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Abstract

Background: Luba is one of the four historical foci of Human African Trypanosomiasis (HAT) on Bioko Island, in

Equatorial Guinea. Although no human cases have been detected since 1995, T. b. gambiense was recently

observed in the vector Glossina palpalis palpalis. The existence of cryptic species within this vector taxon has been

previously suggested, although no data are available regarding the evolutionary history of tsetse flies populations

in Bioko.

Methods: A phylogenetic analysis of 60 G. p. palpalis from Luba was performed sequencing three mitochondrial

(COI, ND2 and 16S) and one nuclear (rDNA-ITS1) DNA markers. Phylogeny reconstruction was performed by

Distance Based, Maximum Likelihood and Bayesian Inference methods.

Results: The COI and ND2 mitochondrial genes were concatenated and revealed 10 closely related haplotypes with

a dominant one found in 61.1% of the flies. The sequence homology of the other 9 haplotypes compared to the

former ranged from 99.6 to 99.9%. Phylogenetic analysis clearly clustered all island samples with flies coming from

the Western African Clade (WAC), and separated from the flies belonging to the Central Africa Clade (CAC),

including samples from Mbini and Kogo, two foci of mainland Equatorial Guinea. Consistent with mitochondrial

data, analysis of the microsatellite motif present in the ITS1 sequence exhibited two closely related genotypes,

clearly divergent from the genotypes previously identified in Mbini and Kogo.

Conclusions: We report herein that tsetse flies populations circulating in Equatorial Guinea are composed of two

allopatric subspecies, one insular and the other continental. The presence of these two G. p. palpalis cryptic taxa in

Equatorial Guinea should be taken into account to accurately manage vector control strategy, in a country where

trypanosomiasis transmission is controlled but not definitively eliminated yet.
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Background
Following the London Declaration on Neglected Tropical

Diseases, Human African Trypanosomiasis (HAT) has been

targeted for elimination by 2020 [1]. As Trypanosoma

brucei gambiense infection actually causes 98% of the total

HAT cases (the remaining are due to T. b. rhodesiense),

attention must be focused on this subspecies. Among the

elimination strategies, vector control can play an important

role [2-4], especially in isolated populations, which can be

targeted for direct intervention avoiding the reinvasion

from neighbouring zones. Islands represent an ideal setting

for such strategies as demonstrated by the eradication of

Glossina sp. in Unguja [5] and in Principe Islands [2] after a

few years of sustained control.

Tsetse flies of the palpalis group (Nemorhina subgenus)

are major vectors of T. b. gambiense in West Africa [2].

This group comprises two allopatric subspecies: G. p.
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palpalis and G. p. gambiensis, which probably derived from

an ancestral palpalis species which was isolated in several

geographic points when its riverine habitat declined during

the last glacial maximum [6,7]. Cumulative evidences sup-

port the recognition of G. p. gambiensis and G. p. palpalis

as valid specific taxa. For example, using data from the

mitochondrial gene cytochrome oxidase 1 (COI), the aver-

age genetic distance observed between G. p. palpalis and G.

p. gambiensis sequences was 6.6%, which is well above the

threshold of 2% divergence for inter-species comparisons

[8-11]. Moreover, experimental crosses between these sub-

species yielded sterile males in the offspring [12]. The

phylogenetic situation is more complex since recent genetic

analyses suggested the existence of at least two distinct

cryptic species within G. p. palpalis [10,11]. One circulates

in the Western part of Africa (named as Western African

Clade or WAC), and the other in the continental part of

Equatorial Guinea and the Democratic Republic of Congo

(DRC) (Central African Clade or CAC). According to the

available data, both types are sympatric in the Fontem focus

of Cameroon [11].

In Equatorial Guinea, four historical HAT foci are

classically defined: one insular (Luba, on Bioko Island)

and three on the mainland (Rio Campo in the north;

Mbini in the centre and Kogo in the south) [13]. Due to

sustained control measures, less than 10 HAT cases are

being detected every year in the three continental foci

since 2009 and no cases have been recorded since 1995

in Luba. Vector control activities were never imple-

mented in Bioko Island, and parasite elimination in

humans relied on active screening of the population at

risk and systematic treatment [14]. Therefore, high dens-

ities of G. p. palpalis have been observed in some local-

ities at the south of Luba district and moderate densities

in others of the epicentre of the focus [15]. Moreover

the presence of T. b. gambiense has also been reported

in tsetse flies of Luba despite the absence of human in-

fections, which could be attributed to the existence of

reservoirs in the wild fauna, cryptic human infections and/

or low sensitivity of available diagnostic tools [15-17].

Because vector control is a key parameter to completely

eradicate the parasite [2,4,5] a deep knowledge of the biol-

ogy of the tsetse fly is a crucial prerequisite. In such a con-

text, the genetic characterization of the Glossina palpalis

palpalis, never performed so far in Luba, has become

indispensable.

In this study we combine information from both mito-

chondrial DNA (mtDNA- COI, ND2 and 16S- genes)

and nuclear ribosomal (rDNA-ITS1) markers to investi-

gate the phylogeographic origin of G. p. palpalis in the

focus of Luba, Bioko Island, using tsetse flies samples cap-

tured in a previous epidemiological study [15]. MtDNA has

been extensively used in population and evolutionary biol-

ogy of insects [18-20] and metazoa in general [21] due to

their particular features: relative ease isolation, simple

sequence organization, maternal inheritance, absence of

recombination and rapid rate of sequence divergence allow-

ing discrimination of recently diverged lineages [22]. On

the other hand, the rDNA internal transcribed spacer 1

(ITS1) is a useful marker for both closely related species

and also intraspecific populations of insects [23-25].

Methods
Sample collection

Fly sampling was carried out in September/October

2007 from five areas known to harbour G. p. palpalis

(Avendaño, Drumen, Fortuny, Boloco and Las Palmas).

We employed monopyramidal traps [26], which have

been successfully applied for vector control and entomo-

logical surveys in Equatorial Guinea [27-29]. Details

about trap distribution are provided elsewhere [15]. Tse-

tse flies collected were individually stored in absolute

ethanol in the field until processed in the laboratory.

Species identification was undertaken using the key of

Brunhes et al. [30]. Tsetse flies were sent to the National

Centre of Tropical Medicine, Institute of Health Carlos

III (Madrid, Spain) for subsequent molecular analysis.

