
VU Research Portal

Glotaran: A Java-Based Graphical User Interface for the R Package TIMP

Snellenburg, J.J.; Laptenok, S.; Seger, R.; Mullen, K.M.; van Stokkum, I.H.M.

published in
Journal of Statistical Software

2012

DOI (link to publisher)
10.18637/jss.v049.i03

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
Snellenburg, J. J., Laptenok, S., Seger, R., Mullen, K. M., & van Stokkum, I. H. M. (2012). Glotaran: A Java-
Based Graphical User Interface for the R Package TIMP. Journal of Statistical Software, 49(3), 1-22.
https://doi.org/10.18637/jss.v049.i03

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 24. Aug. 2022

https://doi.org/10.18637/jss.v049.i03
https://research.vu.nl/en/publications/340b2559-7db6-4cfc-87fb-3ed5b48f838d
https://doi.org/10.18637/jss.v049.i03

JSS Journal of Statistical Software
June 2012, Volume 49, Issue 3. http://www.jstatsoft.org/

Glotaran: A Java-Based Graphical User Interface for

the R Package TIMP

Joris J. Snellenburg

VU University Amsterdam
Sergey P. Laptenok

VU University Amsterdam
Ralf Seger

Augsburg University

Katharine M. Mullen

National Institute of
Standards and Technology

Ivo H. M. van Stokkum

VU University Amsterdam

Abstract

In this work the software application called Glotaran is introduced as a Java-based
graphical user interface to the R package TIMP, a problem solving environment for fit-
ting superposition models to multi-dimensional data. TIMP uses a command-line user
interface for the interaction with data, the specification of models and viewing of analysis
results. Instead, Glotaran provides a graphical user interface which features interactive
and dynamic data inspection, easier – assisted by the user interface – model specification
and interactive viewing of results. The interactivity component is especially helpful when
working with large, multi-dimensional datasets as often result from time-resolved spec-
troscopy measurements, allowing the user to easily pre-select and manipulate data before
analysis and to quickly zoom in to regions of interest in the analysis results. Glotaran

has been developed on top of the NetBeans rich client platform and communicates with
R through the Java-to-R interface Rserve. The background and the functionality of the
application are described here. In addition, the design, development and implementation
process of Glotaran is documented in a generic way.

Keywords: Glotaran, TIMP, global analysis, target analysis, time-resolved spectroscopy, Java.

1. Introduction

TIMP was introduced as an R package for modeling multi-way spectroscopic measurements
by Mullen and Van Stokkum (2007). It was born out of the need for an open-source, platform-
independent and extensible problem-solving environment for fitting a wide range of models to

http://www.jstatsoft.org/

2 Glotaran: A Java-Based GUI for TIMP

multi-way spectroscopy data, i.e., spectra measured as a function of one or more independent
experimental variables such as time, pH, pD, temperature, excitation wavelength or quencher
concentration. In addition it has been used in the analysis of microscopy data by Laptenok,
Mullen, Borst, Van Stokkum, Apanasovich, and Visser (2007) and Laptenok, Borst, Mullen,
Van Stokkum, Visser, and Van Amerongen (2010). TIMP has a very flexible command line
interface, typically used in a scripted manner, that enables the manipulation of data, speci-
fication of the model(s), and viewing of the results through a few user-accessible functions.
For the user the primary difficulty in operating TIMP lies in knowing the syntax of these
functions and their many options. Another difficulty is that all steps of the analysis are spec-
ified in advance: The data to be read, what preprocessing is to be done (such as averaging,
window selection or baseline-subtraction), what model to use and which traces and spectra to
plot. There is little to no (visual) feedback until the analysis has successfully completed. The
results produced then are relatively static; zooming is possible to an extent but with limited
resolution, and if a region of interest falls outside of the selection of plotted traces then the
plot command needs to be re-run with different parameters. In order to address these issues,
a graphical user interface (GUI) for TIMP, called Glotaran, was created.

