4.: Consider the data of Example 3. According to Assumption 3, there
are 2 documents containing the word computer and none of the other query words,
9 documents containing the word science and none of the other query words, and 10
documents containing the word department and none of the other query words. The
documents in the first group have similarity 0.45

2 = 0.225 (from Assumption 2), and
are thus acceptable, because our threshold l is 0.2. The documents in the second
and third groups have similarity 0.2

9 = 0.022 and 0.9
10 = 0.09, respectively, and are

thus not acceptable for our threshold. So, the only documents close enough to
query q are the two documents that contain word computer. Then, according to
the Sum(0.2) definition of Estimate, Estimate(0.2, q, dbi) = fi1 × wi1

fi1
= 0.45.

In general, the Max (l) estimate for a database and a query is always greater
than or equal to the corresponding Sum(l) estimate. (Sum(l) makes “pessimistic”
assumptions on the distribution of the query keywords across the database docu-
ments.) However, in the special case when the threshold l is zero, the Max (0) and
Sum(0) definitions of Estimate (Equations 4 and 5) become the same:

Estimate(0, q, dbi) =
∑

j=1,...,n

qj × wij

assuming that if fij = 0, then wij = 0. Then, Estimate(0, q, dbi) becomes the inner
product Q ·wi∗. To compute the Max (0) and Sum(0) ranks, vGlOSS does not need
the matrix F of document frequencies of the words; it only needs the matrix W
of added weights. 1 Therefore, the storage requirements for vGlOSS to compute
the database ranks may be much lower if l = 0. We pay special attention to these
ranks in our experiments of Section 2.5.2.

2.4 Comparing Database Ranks

In this section we analyze how we can compare vGlOSS’s ranks (Section 2.3) to
the ideal one (Section 2.2). In the following section we report experimental results
using the comparison methodology of this section.

Let q be a query, and DB = {db1, . . . , dbs} be the set of available databases.
Let G = (dbg1 , . . . , dbgs′ ) be the database rank that vGlOSS generated for q, using
one of the schemes of Section 2.3. We only include in G those databases with
estimated goodness greater than zero: we assume that users ignore databases with
zero estimated goodness. Thus, in general, s′ ≤ s. Finally, let I = (dbi1 , . . . , dbis′′ )

1We might need F , though, to compute the weight vector for the queries, depending on the
algorithm used for this.
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be the ideal database rank. We only include in I those databases with actual
goodness greater than zero. Our goal is to compare G against I, and quantify how
close the two ranks are.

One way to compare the G and I ranks is by using the Goodness metric that we
used to build I. The database ranks produced by vGlOSS are incremental “plans”
for evaluating a query. In effect, we first contact the top database in the rank. If
we are not satisfied with the answers retrieved, we contact the second database,
and so on. Thus, we consider the top n databases in rank I, and compute in,
the accumulated goodness (in rank I) of these n databases for query q. We then
consider the top n databases in rank G, and compute gn, the accumulated goodness
of these n databases for q. The computation of both in and gn implicitly assumes
that databases are disjoint, so that the goodness contribution of a database does
not depend on what databases appear higher in the rank.

Because rank I was generated using the actual goodness metric, the top n
databases in rank I have the maximum accumulated goodness for q that any sub-
set of n databases of DB can have. Because vGlOSS generated rank G using only
partial information about the databases, in general gn ≤ in. (If n > s′ (resp.
n > s′′), we compute gn (in) by just taking the s′ (s′′) databases in G (I).) We
then compute:

Rn =
{ gn

in
if in > 0

1 otherwise

This metric is thus related to the recall metric used in the information retrieval
community [Salton 1989]: Rn is a measure of how much of the available goodness
in the n best databases (as determined by I) is accumulated in the first n databases
in the vGlOSS rank G. In other words, Rn models what the user that searches the
top n databases that vGlOSS suggests would get, compared to what the user would
have gotten by searching the top n databases in the ideal rank.

Example 5.: Consider a query q, and five databases dbi, 1 ≤ i ≤ 5. Figure 1
shows I, the ideal database rank, and G and H, two different vGlOSS database
ranks for q, for some definition of these ranks. For example, db1 is the top database
in the ideal rank, with Goodness(l, q, db1) = 0.9. Database db5 does not appear in
rank I, because Goodness(l, q, db5) = 0. vGlOSS correctly predicted this for rank
G (Estimate(l, q, db5) = 0 for G), and so db5 does not appear in G. However, db5

does appear in H, because Estimate(l, q, db5) = 0.2 for H.
Let us focus on the G rank: db2 is the top database in G, with Estimate(l, q, db2) =

0.8. The real goodness of db2 for q is Goodness(l, q, db2) = 0.4. From the ranks
of Figure 1, R1 = 0.4

0.9 : if we access db2, the top database from the G rank, we
obtain Goodness(l, q, db2) = 0.4, whereas the best database for q is db1, with
Goodness(l, q, db1) = 0.9. Similarly, R3 = 0.4+0.9+0.3

0.9+0.4+0.3 = 1. In this case, by accessing
the top three databases in the G rank we access exactly the top three databases in
the ideal rank, and thus R3 = 1. However, R4 = 0.4+0.9+0.3

0.9+0.4+0.3+0.2 = 0.89, since the
G rank does not include db4 (Estimate(l, q, db4) = 0), which is actually useful for q
(Goodness(l, q, db4) = 0.2).

Now consider the H rank. H includes all the databases that have Goodness> 0
in exactly the same order as G. Therefore, the Rn metric for H coincides with that
for G, for all n. However, rank G is in some sense better than rank H, since it
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I G H

db Goodness db Estimate db Estimate

db1 0.9 db2 0.8 db2 0.9
db2 0.4 db1 0.6 db1 0.8
db3 0.3 db3 0.3 db3 0.4
db4 0.2 db5 0.2

Fig. 1. The ideal and vGlOSS database ranks for Example 5.

predicted that db5 has zero goodness, as we mentioned above. H failed to predict
this. The Rn metric does not distinguish between the two ranks. This is why we
introduce our following metric.

As the previous example motivated, we need another metric, Pn, to distinguish
between vGlOSS ranks that include useless databases and those that do not. Given
a vGlOSS rank G for query q, Pn is the fraction of Topn(G), the top n databases
of G (which have a non-zero Estimate for being in G), that actually have non-zero
goodness for query q:

Pn =
|{db ∈ Topn(G)|Goodness(l, q, db) > 0}|

|Topn(G)|
(Actually, Pn = 1 if for all db, Estimate(l, q, db) = 0.) Pn is related to the precision
metric used in the information retrieval community, and measures the fraction of
the first n databases in the vGlOSS rank G with non-zero goodness. Note that Pn

is independent of the ideal database rank I: it just depends on how many databases
that vGlOSS estimated as potentially useful turned out to actually be useful for
the query. A ranking with higher Pn is better because it leads to fewer fruitless
database searches.