Molecular analysis

DNA was extracted from whole flies with SpeedTools

Tissue DNA Kit (Biotools, B & M Labs, S.A) following

the manufacturer instructions. We analysed three mtDNA

(ND2, COI and 16S) and one nuclear (ITS1) markers in

our study. COI, 16S and ITS1 sequences were amplified

with primers described previously [11,31] whereas new

specific primers for ND2 gene from G. p. palpalis were

designed (Additional file 1: Table S1).

PCR reactions were performed with 2 μl of each template

DNA, 1X buffer (10 mM Tris–HCl, 1.5 mM MgCl2,

50 mM KCl, pH 8.3), 100 μM of each dNTP, 0.5 μM of

each primer, 1 U of Fast Start Taq DNA polymerase

(Roche) and double distilled water (DDW) until reaching

50 μl final volume. The thermal cycling programme started

with initial denaturation step of 2 minutes at 95°C, followed

by 35 cycles (30 seconds at 95°C, 30 seconds at 55–60°C

and 1 minute at 72°C) and a final extension step of 5 mi-

nutes at 72°C. Results were visualized in 2% agarose gel

stained with ethidium bromide under UV irradiation. After

this check, we sent the amplified products to Secugen

Sequencing and Molecular Diagnostics (Madrid, Spain)

where they were sequenced using Sanger method.

Forward and reverse strands of all sequences were

manually inspected with Sequence Scanner software v1.0

(Applied Biosystems© 2005). Sequences were trimmed

and aligned using ClustalW Multiple Alignment algo-

rithm of BioEdit Sequence Alignment Editor version

7.0.9.0 [32]. All sequences obtained in this work are

available in GenBank with the following accession
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numbers: KF597286-91 (COI), KF597292-5 (ND2),

KF597296 (16S) and KF597297-8 (ITS1).

Phylogenetic analysis

MEGA version 5 software [33] was used to calculate the

pairwise and average distances expressed as number of

nucleotide substitutions per site. Phylogeny reconstruc-

tion was performed with Maximum Likelihood (ML),

Distance Based Neighbor-Joining (NJ) and Bayesian In-

ference (BI) methods. Model of evolution was inferred

from data using the Find DNA/Protein Model tool of

MEGA5. This software implements the Bayesian Informa-

tion Criterion (BIC) [34] and corrected Akaike Information

Criterion (AIC) [35] to measure the goodness-of-fit of the

24 models available. Unless otherwise specified, we applied

the model selected by BIC to perform phylogenetic analysis

(Table 1). For these three inference methods, all positions

containing the missing data were eliminated.

MEGA5 software was also used to construct ML and

distance based trees of COI, ND2 and concatenated

(COI + ND2) sequences. For ML, the bootstrap method

(500 replications) was chosen to test the robustness of

the trees [39]. The selected substitution model was ap-

plied and rates among sites were treated as Gamma dis-

tributed with five discrete categories. We assumed no

invariant sites. The ML heuristic method employed was

the Nearest-Neighbor-Interchange (NNI).

Distance trees were constructed using the NJ method

[40]. Gamma shape parameter was estimated from data.

The bootstrap consensus tree was inferred from 2000

replicates.

BI was implemented with BEAST software [41]. This

software uses Metropolis-Hasting Markov Chain Monte

Carlo algorithm [42]. The default settings were generally

used (1x107 generations and log parameters sampled

each 1000 steps). The first 25% of trees generated was

discarded as ‘burnin’. Yule process was implemented as

tree prior, a simple model appropriate when studying

speciation [43,44].

Assessment of genetic diversity

Under our sampling conditions, we assume that un-

detected haplotypes can exist. In order to assess the

number of these unseen haplotypes in our studied area

(Luba focus), we used two estimators that calculate

haplotype richness: i) the first-order Jackknife richness

estimator [45] calculated as followed: Jack1 = S0 + a1(N-1)/

N, where S0 = observed number of haplotypes, a1 = number

of haplotypes detected in only one fly, N = total number of

flies and ii) the Bootstrap richness estimator [46] boot =

S0 + Σ(1-pi)
N, where S0 = observed number of haplotypes,

pi = frequency of ith haplotype and N = total number of

flies. Analysis was conducted in R software, with the

specific ‘vegan’ package (http://cran.r-project.org, http://

vegan.r-forge.r-project.org).

Phylogeographic analysis

To infer the haplotype relationships within the data sets,

the median-joining network algorithm available in NET-

WORK v4.5.1.0 was performed [47], which combines the

topology of a minimum spanning tree with a parsimoni-

ous search for the missing haplotypes.

Results
Mitochondrial markers

We amplified the mtDNA of COI (622 bp), ND2

(501 bp) and 16S (213 bp) genes for a total of sixty

tsetse flies, all coming from Equatorial Guinea. Figure 1

(COI + ND2) and Table 2 show the distribution of

mtDNA haplotypes regarding the sampling location. In

COI gene six different haplotypes were observed with an

overall genetic distance of 0.4%, ranging from 0.2% to

0.8%, in terms of number of base substitution per site.

Haplotype 1 predominated over the rest (44/60), haplo-

type 2 was found in 9 individuals, whereas the other

haplotypes were found once or twice (Table 3). For

ND2, fifty-four sequences were obtained and four haplo-

types were detected with an average distance of 0.4%,

ranging from 0.2% to 0.5%. Haplotype 1 was the most

Table 1 Summary of models chosen in phylogenetic analysis

Marker COI ND2 COI + ND2

Inference method NJ ML BI NJ ML BI NJ ML BI

Model T92 + Γ TN93 + Γ T92 + Γ HKY + Γ TN93 + Γ

BIC 4097,84 4101,20 2186,19 2193,06 5311,13

AIC 3592,74 3572,45 2040,86 2034,53 5038,40

-Lnl 1732,16 1719 998,34 993,16 2484,13

Length 622 501 1123

Number of haplotypes 30 9 14

Overall mean distance (SE) 0.0176 (0.0062) 0.0093 (0.0064) 0.0149 (0.0053)

NJ: distance-based Neighbor-Joining, ML: Maximum Likelihood, BI: Bayesian Inference, T92: Tamura 3-parameter model [36], TN93: Tamura-Nei model [37], HKY:

Hasegawa-Kishino-Yano model [38], Γ: assuming Gamma distribution (five discrete gamma categories), BIC: Bayesian Information Criterion (score), AIC: corrected

Akaike Information Criterion (score), -Lnl: Maximum Likelihood value, SE: Standard Error.
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common (45/54). Concatenated COI + ND2 yielded 10

different haplotypes and revealed that 61.1% of individ-

uals (33/54) shared the same pattern (haplotype 11, i.e.

haplotype 1 at both COI and ND2).