1.1. Introducing Glotaran

Glotaran was designed to extend TIMP with: (1) Interactive data exploration, allowing a
user to interactively view all data rather than make a selection upfront, (2) easier (visual)
modeling, to assist the user in building complex models without making typographical mis-
takes, and (3) interactive visualization of analysis results, to quickly assess the quality of
fit. Glotaran stands for global and target analysis, the method by which these measure-
ments can effectively be modeled and analyzed as described by Van Stokkum, Larsen, and
Van Grondelle (2004). Development on Glotaran started at the physics department of the
VU University Amsterdam as a GUI for the R package TIMP as reported by Snellenburg,
Van Stokkum, and Mullen (2008). As such, TIMP still provides the required mathematical
framework and computational algorithms for modeling and data analysis. In short, Glotaran

was designed to exploit the functionality already existing in TIMP, address certain limitations
(dynamic, interactive charts rather than static plots), provide new functionality (interactive
data exploration and result viewing, and visual modeling) and simplify the overall process
of model-based data analysis by providing an easy-to-use GUI. Glotaran aims to lower the
barrier to access the advanced analysis and modeling capabilities of TIMP by eliminating the
need to learn R syntax (R Development Core Team 2012) or specific TIMP code, while at the
same time maintaining compatibility between models written in TIMP and models designed
in Glotaran.

1.2. Background and motivation

Development of Glotaran was fueled by the desire to provide an easy-to-use modeling and
data analysis tool for use by scientists in the field of molecular biophysics. These scientists
use state-of-the-art spectroscopy and microscopy measurement techniques to study the mech-
anisms underlying the behavior of complex bio-molecular systems, often resulting in large and
complex time-resolved spectroscopy and microscopy datasets. Because of the complexity of
the physical processes underlying these data, advanced modeling and data analysis techniques
such as global and target analysis are often necessary to analyze and derive models from these

Journal of Statistical Software 3

measurements, as explaind by Van Stokkum et al. (2004). The release of TIMP in 2007 was
the first step in the realization of an open-source, platform-independent and extensible data
analysis and modeling tool for use with such data. However, TIMP – just like R – is limited
to a command-line-interface, which means that using it requires knowledge of R syntax and
TIMP-specific function calls and their arguments. Developing a full-fledged graphical user
interface for an R package such as TIMP is no easy task, demonstrated by the wide variety of
different R GUI solutions that exist (Grosjean 2010). As introduced in this special issue by
Valero-Mora and Ledesma (2012), nowadays there are sophisticated front-ends for R such as
RKWard (Rödiger, Friedrichsmeier, Kapat, and Michalke 2012) and Deducer (Fellows 2012)
– an extension of JGR (Helbig and Theus 2005) – which feature integrated plugin support,
facilitating easier creation of GUI’s for new and existing R packages. For us the primary rea-
son to take a different approach was the lack of a mature integrated development environment
(IDE) for R such as is available for Java and the specific set of requirements that we set out
for the project.

In this paper we address various design considerations in GUI development for an R package.
In Section 2 we discuss the features of Glotaran along with an example case study and make
the comparison to working with TIMP. In addition we address the issue of the visualization
of data, model and analysis results. In Section 3 we define the specific application require-
ments we set out for the project and explain the design choices we made. In Section 4 we
have documented the resulting applications’ architecture, and discuss the complications of
interfacing with R. Finally, the availability of the application and a discussion on future work
can be found along with some concluding remarks in Section 5.

2. The application

Glotaran is a Java-based rich client platform (RCP) application that has been built on top of
the NetBeans RCP (Böck 2011). As such the application consists of a collection of modules
that each provide various aspects of the functionality of the application as a whole. In
addition to the basic functionality provided by the platform’s own modules, Glotaran comes
with various modules of its own providing the higher level functionality that turns it into
a useful application. Below is a list of the application’s core functionality. Most of these
features are illustrated in the screenshots that follow.