Example 5.: (cont.) In the previous example, P4 = 3
3 = 1 for G, because all

of the databases in G have actual non-zero goodness. However, P4 = 3
4 = 0.75 for

H: of the four databases in H, only three have non-zero goodness.

The metrics that we introduced in this section focus on the goodness of the
databases, and do not examine if the same databases are present both in the ideal
database ranks and in the vGlOSS ranks. In [Gravano et al. 1994a; Gravano et al.
1994b] we use different metrics that focus on how well a Boolean version of GlOSS
(Section 3) identifies the actual best databases for a query.

2.5 Evaluating vGlOSS

In this section we evaluate different vGlOSS ranking algorithms experimentally. We
first describe the real-user queries and databases that we used in the experiments.
Then, we report results for Max (l) and Sum(l), the two vGlOSS ranks of Section 2.3.

2.5.1 Queries and Databases. To evaluate vGlOSS experimentally, we used real-
user queries and databases. The queries that we used were profiles that real users
submitted to the SIFT Netnews server developed at Stanford [Yan and Garćıa-
Molina 1995]. Users send profiles in the form of Boolean or vector-space queries
to the SIFT server, which in turn filters Netnews articles every day and sends the
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articles matching the profiles to the corresponding users. We used the 6,800 vector-
space profiles that were active on the server in December 1994. These queries have
an average of 2.75 words each, for a total of 7,627 unique words.

To evaluate the vGlOSS performance using these 6,800 queries, we used 53 news-
groups as 53 databases: we took a snapshot of the articles that were active at the
Stanford Computer Science Department Netnews host on one arbitrary day, and
used these articles to populate the 53 databases. We selected all the newsgroups in
the comp.databases, comp.graphics, comp.infosystems, comp.security, rec.-
arts.books, rec.arts.cinema, rec.arts.comics, and rec.arts.theatre hier-
archies that had active documents in them when we took the snapshot.

We indexed the 53 databases and evaluated the 6,800 queries on them using
the SMART system (version 11.0) developed at Cornell University. To keep our
experiments simple, we chose the same weighting algorithms for the queries and
the documents across all of the databases. We indexed the documents using the
SMART ntc formula, which generates document weight vectors using the cosine-
normalized tf·idf product [Salton 1989]. We indexed the queries using the SMART
nnn formula, which generates query weight vectors using the word frequencies in the
queries. The similarity coefficient between a document vector and a query vector
is computed by taking the inner product of the two vectors.

For each query and vGlOSS ranking algorithm we compared the ideal rank against
the vGlOSS rank using the methodology of Section 2.4. We evaluated each query
at each of the 53 databases to generate its ideal database rank. For a fixed vGlOSS
ranking definition and a query, we computed the rank of databases that vGlOSS
would produce for that query: we extracted the (partial) information that vGlOSS
needs from each of the 53 databases. For each query word, vGlOSS needs the
number of documents in each database that include the word, and the sum of the
weight of the word in each of these documents. To extract all this information,
we queried the 53 databases using each query word individually, which totaled an
extra 18,213 queries. We should stress that this is just the way we performed the
experiments, not the way a vGlOSS server will obtain the information it needs about
each database: in a real system, each database will periodically scan its indexes,
generate the information that vGlOSS needs, and export it to the vGlOSS server.
(See Section 2.3.)

2.5.2 Experimental Results. In this section we experimentally compare the vGlOSS
database ranks against the ideal ranks in terms of the Rn and Pn metrics. We study
which of the Max (l) and Sum(l) database ranks is better at predicting ideal rank
Ideal(l), and what impact the threshold l has on the performance of vGlOSS. We
also investigate whether keeping both the F and W matrices of Section 2.3 is really
necessary, since vGlOSS needs only one of these matrices to compute ranks Max (0)
and Sum(0) (Section 2.3.2).

Ideal database rank Ideal(0) considers any document with a non-zero similarity
to the query as useful. Ranks Max (0) and Sum(0) are identical to Ideal(0), and
so they have Rn = Pn = 1 for all n. Consequently, if a user wishes to locate
databases where the overall similarity between documents and the given query is
highest and any document with non-zero similarity is interesting, vGlOSS should
use the Max (0) (or, identically, Sum(0)) ranks and get perfect results.



14 · GlOSS: Text-Source Discovery over the Internet

To study the impact of higher rank thresholds, Figures 2 and 3 show results for
the Ideal(0.2) ideal rank. We show Rn and Pn for values of n ranging from 1 to 15.
We do not report data for higher n’s because most of the queries have fewer than
15 useful databases according to Ideal(0.2) and hence, the results for high values
of n are not that significant. Figure 3 shows that rank Sum(0.2) has perfect Pn

(Pn = 1) for all n, because if a database db has Estimate(0.2, q, db) > 0 according to
the Sum(0.2) rank, then Goodness(0.2, q, db) > 0 according to Ideal(0.2). In other
words, rank Sum(0.2) only includes databases that are guaranteed to be useful.
Rank Max (0.2) may include databases not guaranteed to be useful, yielding higher
Rn values (Figure 2), but lower Pn values (Figure 3).

To decide whether vGlOSS really needs to keep both matrices F and W (Sec-
tion 2.3), we also use ranks Max (0) and Sum(0) to approximate rank Ideal(0.2).
vGlOSS needs only one of the two matrices to compute these ranks (Section 2.3.2).
Since ranks Max (0) and Sum(0) are always identical, we just present their data
once labeled Max (0)/Sum(0). Figure 2 shows that the Max (0) rank has the high-
est values of Rn. This rank assumes a threshold l = 0, and thus it tends to include
more databases than its counterparts with threshold 0.2. This is also why Max (0)
has much lower Pn values (Figure 3) than Max (0.2) and Sum(0.2): it includes more
databases that have zero goodness according to Ideal(0.2).

In summary, if the users are interested in not missing any useful database, but
are willing to search some useless ones, then Max (0) is the best choice for vGlOSS,
and vGlOSS can do without matrix F . If the users wish to avoid searching useless
databases, then Sum(0.2) is the best choice. Unfortunately, Sum(0.2) also has low
Rn values, which means it can also miss some useful sources. As a compromise,
a user can have Max (0.2), which has much better Pn values than Max (0) and
generally better Rn values than Sum(0.2). Also, note that in the special case
where users are interested in accessing only one or two databases (n = 1, 2) then
Max (0.2) is the best choice for the Rn metric. In this case, it is worthwhile for
vGlOSS to keep both matrices F and W .