Analysis of genetic diversity seemed to be assessed

with a reasonable accuracy. The number of estimated

haplotypes, n = 13.93 and 11.86 calculated with Jackknife

and Bootstrap estimators respectively, was close to the

number of observed haplotypes (n = 10) when all

the samples are considered as a unique population

(Additional file 2: Table S2). This means that the

haplotype structure of the population is correctly esti-

mated even with low sample size and underestimation

of the haplotype richness.

Since very limited data are available regarding the

ND2 and 16S sequences in G. p. palpalis from different

geographic origins, we decided to focus the phylogen-

etic reconstruction in COI gene. To construct more

comprehensive ML, distance based NJ and BI trees we

included previously published sequences of G. p. pal-

palis from DRC (EU591840-2), Cameroon (EU591829-

31, EU591860 and EU591865), Liberia (EU591857-9),

Togo (EU591838-9), Ivory Coast (EU591846-8 and

EU591832-3), Burkina Faso (EU591856) and two con-

tinental foci of Equatorial Guinea, Kogo and Mbini

(EU591825 and FJ767873-6). The source of these

sequences is detailed elsewhere [10,11]. G. morsitans

(GQ255905) was used to root the tree and G. p. gambiensis

(EU591851) sequence was also placed as outgroup. Analysis

was based on a total fragment of 622 bp of the COI gene.

ML, distance based NJ and BI trees showed common

topologies. All mirrored two major geographic separated

clusters from Central (CAC) and Western Africa (WAC)

(Figure 2). NJ and BI trees showed more support in this

split: 97% bootstrap and 0.9999 posterior probability in

BI trees, respectively, than ML inference (88%). Within

Figure 1 Distribution of G. p. palpalis COI + ND2 concatenated haplotypes in Luba focus.

Table 2 Distribution of the mtDNA haplotypes within Luba focus

COI haplotypes ND2 haplotypes COI + ND2 haplotypes

1 2 3 4 5 6 1 2 3 4 11 21 12 13 31 41 14 51 54 61

Las Palmas 8 1 1 7 1 1 1 6 1 1 1 1

Fortuny (Boloco) 9 1 8 1 7 1 1

Fortuny 7 1 1 1 8 1 5 1 1 1 1

B. Drumen 14 2 1 1 17 1 13 2 1 1 1

B. Avendaño 6 5 1 5 2 1 2 2 2 1 1

Total 44 9 2 2 2 1 45 5 2 2 33 6 5 2 2 2 1 1 1 1

For each location is detailed the number of times a given haplotype has been obtained.
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WAC, organisation was unclear and again NJ and BI

methods yielded a more robust clustering. ML inference

method failed to yield a clear discrimination between

clades from Western Africa (50% bootstrap) whereas NJ

and BI trees split samples from this area in different sis-

ter sympatric groups (with 99% bootstrap and 1.0000

posterior probability). Clusters obtained by the NJ and

BI methods within the WAC are probably not artifacts

since both trees separate exactly the same specimens

and in spite of the lower power of the ML tree, the same

trend is visible.

Regardless of the inference method used the COI hap-

lotypes from the Luba focus grouped within the WAC I

cluster in all trees, in clear contrast with the haplotypes

from Kogo and Mbini foci (mainland Equatorial Guinea)

that belong to the CAC cluster. In accordance to

phylogeny trees, network analysis shows the clear separ-

ation of the two major geographic clusters (WAC and

CAC) (Figure 3) together with the two subgroups corre-

sponding to DRC and continental Equatorial Guinean

haplotypes within the CAC (CAC I and II in Figure 2).

Regarding ND2 gene, five haplotypes were available in

Genbank, one from Ivory Coast (EU591895), one from

Liberia (EU591884), two from Cameroon (EU591897-8)

and one from Equatorial Guinea (EU591905). In accord-

ance with COI data, ML, distance based NJ and BI trees

constructed with ND2 and COI + ND2 concatenated

genes (Figure 4), exhibited a clear separation between

the sequences of mainland Equatorial Guinean haplo-

types and those from the Luba focus.

The 16S sequences were 100% identical in the 34 ran-

domly selected individuals from Luba analysed by this

Table 3 Distribution of ITS1 genotypes within Luba focus

ITS genotypes

Village Genotype 1: (TA)2C (AT)9 Genotype 2: (TA)10 Total number of samples

Las Palmas 9 90,0% 1 10,0% 10

Fortuny/Boloco 6 66,7% 3 33,3% 9

Fortuny 7 70,0% 3 30,0% 10

B. Drumen 14 77,8% 4 22,2% 18

B. Avendaño 8 66,7% 4 33,3% 12

Total 44 74,6% 15 25,4% 59

For each location is detailed the number of times a given genotype has been obtained.

Figure 2 Phylogenetic reconstruction inferred for the G. p. palpalis COI dataset. Majority rule of the maximum likelihood consensus,

distance consensus and Bayesian trees inferred for the COI dataset. Models of evolution used are detailed in Table 1. Numbers shown next to the

nodes are the support values, i.e. the percentage of bootstrap replications (500 replicates in maximum likelihood and 2000 in distance based

analysis) and posterior probability in Bayesian trees. Analysis involved 622 positions in the final dataset. EQG-L: Equatorial Guinea, Luba focus,

EQG-M: Equatorial Guinea, Mbini focus, EQG-K: Equatorial Guinea, Kogo focus, DRC: Democratic Republic of Congo, CAM: Cameroon, LIB: Liberia,

CDI: Cote d’Ivoire, TOG: Togo, BUF: Burkina Faso. ns: no support (<50 bootstrap or 0.5 posterior probability).
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marker. Only one G. p. palpalis 16S sequence, from

Cameroon, was available in GenBank (EU591913) before

this work. Alignment of the single 16S haplotype found in

Luba was performed with this Cameroonian sequence and

other Glossina taxa, namely G. p. gambiensis (EU591911.1),

G. fuscipes quanzensis (EU591910.1), G. fuscipes fuscipes

(EU591906.1), G. tachinoides (EU591917.1), G. pallicera

(EU591918.1), G. morsitans morsitans (EU591920.1) and G.

pallidipes (EU591925.1) (Additional file 3: Figure S1). This

alignment revealed 1.91% distance between G. p. palpalis

from Luba and Cameroon, and distances ranging between

2.4% (G. p. gambiensis) and 8.97% (G. pallidipes) when

comparing Luba 16S haplotype with other Glossina taxa

(Maximum Likelihood Composite Model [48]).