❼ Support for a well defined project structure consisting of a main project folder with sub
folders containing datasets, models, analysis schemes, results and (optionally) simulation
input files.

❼ Support for reading in various known data file formats, either in plain text or binary
format.

❼ Interactive data exploration by means of a custom designed data editor, specific to the
type of data shown.

❼ A visual modeling tool, or analysis scheme editor to specify a model for analysis, link it to
the datasets to which the model should be applied and specify the starting parameters
for analysis and configure the required run time parameters such as the number of
iterations the analysis should run for.

4 Glotaran: A Java-Based GUI for TIMP

❼ Functionality that connects to a running R process, translates the models to R function
calls to TIMP and retrieves the results of the computations after analysis in TIMP has
completed.

❼ Interactive results inspection by means of a custom designed editor, specific to the type
of data shown.

The modularity of the application means that in theory much of the application’s functionality
can easily be extended, replaced or stripped out, simply by removing, adding or changing the
existing modules, without breaking the application as a whole, as long as the individual
modules follow good coding practices and depend only on publicly accessible application
programming interfaces (APIs) from the NetBeans platform or Glotaran.

2.1. Interactive data exploration

Glotaran currently supports two types of data: Time-resolved spectroscopy data and time-
resolved microscopy data. Both data-types differ in the way they should be presented to
the user and therefore have two different visualization editors. Throughout this paper the
spectroscopy data editor is shown as an example.

The spectroscopy data editor currently has three tabs: The first Data tab shows the actual
data, the second SVD tab contains the tools to perform and analyze the singular value de-
composition of the data-matrix and the third Info tab shows some general properties of the
data-file when available. The data editor allows for some basic pre-processing of the data
such as window selection, averaging and sampling, baseline subtraction and outlier detection.
Because the data are directly visualized, and because the user can scroll through the data and
zoom in on interesting regions, the pre-processing becomes much easier than in TIMP where
one often needs to make an educated guess as to what region is of interest and, for instance,
whether baseline subtraction is necessary.

Time-resolved spectroscopy data are measured as a function of the experimental spectral
variable wavelength λ and the independent experimental variable time t relative to the instant
of excitation. The model underlying the data matrix Ψ is a superposition of ncomp components
given by the equation

Ψ(λ, t) =

ncomp∑

l=1

cl(t)ǫl(λ) (1)

where cl and ǫl are the unknown concentration profile and spectrum of component l respec-
tively. Figure 1 shows the time-resolved spectroscopy data-editor with an example of such
data.

In this editor the value of the measurement (fluorescence intensity, absorption, etc.) is shown
as a function of time (on the vertical axis) and wavelength (on the horizontal axis). The sliders
can be manipulated to show one specific time-trace (at a certain wavelength) or spectrum (at
a specific time) from the entire dataset as indicated by the overlaying crosshair lines. This
allows the user to scan through large datasets quickly and investigate particularly interesting
regions easily. In Figure 1 we observe both positive and negative difference absorption (color
changes) which decay over time. This indicates that an excited state is formed and decays in
less than one nanosecond. The aim of this experiment is to discover the mechanism of this
fast decay (see Hippius et al. 2007).

Journal of Statistical Software 5

Figure 1: Time-resolved spectroscopy data editor; showing an example of femtosecond tran-
sient absorption spectroscopy data (from Hippius et al. 2007, Figure 5).

Singular value decomposition

The first step in modeling these data typically involves looking at the singular value decom-
position of the dataset. The singular value decomposition (SVD) is a matrix factorization
technique which can be used to explore the number of spectrally and temporally independent
components in the data matrix (Golub and Van Loan 1996), which is an important aspect of
defining an initial model. The SVD of the data-matrix is defined as:

Ψ(λ, t) =

nmax∑

n=1

un(t)wn(λ)SV n (2)

where nmax is the minimum of the number of rows and columns.