To show the impact of the rank thresholds, Figures 4 and 5 show the Rn and Pn

values for the different ranks and a fixed n = 3, and for values of the threshold l from
0 to 0.4. For larger values of l, most of the queries have no database with goodness
greater than zero. For example, for ideal rank Ideal(0.6) each query has on average
only 0.29 useful databases. Therefore, we only show the data for threshold 0.4 and
lower. At first glance one might expect the Rn and Pn performance of Max (0) not
to change as the threshold l varies, since the ranking it computes is independent of
the desired l. However, as l increases, the ideal rank Ideal(l) changes, and the static
estimate provided by Max (0) performs worse and worse for Pn. The Max (l) and
Sum(l) ranks do take into account the target l values, and hence do substantially
better. Our earlier conclusion still holds: strategy Sum(l) is best at avoiding useless
databases, while Max (0) provides the best Rn values (at the cost of low Pn values).

In summary, vGlOSS generally predicts fairly well the best databases for a given
query. Actually, the more vGlOSS knows about the users’ expectations, the better
vGlOSS can rank the databases for the query. If high values of both Rn and Pn

are of interest, then vGlOSS should produce ranks based on the high-correlation
assumption of Section 2.3.1: rank Max (l) is the best candidate for rank Ideal(l) with
l > 0. If only high values of Rn are of interest, then vGlOSS can do without matrix
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Fig. 2. Parameter Rn as a function of n, the number of databases examined from the ranks, for
the Ideal(0.2) ideal database ranking and the different vGlOSS rankings.
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Fig. 3. Parameter Pn as a function of n, the number of databases examined from the ranks, for
the Ideal(0.2) ideal database ranking and the different vGlOSS rankings.

F , and produce ranks Max (0) or Sum(0). If only high values of Pn are of interest,
then vGlOSS should produce ranks based on the disjoint-scenario assumption of
Section 2.3.2: rank Sum(l) is the best candidate. For rank Ideal(0), ranks Max (0)
and Sum(0) give perfect answers.

2.6 Alternative Ideal Ranks

Section 2.2 presented a way of defining the goodness of a database for a query, and
the associated ideal database rank. It also showed a problem with this definition,
namely that the document similarities that contribute to a database’s goodness
may not be “globally valid,” since they incorporate database-dependent idf factors.
In this section we explore alternative ideal database ranks for a query. (Even
other possibilities are discussed in [Gravano and Garćıa-Molina 1995b].) The first
new ranks use the number of relevant documents for the query in each database.
However, as we will discuss, we believe that ranks based on relevance are not
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Fig. 4. Parameter R3 as a function of the threshold l, for ideal rank Ideal(l).
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appropriate for evaluating schemes like vGlOSS. Thus, the remaining ranks that
we describe do not depend on end-user relevance judgments.

The first rank, Rel All, simply orders the databases based on the number of
relevant documents they contain for the given query. (See [French et al. 1998] for
an experimental evaluation of vGlOSS using this ideal rank.) By relevant we mean
that the user who submits q will judge these documents to be of interest. To see
a problem with this rank, consider a database db that contains, say, three relevant
documents for some query q. Unfortunately, it turns out that the search engine
at db does not include any of these documents in the answer to q. So, the user
will not benefit from these three relevant documents. Thus, we believe it is best to
evaluate the ideal goodness of a database by what its search engine might retrieve,
not by what potentially relevant documents it might contain. Notice that a user
might eventually obtain these relevant documents by successively modifying the
query. Our model would treat each of these queries separately, and decide which
databases are the best for each individual query.

Our second rank, Rel Rank(l), improves on Rel All by considering only the rele-
vant documents in each database that have a similarity to q greater than a thresh-
old l, as computed by the individual databases. The underlying assumption is
that users will not examine documents with lower similarity in the answers to the
queries, because these documents are unlikely to be useful. This definition does not
suffer from the problem of the Rel All rank: we simply ignore relevant documents
that db does not include in the answer to q with sufficiently high similarity. How-
ever, in general we believe that end-user relevance is not appropriate for evaluating
schemes like vGlOSS. That is, the best we can hope for any tool like vGlOSS is that
it predicts the answers that the databases will give when presented with a query. If
the databases cannot rank the relevant documents high and the non-relevant ones
low with complete index information, it is asking too much that vGlOSS derive
relevance judgments with only partial information. Consequently, the database
rankings that are not based on document relevance seem a more useful frame of
reference to evaluate the effectiveness of vGlOSS. Hence, the remaining ranks that
we consider do not use relevance information.

The Global(l) rank is based on considering the contents of all the databases as
a single collection. The documents are then ranked according to their “global”
similarity to query q. We consider only those documents having similarity to q
greater than a threshold l. The Goodness metric associated with rank Global(l)
would add the similarities of the acceptable documents. The problem with this
rank is related to the problem with the Rel All rank: a database db may get high
goodness values for documents that do not appear (high) in the answer that the
database produces for q. Therefore, db is not as useful to q as the Goodness metric
predicted. To avoid this problem, the goodness of a database for a query should be
based on the document rank that the database generates for the given query.

The definition of Goodness of Section 2.2 does not rely on relevance judgments,
and is based on the document ranks that the databases produce for the queries.
Therefore, that definition does not suffer from the problems of the alternative ranks
that we considered so far in this section. However, as we mentioned in Section 2.2,
a problem is that the similarities computed at the local databases can depend on
the characteristics of the collections, and thus they might not be valid globally. The
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next definition attempts to compensate for this collection-dependent computations.
The next rank, Local(l), considers only the set of documents in db having scaled

similarity to q greater than a threshold l. We scale the similarities coming from
different databases differently, to compensate for the collection-dependent way in
which these similarities are computed. Also, we should base the goodness of each
database on its answer to the query, to avoid the anomalies we mentioned above for
the Rel All and the Global ranks. One way to achieve these two goals is to multiply
the similarities computed by database db by a positive constant scale(q, db):

Goodness(l, q, db) = scale(q, db) ×
∑

d ∈ Scaled Rank(l, q, db)

sim(q, d)

where scale(q, db) is the scaling factor associated with query q and database db, and
Scaled Rank(l, q, db) = {d ∈ db|sim(q, d) × scale(q, db) > l}.

The problem of how to modify the locally computed similarities to compensate
for collection-dependent factors in their computation has received attention recently
in the context of the collection-fusion problem [Voorhees et al. 1995]. In general,
determining what scaling factor to use to define the Local(l) ideal database rank is
an interesting problem. If we incorporated scaling into the Goodness definition, we
should modify vGlOSS’s ranks to imitate this scaling.