Nuclear ITS1 marker

ITS1 size polymorphism was assessed for 59 flies. All

PCR products analysed exhibited a unique size around

240 bp, similar to the size reported by Dyer et al. [11]

when this fragment was amplified from flies belonging

Figure 3 Geographic representation of the COI haplotypes. A) Geographic distribution of the COI lineages; B) Haplotypes network derived

from 30 haplotypes of the G. p. palpalis complex. Haplotypes are represented by circles and their frequency is proportional to the area. Network

diagrams created using Phylogenetic Network software from Fluxus and using the Median Joining method as described previously [47].

Figure 4 Phylogenetic reconstruction inferred for the ND2 and concatenated COI + ND2 datasets. Majority rule of the maximum likelihood

consensus, distance consensus and Bayesian trees inferred for the A) ND2 and B) concatenated COI + ND2 dataset. Models of evolution used are

detailed in Table 1. Numbers shown next to the nodes are the support values, i.e. the percentage of bootstrap replications (500 replicates in

maximum likelihood and 2000 in distance based analysis) and posterior probability in Bayesian trees. Analysis involved 501 (ND2) or 1123 (COI +

ND2) positions in the final dataset. EQG-L: Equatorial Guinea, Luba focus, EQG-K: Equatorial Guinea, Kogo focus, CAM: Cameroon, LIB: Liberia,

CDI: Cote d’Ivoire. ns: no support (<50 bootstrap or 0.5 posterior probability).
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to the WAC. After sequencing, two similar genotypes de-

fined by the (AT)n microsatellite were found. Genotype 1

was characterized by (AT)9G(TA)2 region, whereas geno-

type 2 exhibited (AT)10 pure repeats (Additional file 4:

Figure S2). As shown in Table 3, genotype 1 was dominant

in all the 5 sampled areas of the Luba focus.

The two genotypes found were aligned with ITS1 se-

quences of G. p. palpalis from mainland Equatorial

Guinea (Kogo: J767886 and Mbini: J767887-J767888),

DRC (J767892 and J767893), Guinea Conakry (EU59

1930), Gambia (EU591931), Burkina Faso (EU591932),

Togo (EU591933), Liberia (EU591934) and Ivory Coast

(EU5991935) (Additional file 4: Figure S2). The main

genotype, found in 44/59 flies and defined by a (AT)9G

(TA)2 domain, was not detected in the other published

sequences. The second genotype, defined by a (AT)10
repeat, shared 100% homology with the sequence of a

Togo sample.

Discussion
Luba focus is located at the edge between the two main

clades of G. p. palpalis, one named WAC (for Western

Africa Clade), including flies from Cameroon, Burkina

Faso, Ivory Coast, Liberia and Togo; and the other,

named CAC (for Central African Clade) represented by

flies from the Democratic Republic of Congo and the

mainland region of Equatorial Guinea. Phylogenetic ana-

lysis, using mtDNA markers, allowed us to cluster the G.

p. palpalis population from Luba within the WAC. All

the samples of this work were unambiguously included

in this group and separated from the CAC regardless the

phylogenetic inference method used.

Our results are consistent with the geological history

of Bioko, originated by volcanic eruptions in the lower

Tertiary period, around 60 million years BP. Bioko is a

part of an archipelago which pertains to a large volcanic

fracture originating in the South of Lake Chad and ex-

tending to Mount Cameroon in the continent [49]. Al-

though politically belonging to Equatorial Guinea, Bioko

lies closer to the Cameroon coast (ca. 30 km) rather

than to the rest of Equatorial Guinea territories (more

than 200 km from mainland and 700 km from Annobon

island). During geoclimatic events of Quaternary period,

Bioko was linked to mainland given the lower sea level,

presumably to Cameroonian coast because of its geo-

logical origin. At the end of the last glaciation (around

12,000 years BP), Bioko was isolated by flooding and

separated from the continent [50]. It is probable that G.

p. palpalis population of Bioko was isolated from

Cameroon coast after that event, as suggested for other

insect vectors such as Anopheles melas and Simulium

yahense [51,52].

Both mtDNA and nuclear markers show a very low gen-

etic intra-variability. MtDNA genes data polymorphism did

not exceed 0.8% and ITS1 sequences only yielded two

closely related genotypes. For ITS1, the more abundant one

is apparently exclusive of Luba focus, suggesting a certain

degree of isolation. This is in accordance with previous

studies, which found that G. p. gambiensis populations sep-

arated from the continent only by 4–5 km of sea show clear

evidences of complete isolation. These results are based on

wing landmarks, DNA mitochondrial markers and micro-

satellite dataset [53,54]. Our data should be also completed

with an exhaustive coalescent population genetics analysis

to support or not the hypothesis of an on-going allopatric

speciation in Luba.

Because of the presence of these two sympatric ITS1

genotypes in Bioko Island one could speculate about the

past occurrence of at least two separated migration

events, as suggested for Anopheles gambiae in Bioko

[55]. The ITS1 tandem array sequences are expected to

be quickly homogenized by concerted evolution in inter-

breeding populations, whereas differences are usually ob-

served between non-interbreeding ones [56,57]. However,

the low difference observed between our ITS1 genotypes is

based in the AT repeats, where a slight heterogeneity can

be expected since microsatellite sequence could be evolving

faster than the homogenization process. This phenomenon

has been previously described in the tandem repeated U2

snRNA gene of primates [58,59].