The singular values give an indication of the number of independent components in the
data. With ncomp independent components and noise-free data there would be exactly ncomp

significant singular values (different from 0), defined as: SV1 ≥ SV2 ≥ SVncomp
> SVncomp+1 =

... = 0. In the case of data with a small amount of noise the significant singular values are
no longer as clearly defined but typically still stand out from the rest. This is best captured
in the form of a screeplot where the singular values are plotted on a logarithmic range axis
in decreasing order, see Figure 2 (top panel). Furthermore, the accompanying ncomp left and
right singular vectors are clearly structured, see Figure 2 (left and right panel respectively).

6 Glotaran: A Java-Based GUI for TIMP

Figure 2: Singular value decomposition of the data-matrix of the dataset from Figure 1. Top:
Screeplot. Bottom: The first five left and right singular vectors are plotted respectively in
black, red, blue, green and cyan.

Initially only the plot of the singular values and the corresponding first left and right singular
vectors are shown. The user can then change the number of left and right singular vectors
shown in increments of one and at each step judge the quality of the structure in each of
the singular vectors. Once the singular vectors start showing too little structure or too noisy
behavior this is an indication that the number of independent component has been exceeded.

2.2. Visual modeling

After the initial pre-processing of the data is done and a dataset is created, a first attempt can
be made to model and fit these data. The best approach is often to start as simple as possible,
choosing reasonable starting values for the minimum set of parameters that is expected to
adequately describe the data. The chosen parameters should then be optimized by running
the model for a few iterations and re-adjusting the starting values based on the results. Upon
convergence of the chosen model the quality of the fit can be judged from the fitted spectra
and time traces. At this point careful inspection of the SVD of the residual matrix can justify
gradually increasing the complexity of the model to account for any misfit. This process of
posing a model, fitting, inspecting the results and re-adjusting the model is called interactive
modeling (Van Stokkum and Bal 2006). Figure 3 shows a screenshot of the analysis scheme
editor where a large part of this process takes place.

The analysis scheme editor enables the user to create and edit models (as part of the analysis
scheme). Figure 3 shows a screenshot of the editor together with the Palette and the Property
editor. The palette is used to drag various modeling parameters onto the model view which
can then be changed by selecting them and using the Property editor. For each parameter

Journal of Statistical Software 7

Figure 3: Screenshot of the application window under Linux with the following components:
(A) analysis scheme editor showing a model for global analysis indicating all parameters θ

that define the concentration cl,λ(t, θ), (B) the corresponding palette and (C) property editor
(discussed in the text). (D) shows the project folder structure with the used datasets, models,
analysis scheme and resulting analysis files. (E) is the context menu for the analysis scheme
file from which the analysis is invoked. The entire demo project shown in this screenshot is
available from the New Project... item in the application menu.

selected only the properties that are relevant given the selected model are shown.

The analysis scheme editor provides an overview of the whole analysis process. A model
consisting of a list of parameters is applied to one or more datasets and this is then linked
to an output window. The model specification view consists of a so-called tree table view
containing a list of parameters. Most parameter nodes can be expanded to view the underlying
parameters, as indicated by the ‘o-’ symbol. The model specification is directly linked to a
model specification file in the project’s model directory in which the parameters of the models
are stored. The KinPar node represents a number of kinetic rates. The IRFPar node represents
the instrument response function (IRF). The Dispersion node models dispersion of the IRF
in case it has a wavelength dependent character. WeightPar can be used to give weights to
certain regions of the data indicated by two numbers specifying the interval in one or two
dimensions, and one number specifying the weight to be applied there. Finally, the CohSpec

node holds the specification for the coherent artefact; typically modeled after the IRF.

The current visual modeling implementation is rather rudimentary. Another and perhaps
more intuitive way is to directly visualize the applied target scheme in the form of a visual
diagram. In principle this is supported by the NetBeans RCP and this issue is addressed in
Section 5.2 on future work.

8 Glotaran: A Java-Based GUI for TIMP

Figure 4: Progression of the sum of squares of errors. The constant value of the SSE from
the 4th to the 5th iteration indicates convergence.