In summary, none of the database ranking schemes that we have discussed is
perfect, including the ones we used for our experiments. Each scheme has its
limitations, and hence, should be used with care.

3. CHOOSING BOOLEAN DATABASES

So far, we have discussed databases supporting the vector-space model of document
retrieval. The Boolean model is more primitive than the vector-space model, but
it is important because many sources still use it for answering queries. In this
model, documents are represented as words with position information. Queries are
expressions composed of words, and connectives such as “and,” “or,” “not,” and
proximity operations such as “within k words of.” The answer to a query is the
set of all the documents that satisfy the Boolean expression. Many other features
are available with these systems, such as thesauri and regular expression matching.
In this section, we present bGlOSS, a version of GlOSS for databases supporting
the Boolean model of document retrieval. (bGlOSS is described in more detail
in [Gravano et al. 1994a; Gravano et al. 1994b].)

Like vGlOSS, bGlOSS gives a hint of what databases might be useful for the
user’s query, based on word-frequency information for each database. Essentially,
the Boolean model, as compared to the vector space model, impacts the statistics
used by bGlOSS and the estimation functions used. Because in the Boolean model
there are no document-query similarities (i.e., a document does or does not satisfy
a query), bGlOSS only needs the F = (fij) matrix of Section 2.3, where fij is the
number of documents in dbi that contain word tj .

Example 6.: Consider three databases, A, B, and C, and suppose that bGlOSS
has collected the statistics of Figure 6. Suppose that bGlOSS receives a query
q=retrieval ∧ discovery (this query searches for documents that contain both words,
retrieval and discovery). Using the information in the figure, bGlOSS then estimates
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Database A B C

Number of documents 100 1000 200

Number of documents
with the word retrieval 40 500 10

Number of documents
with the word discovery 5 40 0

Fig. 6. A portion of the database frequency information that bGlOSS keeps for three databases.

the number of matching documents in each of the databases.
It is easy to see that no documents in C match q because C does not contain

any documents with the word discovery. For the other two databases, bGlOSS
has to “guess” the number of matching documents. There are different estimators
that can be used to make this guess. One of the estimators that we study, Ind
(for “independence”), estimates the result size as follows. Database A contains 100
documents, 40 of which contain the word retrieval. Therefore, the probability that
a document in A contains the word retrieval is 40

100 . Similarly, the probability that
an A document contains the word discovery is 5

100 . Under the assumption that
words appear independently in documents, the probability that an A document
has both words is 40

100 ×
5

100 . Consequently, we can estimate the result size of query
q in database A as Estimate(q,A) = 40

100 × 5
100 × 100 = 2 documents. Similarly,

Estimate(q,B) = 500
1000×

40
1000 ×1000 = 20, and Estimate(q, C) = 10

200 ×
0

200 ×200 = 0.
Therefore, the best database for q according to Ind is B, followed by database A.
Database C is not included in the database rank, since it cannot have any matching
document. Unfortunately, as in the vector-space case, the database rank computed
by bGlOSS might be wrong. For example, it could be the case that database B did
not contain any matching document for q, while Ind predicted there would be 20
such documents in B. Furthermore, if database A did contain matching documents,
then Ind would fail to conclude that database A is more promising than database
B.

3.1 Ranking Databases

Consider a Boolean “and” query q that we want to evaluate over a set of databases
DB. (We consider other kinds of queries in [Gravano et al. 1994a].) bGlOSS ranks
the databases in DB according to their estimated number of matches for q, and
using an estimator. Different estimators are possible, and we studied several of
them in [Gravano et al. 1994a; Gravano et al. 1994b]. In this article, we focus on
the Ind (for “independence”) estimator that we define below. For a database dbi,
bGlOSS keeps:

—|dbi|, the total number of documents in database dbi, and

—fij , the number of documents in dbi that contain tj , for all keyword field-
designation pairs tj . Note that, unlike vGlOSS, bGlOSS keeps different frequen-
cies for a word appearing in different fields (e.g., author, title). The reason is
that most Boolean sources support fields in their query language. (For example,
a user can ask for documents having “Ullman” as one of the authors.)
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As with vGlOSS, a real implementation of bGlOSS requires that each database
cooperate and periodically export these frequencies to the bGlOSS server following
some predefined protocol, like STARTS (see Section 2.3).

Given the frequencies and sizes for a set of databases DB, bGlOSS uses the Ind
estimator to rank the databases in DB. This estimator is built upon the unrealistic
assumption that keywords appear in the different documents of a database following
independent and uniform probability distributions. Under this assumption, given
a database dbi, any n keyword field-designation pairs t1, . . . , tn, and any document
d ∈ dbi, the probability that d contains all of t1, . . . , tn is:

fi1

|dbi|
× . . . × fin

|dbi|
So, according to Ind, the estimated number of documents in dbi that will satisfy
the query t1 ∧ . . . ∧ tn is [Salton et al. 1983]:

EstimateInd ( t1 ∧ . . . ∧ tn, dbi) =

∏n
j=1 fij

|dbi|n−1
(6)

As our previous example illustrated, this estimate may be incorrect, unless one
of the frequencies is zero. In the later case, we know for sure that no document in
dbi matches. (See [Gravano et al. 1994a; Gravano et al. 1994b] for a comparison of
Ind against alternative estimators.)

3.2 Evaluating bGlOSS

This section uses the metrics of Section 2.4 to demonstrate that bGlOSS can select
relevant databases effectively from among a large set of candidates [Tomasic et al.
1997]. The key difference from the evaluation in Section 2.4 is that the goodness of
a database db for a Boolean query q is simply the number of documents in db that
match q.

For our bGlOSS experiments, we used as data the complete set of United States
patents for 1991. Each patent issued is described by an entry that includes var-
ious attributes (e.g., names of the patent owners, issuing date) as well as a text
description of the patent. The total size of the patent data is 3.4 gigabytes. We
divided the patents into 500 databases by first partitioning them into fifty groups
based on date of issue, and then dividing each of these groups into ten subgroups,
based on the high order digit of a subject-related patent classification code. This
partitioning scheme gave databases that ranged in size by an order of magnitude,
and were at least somewhat differentiated by subject. Both properties are ones we
would expect to see in a real distributed environment. (See [Gravano et al. 1994a]
for an evaluation of bGlOSS over a smaller number of independent, pre-existing
collections.)