Other possible explanation for the existence of two

distinct ITS1 genotypes is a more recent reintroduction

of tsetse flies from continent. Bioko Island is located at

30 km West of the Cameroonian coast, the closest area

of the continent. Estimated active dispersal of Glossina

sp. in one day is no longer than 1.3 km (in 15–30 min/

day) [60,61]. Additionally, these flies are usually unable

to flight for long periods but rather in short bursts last-

ing between 1 and 2 minutes [62,63]. These observations

make extremely unlikely a recent (posterior to the glaci-

ations period) reproductive contact between Luba and

other continental foci due to active dispersal. However,

human-mediated transportation of flies may not be dis-

regarded. This situation allowed the reinvasion of G. p.

palpalis in Principe Island in 1956 despite its eradication

in 1914 using mobile traps carried by workers [2]. The

distance between this island (ca. 240 km) and mainland

is much larger than that of Bioko. It is therefore ex-

pected that human movement between Bioko and the

coast of Cameroon has been much more frequent since

the island was first colonized by the Bubi ethnical group,

at the end of the last glaciation [64]. Finally, although

the existence of ITS1 hybrid forms was initially sug-

gested in G. p. palpalis of Equatorial Guinea [11], this

hypothesis was later rejected by the same authors using

microsatellite markers [10]. A set of highly polymorphic

nuclear markers should be applied in the future to de-

finitively test this hypothesis in Luba.
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The genetic markers used to assess geographical struc-

turing of G. p. palpalis demonstrate the existence of two

allopatric taxa in Equatorial Guinea, one in the insular

focus, Luba, and the other in two of the mainland foci

(Kogo and Mbini). G. p. palpalis populations from Rio

Campo, the third mainland focus of the country, have

not been studied yet. In Equatorial Guinea, vector con-

trol was implemented in Kogo and Mbini from 2002 to

2009, whereas in Luba the active detection and treat-

ment of HAT cases was the only control method

employed [14]. Vector control has proved to be efficient

at controlling HAT transmission [2,5,13] since tsetse

flies show particular features that make them highly sus-

ceptible to direct interventions. Firstly, tsetse flies have a

very low reproductive rate, given that a female individual

has probably only one reproductive mating in its life and

deposits only one larva per generation (up to 12 genera-

tions with 9–10 days of interval for a lifespan of 2–

3 months) [2]. As a result of this low reproductive rate,

the population of the vector is usually low comparing to

other diptera and small increases in mortality can lead

to control [4,65] or even to population extinction [66].

Secondly, the active dispersal of tsetse flies is generally

low [60,61] resulting in a more difficult re-colonization

of cleared areas. Thirdly, the genetic variability observed

within populations tends to be reduced as well [67,68],

probably as a consequence of both low reproductive rate

and limited dispersal capacity, making more difficult for

the selection of new attributes such as resistance to in-

secticides. There are, however, other behavioural features

such as feeding preferences or trap-avoidance that can

vary at subspecies and even at population level. For ex-

ample, within G. p. palpalis, diverse feeding preferences

across foci of Cameroon have been observed [69]. Al-

though this observation could be attributed to the op-

portunistic feeding behaviour of G. p. palpalis [70], it

could be also associated with the existence of genetically

different G. p. palpalis populations, given the probable

isolation of these foci [71]. Indeed, different feeding pat-

terns in two sympatric populations of G. p. palpalis and

G. p. gambiensis have also been described in preforest

areas of Cote d’Ivoire [72], demonstrating that this fea-

ture can differ between closely related subspecies. The

feeding behaviour of the vector can be crucial to design

an effective vector control campaign since it provides

valuable information to understand the epidemiological

cycle of the parasite at local level.

Conclusions
If cryptic species of G. p. palpalis are circulating as our

data and previous observations suggest [11], the occur-

rence of both variants in Equatorial Guinea could have

an important impact in the control of sleeping sickness.

Are vector control methods equally effective for all foci?

Do tsetse flies from Kogo and Mbini have different feed-

ing preferences than those of Luba? Could Luba tsetse

fly populations feed mainly in wild fauna allowing T. b.

gambiense to persist in the focus even with absence of

human infections? Are both groups equally competent

for trypanosome transmission? An entomological study

comparing feeding behaviour, habitat selection and para-

site strain specificity of G. p. palpalis populations from

the island and the continent should be conducted to as-

certain if the genetic differences observed could be

reflected on the vector ecology.

Additional files

Additional file 1: Table S1. Summary of primers used.

Additional file 2: Table S2. Estimated genetic diversity, calculated in

number of observed haplotypes.

Additional file 3: Figure S1. Alignment of 16S found in G. p. palpalis

from Luba focus. Gpp: G. p. palpalis, CAM: Cameroon, Gpg: G. p.

gambiensis, Gfq: G. fuscipes quanzensis, Gff: G. fuscipes fuscipes, Gtac: G.

tachinoides, Gpallic: G. pallicera, Gmm: G. morsitans morsitans, Gpallid: G.

pallidipes.

Additional file 4: Figure S2. Sequencing profiles and alignment of ITS1

genotypes found in Luba focus. Sequence profiles of ITS genotypes 1

and 2 (A and B, respectively). C) Alignment of ITS1 genotypes of G. p.

palpalis from different origins. EQG-L: Equatorial Guinea, Luba focus,

EQG-M: Equatorial Guinea, Mbini focus, EQG-K: Equatorial Guinea, Kogo

focus, DRC: Democratic Republic of Congo, LIB: Liberia, CDI: Cote d’Ivoire,

TOG: Togo, GAM: Gambia, BUF: Burkina Faso, GUI: Guinea.

Competing interests

Authors declare no competing interests.

Authors’ contribution

CCO participated in the sample collection, molecular genetic studies, data

analysis and wrote the manuscript. JK participated in statistical analysis. PN

carried out the amplification of the genes and prepared the products for

sequencing. NNB and PRNA participated in sample collection. MN, JC, PNA,

JP, AB and JMB conceived the study, participated in its design and

coordination, analysed the data and wrote the manuscript. All authors read

and approved the final manuscript.

Acknowledgments

We thank Dr Francis Raoul for his statistical assistance with R and Dr Martin

Donnelly for his valuable comments. This work has been supported by

‘Fondo de Investigacion Sanitaria (FIS)’ (PI10/01128) and by VI PN de I + D + I

2008–2011, ISCIII -Subdirección General de Redes y Centros de Investigación

Cooperativa RD12/0018/0001 and RD12/0018/0015 (RICET). JMB is supported

by Miguel Servet Fellowship CP09/00300.