Figure 5: The singular value decomposition of the residual matrix. The first singular vector
is shown in black; the second in red.

2.3. Parameter estimation

The above defined model for the concentration of each component l depends on all parameters
θ indicated in Figure 3. Thus Equation 1 can be represented mathematically:

Ψ(λ, t) =

ncomp∑

l=1

cl,λ(t, θ)ǫl(λ) (3)

Now that a model for the concentration of each component has been defined, the unknown
parameters θ and the conditionally linear parameters ǫl(λ) can be estimated by means of vari-
able projection (Golub and LeVeque 1979; Bates and Watts 1988; Mullen and Van Stokkum
2009). The input settings for the parameter estimation are the weight parameters and the
number of iterations (both indicated in Figure 3).

Judging the quality of the fit is now a three step process. First convergence of the fit can be
determined from the plot showing the progression of the sum of square of errors (SSE), see
Figure 4. When the SSE has not yet converged, more iterations are needed.

Once convergence has been established, the second step is to inspect the SVD of the residual
matrix. Any significant residual structure in the first two left and right singular vectors could
indicate a potential misfit and the need to model another component, or that the contribution
of different regions to the parameter estimation should be reweighted. The SVD of the residual
matrix is shown in Figure 5.

Journal of Statistical Software 9

Figure 6: The fitted traces overlaid on the original data. The left panel shows the original
data, overlaid with the fitted dispersion curve. The data are shown along with the fitted
traces for the time point and wavelength indicated by the cross-hair on the chart.

When the SVD of the residual matrix shows no significant residual structure, the next step
is to look at the results of the fit. Here it helps to first look at the original data overlaid with
the fitted traces, as in Figure 6.

At this point the user can decide to accept the fit and next check the precision of the individual
estimated parameters by looking at the standard errors outputted by the program. Finally, if
the analysis is deemed successful, the last step in the process of interactive modeling consists
of inspecting the analysis results and interpreting the resulting spectra and concentration
profiles, as discussed in the next section. The overview of the fitted traces shows the original
data, possibly with an overlaid dispersion curve estimating the maximum of the IRF. The
scrollbars to either side of the data window can be used to inspect the fitted time traces and
spectra at various locations.

2.4. Interactive results inspection

The results window for the analysis of time-resolved spectroscopy data consists of a total of
4 tabs. The second tab was already presented in Figure 6; it gives an idea of the quality of
the fit and shows the estimated dispersion parameters (if any). In this tab the user is able
to scroll through the fitted data and take snapshots of selected time traces or spectra, which
are then shown together in the third and fourth tab. The first tab is the most important
because here the results of the analysis are summarized. As an example the results of the
target analysis of the data presented in Figure 1 are shown in Figure 7.

In Figure 7 are shown: The SVD of the complete residual matrix (bottom row), the estimated
kinetic parameters (top right), the spectra (SAS or EAS and DAS), the normalized spectra,
and the concentration profiles. The mathematical models underlying the various spectra are
discussed below.

10 Glotaran: A Java-Based GUI for TIMP

Figure 7: Overview tab showing the results of target analysis (from Hippius et al. 2007,
Figure 6 and 7). The top row shows the estimated SAS (see Equation 6), the DAS (see Equa-
tion 4), which are computed from the SAS, and the estimated parameters. The middle row
displays the normalized spectra and the concentration profiles of the components. Here black
represents the unrelaxed excited state, red and blue represent the relaxed excited state decay-
ing fast and slow respectively, green is the charge transfer state and finally cyan represents
the coherent artifact. The bottom row shows the SVD of the residual matrix.

DAS are decay associated spectra, and the model of Equation 1 then reads

Ψ(λ, t) =

ncomp∑

l=1

cDAS
l (t, θ)DASl(λ) (4)

where cDAS
l (t, θ) is the exponentially decaying concentration of component l convolved with

the IRF.