For test queries, we used a trace of 8,392 real-user queries that were issued at
Stanford University to the INSPEC database from 4/12 to 4/25 in 1993. (IN-
SPEC is a database of Physics, Electrical Engineering, and Computer Science bib-
liographic records.) We only considered correctly formed “and” queries. Also, we
did not consider the so-called “phrase” queries (e.g., titlephrase knowledge bases).
The final set of queries, TRACEINSPEC , has 6,897 queries. Finally, we eliminated
all queries with field designators not applicable to the patent data. Although IN-
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n Rn

1 0.712
2 0.725
3 0.730
4 0.736
5 0.744
6 0.750
7 0.755
8 0.758
9 0.764
10 0.769

Fig. 7. The average Rn metric for 500 text databases and the TRACEINSPEC queries of Section 3.

SPEC is not a patent database, it covers a similar range of technical subjects, so
we expected a fair number of hits against our patent data. Each of the remaining
3,719 queries is a Boolean conjunction of one or more words, e.g., microwave ∧
interferometer.

To test bGlOSS, for each query we found the exact number of matching docu-
ments in each database, and computed the ideal database rank accordingly. We
compared this ranking with the ranking suggested by bGlOSS by calculating, for
various values of n, the Rn metric of Section 2.4.

Figure 7 shows the results of this experiment. Compared to an omniscient se-
lector, bGlOSS does a reasonable job of selecting relevant databases, on average
finding over seventy percent of the documents that could be found by examining an
equal number of databases under ideal circumstances, with gradual improvement
as the number of databases examined increases.

4. VARIATIONS AND DISCUSSION

In this section we discuss several issues that impact both vGlOSS and bGlOSS. In
Section 4.1 we study the storage requirements of the GlOSS scheme, using bGlOSS
for concreteness. We then discuss (Section 4.2) how a GlOSS server would deal with
both vector-space and Boolean databases simultaneously. Finally, in Section 4.3
we study how collections of GlOSS servers could cooperate, and we show some
experimental results, using vGlOSS for concreteness.

4.1 bGlOSS Storage Requirements

In this section we study the space requirements of bGlOSS and compare them
with those of a full index of the databases. Our evaluation is for the 6 database
scenario shown in Figure 8. Although the number of databases is small, we do
have very detailed information about these databases, and we feel that our storage
results are representative. Our storage estimates will be approximate, i.e., should be
taken just as an indication of the relative order of magnitude of the corresponding
requirements. An evaluation of the vGlOSS space requirements would be analogous,
but is not covered here.

We start our analysis with the INSPEC database, and then consider the remain-
ing bibliography databases in Figure 8. Figure 9 shows information on the INSPEC
database that will be useful for computing the size of the bGlOSS information. This
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Database Number of documents Area

INSPEC 1,416,823 Physics, Elect. Eng., Computer Sc.

COMPENDEX 1,086,289 Engineering

ABI 454,251 Business Periodical Literature

GEOREF 1,748,996 Geology and Geophysics

ERIC 803,022 Educational Materials

PSYCINFO 323,952 Psychology

Fig. 8. The six databases of the bGlOSS experimental study.

Full bGlOSS
Field Designator Index (threshold=0)

# of postings # of entries

Author 4108027 311632

Title 10292321 171537

Publication 6794557 18411

Abstract 74477422 487247

Thesaurus 11382655 3695

Conference 7246145 11934

Organization 9374199 62051

Class 4211136 2962

Numbers (ISBN, ...) 2445828 12637

Report Numbers 7833 7508

Totals 130,340,123 1,089,614

Fig. 9. The bGlOSS summaries vs. a full text index for the INSPEC database.

information was generated using data from Stanford’s FOLIO library information
retrieval system. The “# of entries” column reports the number of entries required
for each of the INSPEC indexes appearing in the TRACEINSPEC queries of Sec-
tion 3.2. For example, there are 311, 632 different author last names appearing in
INSPEC (field designation “author”), and each will have an associated entry in the
INSPEC frequency information. A total of 1, 089, 614 entries will be required for
the INSPEC database. Each of these entries will correspond to a keyword field-
designation pair and its associated frequency (e.g., <author Knuth, 47>, meaning
that there are 47 documents in INSPEC with Knuth as the author). In contrast,
if we were to keep the complete inverted lists associated with the different indexes
we considered, 130, 340, 123 postings would have to be stored in the full index.

Each of the postings of a full index will typically contain a field designation and
a document identifier. If we dedicate one byte for the field designation and three
bytes for the document identifier, we end up with four bytes per posting. Let us
assume that, after compression, two bytes suffice per posting (compression of 50%
is typical for inverted lists).

Each of the frequencies kept by bGlOSS will typically contain a field designation,
a database identifier, and the frequency itself. Regarding the size of the frequencies
themselves, only 1417 keyword field-designation pairs in INSPEC have more than
216 documents containing them. Therefore, in the vast majority of the cases, two
bytes suffice to store these frequencies, according to the INSPEC data we have
available. We will thus assume that we dedicate two bytes per frequency. So, using
one byte for the field designation and two bytes for the database identifier, we end
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Size of Full Index bGlOSS/threshold=0

Vocabulary 3.13 MBytes 3.13 MBytes

Index 248.60 MBytes 2.60 MBytes

Total 251.73 MBytes 5.73 MBytes

% of Full Index 100 2.28

Fig. 10. Storage estimates for bGlOSS and a full text index for the INSPEC database.

up with five bytes per frequency. Again, after compression we will assume that 2.5
bytes are required per frequency. Using the data from Figure 9 and our estimates
for the size of each posting and frequency information entry, we obtain the index
sizes shown in Figure 10 (“Index” row).

The vocabulary for INSPEC 2, including only indexes that appear in TRACEINSPEC

queries, consists of 819, 437 words. If we dedicate four bytes to store each key-
word [Gravano et al. 1993], around 4 × 819, 437 bytes, or 3.13 MBytes are needed
to store the INSPEC vocabulary. This statistic is shown in the “Vocabulary” row
of Figure 10.

After adding the vocabulary and index sizes (“Total” row of Figure 10), the size
of the frequency information that bGlOSS needs is only around 2.28% the size of
the corresponding full index, for the INSPEC database.

So far, we have only focused on the space requirements of a single database,
namely INSPEC. We will base the space requirement estimates for the six databases
on the figures for the INSPEC database, for which we have reliable index informa-
tion. To do this, we multiply the different values we calculated for INSPEC by a
growth factor G (see Figure 8):

G =
∑

db∈DB |db|
|INSPEC| ≈ 4.12

where DB = {INSPEC, COMPENDEX, ABI, GEOREF, ERIC, PSYCINFO}.
Therefore, the number of postings required by a full index of the six databases
is estimated as G × INSPEC number of postings = 537, 001, 307 postings, or
around 1024.25 MBytes. The number of frequencies required by bGlOSS for the
six databases is estimated as G × INSPEC number of frequencies = 4, 489, 210
frequencies, or around 10.70 MBytes (see the “Index” row of Figure 11).