Author details
1Centro Nacional de Medicina Tropical, Instituto de Salud Carlos III, Sinesio

Delgado, 4, pabellón 13, Madrid 28029, Spain. 2Instituto de Parasitologia y

Biomedicina Lopez Neyra, CSIC, Avenida del Conocimiento, SN, Armilla,

Granada 18100, Spain. 3London School of Hygiene and Tropical Medicine,

Keppel St, London WC1E 7HT, UK. 4Laboratoire de Parasitologie, UMR/CNRS

Chrono-environnement 6249, 19 rue Ambroise Paré, Besançon Cedex 25030,

France. 5Centro de Referencia para el Control de Endemias, Instituto de

Salud Carlos III, Malabo, Equatorial Guinea. 6Centro de Malária e outras

Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade

Nova de Lisboa, Rua da Junqueira 96, Lisbon 1349-008, Portugal.

Received: 18 November 2013 Accepted: 14 January 2014

Published: 17 January 2014

Cordon-Obras et al. Parasites & Vectors 2014, 7:31 Page 8 of 10

http://www.parasitesandvectors.com/content/7/1/31

http://www.biomedcentral.com/content/supplementary/1756-3305-7-31-S1.doc
http://www.biomedcentral.com/content/supplementary/1756-3305-7-31-S2.doc
http://www.biomedcentral.com/content/supplementary/1756-3305-7-31-S3.tiff
http://www.biomedcentral.com/content/supplementary/1756-3305-7-31-S4.tiff


References

1. Simarro P, Franco J, Diarra A, Ruiz Postigo JA, Jannin J: Diversity of human

African trypanosomiasis epidemiological settings requires fine-tuning

control strategies to facilitate disease elimination. Res Rep Trop Med

2013(4):1–6.

2. Kuzoe FA, Schofield CJ: Strategic review of traps and targets for tsetse and African

Trypanosomiasis control, Report of Special Programme for Research and Training

in Tropical Disease (TDR) TDR/IDE/TRY/051. Geneva, Switzerland: World Health

Organisation; 2004.

3. Kgori PM, Modo S, Torr SJ: The use of aerial spraying to eliminate tsetse

from the Okavango Delta of Botswana. Acta Trop 2006, 99(2–3):184–199.

4. Solano P, Torr SJ, Lehane MJ: Is vector control needed to eliminate

gambiense human African trypanosomiasis? Front Cell Infect Microbiol

2013, 3:33.

5. Vreysen MJ, Saleh KM, Ali MY, Abdulla AM, Zhu ZR, Juma KG, Dyck VA,

Msangi AR, Mkonyi PA, Feldmann HU: Glossina austeni (Diptera:

Glossinidae) eradicated on the island of Unguja, Zanzibar, using the

sterile insect technique. J Econ Entomol 2000, 93(1):123–135.

6. Challier A, Gouteaux J, Coosemans M: La limite géographique entre les

sous-espèces Glossina palpalis palpalis (Rob.-Desv.) et Glossina palpalis

gambiensis Vanderplanck en Afrique occidentale. Cahiers - ORSTOM

Entomologie Médicale et Parasitologie 1983, 21:207–220.

7. Gooding RH, Solano P, Ravel S: X-chromosome mapping experiments

suggest occurrence of cryptic species in the tsetse fly Glossina palpalis

palpalis. Can J Zool 2004, 82:1902–1909.

8. Hebert PD, Ratnasingham S, de Waard JR: Barcoding animal life:

cytochrome c oxidase subunit 1 divergences among closely related

species. Proc Biol Sci 2003, 270(Suppl 1):S96–S99.

9. Hebert PD, Cywinska A, Ball SL, de Waard JR: Biological identifications

through DNA barcodes. Proc Biol Sci 2003, 270(1512):313–321.

10. Dyer NA, Furtado A, Cano J, Ferreira F, Odete Afonso M, Ndong-Mabale N,

Ndong-Asumu P, Centeno-Lima S, Benito A, Weetman D, et al: Evidence for

a discrete evolutionary lineage within Equatorial Guinea suggests that

the tsetse fly Glossina palpalis palpalis exists as a species complex.

Mol Ecol 2009, 18(15):3268–3282.

11. Dyer NA, Lawton SP, Ravel S, Choi KS, Lehane MJ, Robinson AS, Okedi LM,

Hall MJ, Solano P, Donnelly MJ: Molecular phylogenetics of tsetse flies

(Diptera: Glossinidae) based on mitochondrial (COI, 16S, ND2) and

nuclear ribosomal DNA sequences, with an emphasis on the palpalis

group. Mol Phylogenet Evol 2008, 49(1):227–239.

12. Gooding RH: Genetic analysis of hybrid sterility in crosses of the tsetse

flies Glossina palpalis palpalis and Glossina palpalis gambiensis (Diptera:

Glossinidae). Can J Zool 1997, 75:1109–1117.

13. Simarro PP: [Current strategies in the campaign against human

trypanosomiasis in the Equatorial Republic of Guinea]. Rev Sanid Hig

Publica (Madr) 1988, 62(5–8):1483–1493.

14. Simarro PP, Franco JR, Ndongo P, Nguema E, Louis FJ, Jannin J: The

elimination of Trypanosoma brucei gambiense sleeping sickness in the

focus of Luba, Bioko Island, Equatorial Guinea. Trop Med Int Health 2006,

11(5):636–646.

15. Cordon-Obras C, Garcia-Estebanez C, Ndong-Mabale N, Abaga S, Ndongo-Asumu

P, Benito A, Cano J: Screening of Trypanosoma brucei gambiense in domestic

livestock and tsetse flies from an insular endemic focus (Luba, Equatorial

Guinea). PLoS Negl Trop Dis 2010, 4(6):e704.

16. Jamonneau V, Ilboudo H, Kabore J, Kaba D, Koffi M, Solano P, Garcia A,

Courtin D, Laveissiere C, Lingue K, et al: Untreated human infections by

Trypanosoma brucei gambiense are not 100% fatal. PLoS Negl Trop Dis

2012, 6(6):e1691.

17. Louis FJ, Kohagne Tongue L, Ebo OEV, Simarro PP: [Organizing an active

screening campaign for human African trypanosomiasis due to

Trypanosoma brucei gambiense]. Med Trop (Mars) 2008, 68(1):11–16.

18. Szymura JM, Lunt DH, Hewitt GM: The sequence and structure of the

meadow grasshopper (Chorthippus parallelus) mitochondrial srRNA,

ND2, COI, COII ATPase8 and 9 tRNA genes. Insect Mol Biol 1996,

5(2):127–139.