More complicated concentrations are linear combinations of exponential decays, which are
again cDAS

l (t, θ). They are often described as compartmental models (Godfrey 1983; Bates
and Watts 1988). In a sequential or unbranched unidirectional model the associated spectra

Journal of Statistical Software 11

Figure 8: Screenshot of the application window under Mac OS X displaying the (A) analysis
scheme editor showing a model for target analysis, (B) the corresponding palette and (C)
the property editor, (D) the project folder structure with the used datasets, models, analysis
scheme and resulting analysis files and (E) the progress bar showing the current running
analysis. Note that here the kinetic parameters are specified in the form of a Kmatrix node,
which opens in an external editor shown in Figure 9. The entire demo project shown in this
screenshot is available from the New Project... item in the application menu.

are called evolution associated spectra (EAS), and the model of Equation 1 then reads

Ψ(λ, t) =

ncomp∑

l=1

cEAS
l (t, θ)EASl(λ) (5)

With successively increasing lifetimes (an example is depicted in Figure 13) the EAS visualize
the spectral evolution.

A compartmental model inspired by scientific hypotheses and assumptions is termed a target
model, and this type of global analysis is referred to as target analysis. With a target model
the associated spectra are called species associated spectra (SAS), and the model of Equation 1
then reads

Ψ(λ, t) =

ncomp∑

l=1

cSAS
l (t, θ)SASl(λ) (6)

Both cEAS
l (t, θ) and cSAS

l (t, θ) are linear combinations of all cDAS
l (t, θ). Thus from the EAS

or SAS new DAS can be computed, which obey the assumptions of the kinetic model used.

The top row of the overview tab of the results shows the estimated EAS (or SAS), the DAS
computed from the EAS (or SAS), and the estimated parameters. When a sequential kinetic
model is used, the estimated parameters are the lifetimes of the components; when a target

12 Glotaran: A Java-Based GUI for TIMP

Figure 9: Screenshot of the Kmatrix editor. Here (A) is the matrix that describes the spectral
evolution, the rows and columns represent the different compartments, a non-zero value in
a particular cell indicates transfer from the column to the row compartment. For example,
in this case compartment 1 transfers into compartment 2 and 3. The starting values for
the rates of transfer are specified in (B), the index corresponds to the number in (A). In
the case of branching (one compartment transfers to 2 or more different compartments) so
called scaling parameters can be defined in (C) with the starting values specified in (D) which
indicates the ratio of branching. In this case compartment 1 transfers with a rate of 8.7% of
the total rate to compartment 2 and 91.3% of the total rate to compartment 3. In (E) spectral
equality constraints can be specified, here the spectrum of compartment 2 is made equal to
the spectrum of compartment 3 from 10 to 1000 units (nm). In (F) the initial population of
the compartments (directly after the moment of excitation) is given. In this case only the
first compartment is initially populated. Finally in (G) it is possible to force parts of the
spectrum of a compartment to zero. The lower and upper wavelength can be specified. This
whole K-matrix is schematically depicted in Figure 11.

kinetic model is used, these are the microscopic rate constants. For easier comparison the
normalized spectra are also displayed. A summary of the estimated parameters is shown in a
scrollable text field. The concentration profiles of the components are displayed below that.
If a coherent artifact was modeled, it will be shown here, and can also be shown in the EAS
(or SAS) by toggling the ShowCohSpec in the toolbar of the window (not shown here). Finally
the SVD of the residual matrix is again displayed to inspect the quality of the fit and help
determine if there are any trends left in the residuals that might need to be modeled. For
example, severe misfit of the dynamics of a particular component can cause the shape of the
first right singular vector to resemble the SAS of that component.

Journal of Statistical Software 13

The results of the target analysis of the data from Figure 1 have already been presented in
Figure 7. The GUI screenshots showing the model specification for this analysis are shown in
Figure 8 and Figure 9.