The space occupied by the index keywords of the six databases considered will
be proportional to the size of their merged vocabularies. Using index information
from Stanford’s FOLIO system, we can determine that the size of the merged
vocabulary of the six databases we considered is approximately 90% of the sum of
the six individual vocabulary sizes. Therefore, we estimate the size of the merged
vocabulary for the six databases as G × 0.90 × INSPEC vocabulary size = 3,038,472
words, or around 11.59 MBytes (see the “Vocabulary” row of Figure 11).

Figure 11 summarizes the storage estimates for bGlOSS and a full index. Note
that the bGlOSS frequency information is only 2.15% the size of the full index.
This percentage is even less than the corresponding figure we obtained above just
for the INSPEC database (2.28%). The reason for this is the fact that the merged
vocabulary size is only 90% of the sum of the individual vocabulary sizes. Although

2The field designators are stored with each posting and frequency, as described above.
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Size of Full index bGlOSS/threshold=0

Vocabulary 11.59 MBytes 11.59 MBytes

Index 1024.25 MBytes 10.70 MBytes

Total 1035.84 MBytes 22.29 MBytes

% of Full index 100 2.15

Fig. 11. Storage estimates for bGlOSS and a full index for the six databases.

this 10% reduction “benefits” both bGlOSS and the full index case, the impact on
bGlOSS is higher, since the vocabulary size is a much larger fraction of the total
storage needed by bGlOSS than it is for the full index.

We have obtained the numbers of Figure 11 using some very rough estimates
and approximations, so they should be taken cautiously. However, we think they
are useful to illustrate the low space requirements of bGlOSS, which are two orders
of magnitude lower than those of a full-text index of the databases. This is an
important property, since bGlOSS should scale to large numbers of databases. Fur-
thermore, this drastic space reduction makes the bGlOSS indexes less expensive to
update and maintain, as well as decreasing the communication cost (for statistics)
between the bGlOSS server and the distributed collections. Note, however, that
the overall response time for a user query might be slower using bGlOSS than it
would be if we could maintain a centralized full-text index of the collections. In
effect, after obtaining an answer from bGlOSS, the suggested databases need to be
contacted to obtain the documents that match the query. In contrast, a full-text
index of the databases would produce a document set directly.

Pruning the bGlOSS Summaries. The statistical information kept by both bGlOSS
and vGlOSS can be “compressed” in a variety of ways, for additional space savings.
Here we illustrate one possible technique, again using bGlOSS for concreteness. The
technique is based on a frequency threshold. If a database dbi has no more than
threshold documents with a given keyword-field pair tj , then bGlOSS will not keep
this information. Therefore, bGlOSS will assume that fij is zero whenever this data
is needed.

As a result of the introduction of threshold, the estimator may now conclude that
some database dbi does not contain any documents matching a query of the form
t1 ∧ . . . ∧ tn if fij is missing, for some j, while in fact dbi does contain documents
matching the query. This situation was not possible before: if fij was missing
from the information set of the estimator, then fij = 0, and so, there could be no
documents in dbi satisfying such a query.

Introducing thresholds reduces the storage cost of the estimator. Figure 12 re-
ports the number of entries that would be left, for different field designators, in
the frequency information for the INSPEC database. Some field designators (e.g.,
“thesaurus”) are not affected much by this pruning of the smallest entries, whereas
the space requirements for some others (e.g., “author,” “title,” and “abstract”) are
reduced drastically. Adding together all of the indexes, the number of entries in
the INSPEC frequency information kept by bGlOSS decreases very fast as threshold
increases: for threshold=1, for instance, 508, 978 entries, or 46.71% of the original
number of entries, are eliminated. In [Gravano et al. 1994a] we report experimental
results that show that the performance of bGlOSS is only slightly sensitive to small
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threshold
Field Designator 0 1 2 3 4 5

Author 311632 194769 150968 125220 107432 94248

Title 171537 85448 62759 51664 44687 40007

Publication 18411 11666 10042 9281 8832 8535

Abstract 487247 227526 163644 133323 115237 102761

Thesaurus 3695 3682 3666 3653 3641 3637

Conference 11934 10138 9887 9789 9702 9653

Organization 62051 34153 26518 22612 20121 18382

Class 2962 2953 2946 2937 2931 2926

Numbers (ISBN, ...) 12637 10199 10067 9946 9865 9779

Report Numbers 7508 102 37 22 14 12

Totals 1089614 580636 440534 368447 322462 289940

% 100 53.29 40.43 33.81 29.59 26.61

Fig. 12. Number of entries left for the different thresholds and field designators in the INSPEC
database.

increases of threshold. Therefore, the size of the bGlOSS frequency information can
be substantially reduced beyond the already small size estimated in Figure 11.

4.2 GlOSS Over Both Vector-Space and Boolean Databases

It is possible for a single GlOSS server to keep statistics on both Boolean and
vector-space sources. For the Boolean sources, it would collect the statistics bGlOSS
needs, while for the vector-space sources, it would keep the vGlOSS information.
This combined GlOSS server could easily treat user queries separately. That is,
a Boolean query could be processed against the information on Boolean sources,
while vector-space queries could be directed to the remaining statistics.

It would of course be better for GlOSS to try to suggest sources, regardless of the
query type. In such a case, the user could be warned if a good source uses a query
model that is different from the one the query was posed in (since the user would
have to reformulate the query for that source). Processing queries in this integrated
fashion introduces two challenging problems. Here we mention these problems and
briefly sketch possible solutions:

—Query specification: Vector-space queries are usually just lists of words, while
Boolean queries are structured through connectives like “and,”“or,” and “not.”
Thus, GlOSS must somehow translate a query from one form into the other.
For example, if GlOSS receives a vector-space query q (a list of words), then it
can choose to interpret q as the Boolean “and” of these words for the Boolean
sources. For a Boolean query with only “and” and “or” operators, it may remove
all operators and consider the plain words as the vector-space query. The “not”
Boolean operator complicates the translation further. A possibility is for GlOSS
to eliminate the negated terms from the query for an initial goodness estimate.
GlOSS can then use the negated terms to adjust the initial estimates, so that a
database containing a negated term many times might see its goodness estimate
for the query decreased. These mappings are clearly not precise, but could still
give the user reasonable database suggestions.