19. Lunt DH, Zhang DX, Szymura JM, Hewitt GM: The insect cytochrome

oxidase I gene: evolutionary patterns and conserved primers for

phylogenetic studies. Insect Mol Biol 1996, 5(3):153–165.

20. Zhang DX, Szymura JM, Hewitt GM: Evolution and structural conservation

of the control region of insect mitochondrial DNA. J Mol Evol 1995,

40(4):382–391.

21. Caterino MS, Cho S, Sperling FA: The current state of insect molecular

systematics: a thriving Tower of Babel. Annu Rev Entomol 2000, 45:1–54.

22. Harrison RG: Animal mitochondrial DNA as a genetic marker in

population and evolutionary biology. Trends Ecol Evol 1989, 4(1):6–11.

23. Vogler AP, DeSalle R: Evolution and phylogenetic information content of

the ITS-1 region in the tiger beetle Cicindela dorsalis. Mol Biol Evol 1994,

11(3):393–405.

24. Pereira JO, Freitas BM, Jorge DM, Torres DC, Soares CE, Grangeiro TB:

Genetic variability in Melipona quinquefasciata (Hymenoptera, Apidae,

Meliponini) from northeastern Brazil determined using the first internal

transcribed spacer (ITS1). Genet Mol Res 2009, 8(2):641–648.

25. Bower JE, Dowton M, Cooper RD, Beebe NW: Intraspecific concerted

evolution of the rDNA ITS1 in Anopheles farauti sensu stricto (Diptera:

Culicidae) reveals recent patterns of population structure. J Mol Evol

2008, 67(4):397–411.

26. Gouteux JP, Lancien J: [The pyramidal trap for collecting and controlling

tsetse flies (Diptera: Glossinidae). Comparative trials and description of

new collecting technics]. Trop Med Parasitol 1986, 37(1):61–66.

27. Simarro PP, Mas J, Lancien J, Ona Sima F, Mateo MJ, Roche J:

[Epidemiology of human trypanosomiasis in the Luba focus, in

Equatorial Guinea]. Rev Sanid Hig Publica (Madr) 1990, 64(9–10):517–534.

28. Cano J, Descalzo MA, Ndong-Mabale N, Ndong-Asumu P, Bobuakasi L,

Nzambo-Ondo S, Benito A, Roche J: Predicted distribution and movement

of Glossina palpalis palpalis (Diptera: Glossinidae) in the wet and dry

seasons in the Kogo trypanosomiasis focus (Equatorial Guinea). J Vector

Ecol 2007, 32(2):218–225.

29. Cano J, Descalzo MA, Ndong-Mabale N, Ndongo-Asumu P, Bobuakasi L,

Buatiche JN, Nzambo-Ondo S, Ondo-Esono M, Benito A, Roche J: Spatial

and temporal variability of the Glossina palpalis palpalis population in

the Mbini focus (Equatorial Guinea). Int J Health Geogr 2007, 6:36.

30. Brunhes J, Cuisance D, Geoffroy B, Hervy JP, Lebbe J: Les glossines ou

mouches tsé-tsé. Logiciel d’identification. Glossina Expert. Manuel illustré

d’utilisation. VI, ORSTOM, Paris: Université Paris; 1998.

31. Simon C, Frati F, Bechenbach A, Crespi B, Liu H, Flook P: Evolution,

weighting and phylogenetic utility of mitochondrial gene sequences

and a compilation of conserved polymerase chain reaction primers.

Ann Entomol Soc Am 1994, 87:651–701.

32. Hall TA: BioEdit: a user-friendly biological sequence alignment editor and

analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999,

41:95–98.

33. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5:

molecular evolutionary genetics analysis using maximum likelihood,

evolutionary distance, and maximum parsimony methods. Mol Biol Evol

2011, 28(10):2731–2739.

34. Schwarz GE: Estimating the dimension of a model. Ann Stat 1978, 2(6):461–464.

35. Akaike H: A new look at statistical model identification. IEEE Trans

Automat Control 1974, 6(19):716–723.

36. Tamura K: Estimation of the number of nucleotide substitutions when

there are strong transition-transversion and G + C-content biases.

Mol Biol Evol 1992, 9(4):678–687.

37. Tamura K, Nei M: Estimation of the number of nucleotide substitutions in

the control region of mitochondrial DNA in humans and chimpanzees.

Mol Biol Evol 1993, 10(3):512–526.

38. Hasegawa M, Kishino H, Yano T: Dating of the human-ape splitting by a

molecular clock of mitochondrial DNA. J Mol Evol 1985, 22(2):160–174.

39. Felsenstein J: Confidence-limits on phylogenies- an approach using the

bootstrap. Evolution 1985, 39:783–791.

40. Saitou N, Nei M: The neighbor-joining method: a new method for recon-

structing phylogenetic trees. Mol Biol Evol 1987, 4(4):406–425.

41. Drummond AJ, Rambaut A: BEAST: Bayesian evolutionary analysis by

sampling trees. BMC Evol Biol 2007, 7:214.

42. Hastings WK: Monte Carlo sampling methods using Markov chains and

their applications. Biometrika 1970, 57(1):97–109.

43. Yule GU: A mathematical theory of evolution, based on the conclusions

of Dr. JC Willis, FRS. Philos Trans R Soc Lond B Biol Sci 1925, 213:21–87.

44. Gernhard T: The conditioned reconstructed process. J Theor Biol 2008,

253(4):769–778.

45. Heltshe JF, Forrester NE: Estimating species richness using the jackknife

procedure. Biometrics 1983, 39(1):1–11.

46. Smith EP, van Belle G: Nonparametric estimation of species richness.

Biometrics 1984, 40:119–129.

Cordon-Obras et al. Parasites & Vectors 2014, 7:31 Page 9 of 10

http://www.parasitesandvectors.com/content/7/1/31



47. Bandelt HJ, Forster P, Rohl A: Median-joining networks for inferring

intraspecific phylogenies. Mol Biol Evol 1999, 16(1):37–48.

48. Tamura K, Nei M, Kumar S: Prospects for inferring very large phylogenies

by using the neighbor-joining method. Proc Natl Acad Sci U S A 2004,

101(30):11030–11035.

49. Alvar J, Mas-Coma S, Carrasco M: Modern history and physical geography

of Equatorial Guinea. Rev Sanid Hig Publica (Madr) 1996, 2–3:77–83.

50. Worobey M, Telfer P, Souquiere S, Hunter M, Coleman CA, Metzger MJ,

Reed P, Makuwa M, Hearn G, Honarvar S, et al: Island biogeography reveals

the deep history of SIV. Science 2010, 329(5998):1487.

51. Deitz KC, Athrey G, Reddy MR, Overgaard HJ, Matias A, Jawara M, Della

Torre A, Petrarca V, Pinto J, Kiszewski AE, et al: Genetic isolation within the

malaria mosquito Anopheles melas. Mol Ecol 2012, 21(18):4498–4513.

52. Post RJ, Flook PK, Millest AL, Cheke RA, McCall PJ, Wilson MD, Mustapha M,

Somiari S, Davies JB, Mank RA, et al: Cytotaxonomy, morphology and

molecular systematics of the Bioko form of Simulium yahense (Diptera:

Simuliidae). Bull Entomol Res 2003, 93(2):145–157.

53. Solano P, Ravel S, Bouyer J, Camara M, Kagbadouno MS, Dyer N, Gardes L,

Herault D, Donnelly MJ, De Meeus T: The population structure of Glossina

palpalis gambiensis from island and continental locations in Coastal

Guinea. PLoS Negl Trop Dis 2009, 3(3):e392.

54. Camara M, Caro-Riano H, Ravel S, Dujardin JP, Hervouet JP, De Meeus T,

Kagbadouno MS, Bouyer J, Solano P: Genetic and morphometric evidence

for population isolation of Glossina palpalis gambiensis (Diptera: Glossi-

nidae) on the Loos islands, Guinea. J Med Entomol 2006, 43(5):853–860.

55. Moreno M, Salgueiro P, Vicente JL, Cano J, Berzosa PJ, de Lucio A, Simard F,

Caccone A, Do Rosario VE, Pinto J, et al: Genetic population structure of

Anopheles gambiae in Equatorial Guinea. Malar J 2007, 6:137.

56. Liao D: Concerted evolution: molecular mechanism and biological

implications. Am J Hum Genet 1999, 64(1):24–30.

57. Marshall JC, Pinto J, Charlwood JD, Gentile G, Santolamazza F, Simard F, del

la Torre A, Donnelly MJ, Caccone A: Exploring the origin and degree of

genetic isolation of Anopheles gambiae from the islands of Sao Tome

and Prıncipe, potential sites for testing transgenic-based vector control.

Evol Appl 2008, 4(1):631–644.

58. Liao D, Pavelitz T, Kidd JR, Kidd KK, Weiner AM: Concerted evolution of the

tandemly repeated genes encoding human U2 snRNA (the RNU2 locus)

involves rapid intrachromosomal homogenization and rare

interchromosomal gene conversion. EMBO J 1997, 16(3):588–598.

59. Liao D, Weiner AM: Concerted evolution of the tandemly repeated genes

encoding primate U2 small nuclear RNA (the RNU2 locus) does not

prevent rapid diversification of the (CT)n.(GA)n microsatellite embedded

within the U2 repeat unit. Genomics 1995, 30(3):583–593.

60. Williams B, Dransfield R, Brightwell R: The control of tsetse flies in relation

to fly movement and trapping efficiency. J Appl Biol 1992, 29:163–179.

61. Bursell E, Taylor P: An energy budget for Glossina (Diptera: Glossinidae).

Bull Entomol Res 1980, 78:281–291.

62. Bursell E: Quantitative aspects of proline utilization during flight in tsetse

flies. Physiol Entomol 1978, 3:265–272.

63. Brady J: The circadian organization of behaviour: time keeping in the

tsetse fly, a model system. Adv Stud Behav 1988, 18:153–159.

64. Mateu E, Comas D, Calafell F, Perez-Lezaun A, Abade A, Bertranpetit J: A tale

of two islands: population history and mitochondrial DNA sequence

variation of Bioko and Sao Tome, Gulf of Guinea. Ann Hum Genet 1997,

61(Pt 6):507–518.

65. Vale GA, Bursell E, Hargrove JW: Catching-out the tsetse fly. Parasitol Today

1985, 1(4):106–110.

66. Hargrove JW: Optimized simulation of the control of tsetse flies Glossina

pallidipes and G. m. morsitans (Diptera: Glossinidae) using odour-baited

targets in Zimbabwe. Bull Entomol Res 2003, 93(1):19–29.

67. Gooding RH, Krafsur ES: Tsetse genetics: contributions to biology,

systematics, and control of tsetse flies. Annu Rev Entomol 2005,

50:101–123.

68. Krafsur ES: Tsetse fly population genetics: an indirect approach to

dispersal. Trends Parasitol 2003, 19(4):162–166.

69. Simo G, Njiokou F, Mbida Mbida JA, Njitchouang GR, Herder S, Asonganyi T,

Cuny G: Tsetse fly host preference from sleeping sickness foci in Cameroon:

epidemiological implications. Infect Genet Evol 2008, 8(1):34–39.

70. Clausen PH, Adeyemi I, Bauer B, Breloeer M, Salchow F, Staak C: Host

preferences of tsetse (Diptera: Glossinidae) based on bloodmeal

identifications. Med Vet Entomol 1998, 12(2):169–180.

71. Melachio TT, Simo G, Ravel S, De Meeus T, Causse S, Solano P, Lutumba P,

Asonganyi T, Njiokou F: Population genetics of Glossina palpalis palpalis

from central African sleeping sickness foci. Parasit Vectors 2011, 4:140.

72. Spath J: Feeding patterns of three sympatric tsetse species (Glossina

spp.) (Diptera: Glossinidae) in the preforest zone of Cote d’Ivoire.

Acta Trop 2000, 75(1):109–118.

doi:10.1186/1756-3305-7-31
Cite this article as: Cordon-Obras et al.: Glossina palpalis palpalis

populations from Equatorial Guinea belong to distinct allopatric clades.
Parasites & Vectors 2014 7:31.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Cordon-Obras et al. Parasites & Vectors 2014, 7:31 Page 10 of 10

http://www.parasitesandvectors.com/content/7/1/31


	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Sample collection
	Molecular analysis
	Phylogenetic analysis
	Assessment of genetic diversity
	Phylogeographic analysis

	Results
	Mitochondrial markers
	Nuclear ITS1 marker

	Discussion
	Conclusions
	Additional files
	Competing interests
	Authors’ contribution
	Acknowledgments
	Author details
	References