—Database ranking: Both vGlOSS and bGlOSS rank databases for a query q based
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on the numeric goodness of the databases for q. Therefore, to rank both vector-
space and Boolean sources together, a simple solution is for GlOSS to simply
“normalize” the vGlOSS goodness scores and the bGlOSS goodness scores so
their relative magnitudes are comparable, and then compute the database ranks
in the usual way. Alternatively, GlOSS could produce two different database
ranks: one including the vector-space databases, and the other including the
Boolean databases.

4.3 Decentralizing GlOSS

In this section we show how we can build a more distributed version of GlOSS
using essentially the same methodology that we developed in the previous sections.
Suppose that we have a number of GlOSS servers G1, . . . , Gs, indexing each a set
of databases as we described in the previous sections. (Each of these servers can
index the databases at one university or company, for example.) For simplicity,
assume all servers are of the same type, either bGlOSS or vGlOSS. We will now
build a higher-level GlOSS server, hGlOSS, that summarizes the contents of the
GlOSS servers in much the same way as the GlOSS servers summarize the contents
of the underlying databases. 3 A user first queries the hGlOSS server, obtaining a
rank of the GlOSS servers according to how likely they are to have indexed useful
databases. Then the user visits the suggested GlOSS servers, submitting the query
there to obtain suggested databases to visit.

Although the hGlOSS server is still a single entry point for users to search for
documents, the size of this server will be so small that it will be inexpensive to
massively replicate it, distributing the access load among the replicas. In this way,
organizations will be able to manage their own “traditional” GlOSS servers, and will
let replicas of a logically unique higher-level GlOSS, hGlOSS, concisely summarize
the contents of their GlOSS servers.

The key point is to notice that hGlOSS can treat the information about a database
at a traditional GlOSS server in the same way as the traditional GlOSS servers treat
the information about a document at the underlying databases. The “documents”
for hGlOSS will be the database summaries at the GlOSS servers.

To keep the size of the hGlOSS server small, the information that the hGlOSS
server keeps about a GlOSS server Gr is limited. For brevity, we focus our discussion
now on the vGlOSS version of GlOSS, but we can proceed analogously for bGlOSS.
hGlOSS keeps one or both of the following matrices (see Section 2.3):

—H = (hrj): hrj is the number of databases in vGlOSS Gr that contain word tj

—D = (drj): drj is the sum of the number of documents that contain word tj in
each database in vGlOSS Gr

In other words, for each word tj and each vGlOSS server Gr, hGlOSS needs (at
most) two numbers, in much the same way as the vGlOSS servers summarize the
contents of the document databases (Section 2.3). (An alternative would be for
hGlOSS to (also) maintain a matrix S = (srj), where srj is the sum of the weight
of word tj over all documents in databases in vGlOSS Gr.)

3Although our discussion focuses on a 2-level hierarchy of servers, we can use the same principles
to construct deeper hierarchies.



L. Gravano et al. · 27

Example 7.: Consider a vGlOSS server Gr and the word computer. Suppose
that the following are the databases in Gr having documents with the word com-
puter in them, together with their corresponding vGlOSS weights and frequencies:

computer : (db1, 5, 3.4), (db2, 2, 1.8), (db3, 1, 0.3)

That is, database db1 has five documents with the word computer in them, and
their added weight is 3.4 for that word, database db2 has two documents with the
word computer in them, and so on. hGlOSS will only know that the word computer
appears in three databases in Gr, and that the sum of the number of documents for
the word and the databases is 5+2+1 = 8. hGlOSS will not know the identities of
these databases, or the individual document counts associated with the word and
each database.

We can now use the same vGlOSS methodology: given a query q, we define the
goodness of each vGlOSS server Gr for the query: for example, we can take the
database rank that Gr produces for q, together with the goodness estimate for each
of these databases according to Gr, and define the goodness of Gr for q as a function
of this rank. This computation is analogous to how we computed the goodness of
the databases in Section 2.2.

We next define how hGlOSS estimates goodness given only partial information
about each vGlOSS server. hGlOSS will determine the Estimate for a vGlOSS server
Gr using the vectors hr∗ and dr∗ for Gr in a way analogous to how the vGlOSS
servers determine the Estimate for a database dbi using the fi∗ and wi∗ vectors.
After defining the Estimate for each vGlOSS server, hGlOSS ranks the vGlOSS
servers so that the users can access the most promising servers first, i.e., those
most likely to index useful databases.

To illustrate hGlOSS’s potential, we briefly describe one experiment. For this, we
divide the 53 databases of Section 2.5 into five randomly-chosen groups of around
ten databases each. Each of these groups corresponds to a different vGlOSS server.

We assume that the vGlOSS servers approximate ideal rank Ideal(0) with the
Max (0) database rank. Next, we define the goodness of a vGlOSS server Gr for a
query q as the number of databases indexed by Gr having a goodness Estimate for
q greater than zero. This definition determines the ideal rank of vGlOSS servers.
To approximate this ideal rank, hGlOSS periodically receives the H matrix defined
above from the underlying vGlOSS servers. For query q with words t1, . . . , tn and
vGlOSS server Gr, hr1, . . . , hrn are the database counts for Gr associated with the
query words. (Word t1 appears in hr1 databases in vGlOSS server Gr, and so on.)
Assume that hr1 ≤ . . . ≤ hrn. Then, hGlOSS estimates the goodness of Gr for q
as hrn. In other words, hGlOSS estimates that there are hrn databases in Gr that
have a non-zero goodness estimate for q.

Figure 13 shows the different values of the (adapted) Rn and Pn metrics for the
6,800 queries of Section 2.5. Note that Pn = 1 for all n, because every time hGlOSS
chooses a vGlOSS server using the ranking described above, this server actually has
databases with non-zero estimates. From the high values for Rn it follows that
hGlOSS is extremely good at ranking “useful” vGlOSS servers.

Our single experiment used a particular ideal ranking and evaluation strategy.
We can also use the other rankings and strategies we have presented adapted to
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n Rn Pn

1 0.985 1

2 0.991 1

3 0.994 1

4 0.998 1

5 1 1

Fig. 13. The Rn and Pn metrics for hGlOSS and our sample experiment.

the hGlOSS level, and tuned to the actual user requirements. Also, the hGlOSS
server will be very small in size and easily replicated, thus eliminating the potential
bottleneck of the centralized GlOSS architecture.

5. RELATED WORK

Many solutions have been presented recently for the text-source discovery problem,
or, more generally, for the resource-discovery problem: the text-source discovery
problem is a subcase of the resource-discovery problem, since the latter generally
deals with a larger variety of types of information [Obraczka et al. 1993; Schwartz
et al. 1992].

One solution to the text-source discovery problem is to let the database selection
be driven by the user. Thus, the user will be aware of and an active participant
in this selection process. Different systems follow different approaches to this: one
such approach is to let users “browse” through information about the different
resources. A typical example of this paradigm is Yahoo! (http://www.yahoo.-
com). As another example, the Prospero File System [Neuman 1992] lets users
organize information available in the Internet through the definition (and sharing)
of customized views of the different objects and services available to them.

A different approach is to keep a database of “meta-information” about the avail-
able databases and have users query this database to obtain the set of databases
to search. For example, WAIS [Kahle and Medlar 1991] provides a “directory of
servers.” This “master” database contains a set of documents, each describing (in
English) the contents of a database on the network. The users first query the master
database, and once they have identified potential databases, direct their query to
these databases. One disadvantage is that the master-database documents have to
be written by hand to cover the relevant topics, and have to be manually kept up to
date as the underlying database changes. However, freeWAIS [Fullton et al. 1993]
automatically adds the most frequently occurring words in an information server to
the associated description in the directory of servers. Another drawback is that in
general, databases containing relevant documents might be missed if they are not
chosen during the database-selection phase. [Duda and Sheldon 1994] shows sample
queries for which very few of the existing relevant servers are found by querying
the WAIS directory of servers (e.g., only 6 out of 223 relevant WAIS servers).

Reference [Schwartz 1990] follows a probabilistic approach to the resource-discovery
problem, and presents a resource-discovery protocol that consists of two phases: a
dissemination phase, during which information about the contents of the databases
is replicated at randomly chosen sites, and a search phase, where several randomly
chosen sites are searched in parallel. Also, sites are organized into “specialization
subgraphs.” If one node of such a graph is reached during the search process, the
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search proceeds “non-randomly” in this subgraph, if it corresponds to a specializa-
tion relevant to the query being executed. See also [Schwartz 1993].

In Indie (shorthand for “Distributed Indexing”) [Danzig et al. 1992], information
is indexed by “Indie brokers,” each of which has associated, among other adminis-
trative data, a Boolean query (called a “generator rule”). Each broker indexes (not
necessarily local) documents that satisfy its generator rule. Whenever a document
is added to an information source, the brokers whose generator rules match the new
document are sent a descriptor of the new document. The generator objects asso-
ciated with the brokers are gathered by a “directory of servers,” which is queried
initially by the users to obtain a list of the brokers whose generator rules match
the given query. See also [Danzig et al. 1991]. [Barbará and Clifton 1992], [Ordille
and Miller 1992], and [Simpson and Alonso 1989] are other examples of this type
of approach in which users query “meta-information” databases.

A “content-based routing” system is used in [Sheldon et al. 1994] to address the
resource-discovery problem. The “content routing system” keeps a “content label”
for each information server (or collection of objects, more generally), with attributes
describing the contents of the collection. Users assign values to the content-label
attributes in their queries until a sufficiently small set of information servers is
selected. Also, users can browse the possible values of each content-label attribute.

The WHOIS++ directory service (http://www.ucdavis.edu/whoisplus) or-
ganizes the WHOIS++ servers into a distributed “directory mesh” that can be
searched: each server automatically generates a “centroid” listing the words it con-
tains (for the different attributes). Centroids are gathered by index servers, that in
turn must generate a centroid describing their contents. The index server centroids
may be passed to other index servers, and so on. A query that is presented to an
index server is forwarded to the (index) servers whose centroids match the query.

In [Flater and Yesha 1993], every site keeps statistics about the type of informa-
tion it receives along each link connecting to other sites. When a query arrives in a
site, it is forwarded through the most promising link according to these statistics.
References [Morris et al. 1993], [Zahir and Chang 1992], and [Morris et al. 1992]
follow an expert-systems approach to solving the related problem of selecting online
business databases.

A complementary approach to GlOSS is taken by Chamis [Chamis 1988]. Briefly,
the approach this article takes is to expand a user query with thesaurus terms. The
expanded query is compared with a set of databases, and the query terms with
exact matches, thesauri matches, and “associative” matches are counted for each
database. Each database is then ranked as a function of these counts. We believe
that this approach is complementary in its emphasis on thesauri to expand the
meaning of a user query.

Reference [Callan et al. 1995] has applied inference networks (from information re-
trieval) to the text-source discovery problem. Their approach summarizes databases
using document-frequency information for each term (the same type of information
that GlOSS keeps about the databases), together with the “inverse collection fre-
quency” of the different terms. An inference network then uses this information to
rank the databases for a given query.

The Harvest system [Bowman et al. 1994] provides a flexible architecture for
accessing information on the Internet. “Gatherers” collect information about the
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data sources, and pass it to “brokers.” The “Harvest Server Registry” is a special
broker that keeps information about all other brokers, among other things. For flex-
ibility, Harvest leaves the broker specification open, and many alternative designs
are possible.

An interesting alternative approach is the Pharos system [Dolin et al. 1996],
which combines browsing and searching for resource discovery. This system keeps
information on the number of objects that each source has for each category of a
subject hierarchy like the Library of Congress’s LC Classification System.

6. CONCLUSIONS

We have shown how to construct source-discovery servers for vector-space and
Boolean text databases, and for hierarchies of source-discovery servers. Based on
compact collected statistics, these servers can provide very good hints for finding
the relevant databases, or finding relevant lower-level servers with more informa-
tion for a given query. An important feature of our approach is that the same
machinery can be used for both lower-level or higher-level servers. Our experimen-
tal results show that bGlOSS, vGlOSS, and hGlOSS are quite promising and could
provide useful services in large, distributed information systems. The storage cost
of GlOSS is relatively low: for our case study, the size of the GlOSS index was
about 2% of the size of a full index. A small index means it is easier to replicate
the discovery service, for improved load balancing and availability.

Our approach to solving the text-source discovery problem could also deal with
information servers that charge for their use. Since we are selecting what databases
to search according to a quantitative measure of their “goodness” for a query, we
could easily incorporate this cost factor so that, for example, given two equally
promising databases, a higher value would be assigned to the less expensive of the
two.

A bGlOSS server has been implemented and is available for testing. This server
keeps information on 40+ collections of computer science technical reports that are
part of the NCSTRL project (http://www.ncstrl.org). The bGlOSS server is
available on the World-Wide Web at http://gloss.stanford.edu.

Acknowledgments

Section 3.2 is joint work with Laura Haas, Calvin Lue, and Peter Schwarz at IBM
Almaden [Tomasic et al. 1997]. We also thank Helena Galhardas for her useful
comments on an earlier version of the paper.

REFERENCES
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