2.5. Comparison with TIMP

To provide an idea of the difference between working with the graphical user interface in
Glotaran versus the command line interface in R, the step-by-step commands to reproduce the
above target analysis with TIMP are given below. In Glotaran the readData and preProcess

commands are not used because data handling and preprocessing is taken care of by the GUI
but they are included here for completeness’ sake. The initModel and fitModel commands
are automatically generated by Glotaran (and typically hidden from the user). First load
the TIMP package into memory.

R> library("TIMP")

Second, create a dataset by reading in the demo data file using the readData function. Note
that this data file can be obtained from the resources folder of a Demo project generated
using Glotaran.

R> dataset <- readData(

+ "demo_data_Hippius_etal_JPCC2007_111_13988_Figs5_9.ascii")

Third, select a window from the data to analyze using the preProcess function. Here the
entire file is selected because the demo dataset has already been pre-processed.

R> dataset <- preProcess(data = dataset, sel_time = c(1, 335))

Fourth, initialize the model using the function initModel. This includes specifying values for
the following arguments: kinpar, kmat, kinscal and jvec (detailing the (kinetic) model to
be used for analysis), clpequspec and clpequ (specifying what spectral constraints should be
used), irfpar, parmu, lamdac and dispmufun (specifying the parameters related to the IRF
and the dispersion thereof), cohspec (detailing the type of coherent artifact to be included
in the model) and finally fixed (specifying which parameters should remain fixed during
optimization).

R> model <- initModel(mod_type = "kin", kinpar = c(9.5, 0.35, 0.043, 0.02),

+ kmat = array(c(0, 1, 1, 0, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 4, 0, 1, 2,

+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), dim = c(4, 4, 2)),

+ jvec = c(1.0, 0.0, 0.0, 0.0), kinscal = c(0.087, 0.913),

+ irfpar = c(1.2, 0.05), lambdac = 550.0,

+ parmu = list(c(0.3, -0.1, 0.01)), dispmufun = "poly",

+ positivepar = c("kinpar"), cohspec = list(type = "irf"),

+ clpequspec = list(list(to = 3, from = 2, low = 10.0, high = 1000.0)),

+ clpequ = 1, weightpar = list(c(NA, NA, 280.0, 550.0, 0.1),

+ c(NA, NA, 720.0, 890.0, 0.2)), fixed = list(kinpar = 1,

+ kinscal = c(1, 2), jvec = c(1, 2, 3, 4), clpequ = 1:1),

+ seqmod = TRUE)

14 Glotaran: A Java-Based GUI for TIMP

Finally, to fit the model to the data and plot the results the function fitModel should be
called.

R> gtaFitResult <- fitModel(data = list(dataset),

+ modspec = list(model), modeldiffs = list(linkclp = list(1)),

+ opt = kinopt(iter = 5, stderrclp = TRUE, kinspecerr = TRUE, plot = TRUE,

+ linrange = 1, xlab = "Time (ps)", ylab = "Wavelength (nm)",

+ plotkinspec = TRUE, selectedtraces = seq(1, dataset@nl, by = 10)))

The complexity of the commands above shows the advantage of using a GUI: Typographi-
cal mistakes are eliminated and model specification is simplified. For instance, compare the
specification of the K-matrix in TIMP (the kmat variable in the commands above) and the
model specification in Glotaran (see Figure 9). In TIMP the K-matrix and the scaling pa-
rameters are specified in a single array. which is hard to read and prone to typographical
errors. In Glotaran, these matrices are shown separately and correctly formatted, facilitating
specification of the correct model.

3. Requirements and design choices

The primary user requirements for Glotaran are determined by the functionality and limita-
tions of the package TIMP for which it is intended to be the graphical front end. Ideally,
Glotaran would allow access to all of TIMP’s functionality while extending it with new and
useful features. Currently most of the functionality of TIMP is accessible from Glotaran.
Datasets and models created in Glotaran are translated into data and models that can be
used in TIMP. Some additional requirements, based on practical considerations and feedback
on initial versions are summarized below.

❼ The application must be open-source and platform-independent.

❼ It should implement (most of) the functionality already provided by TIMP; partially
this is achieved by using TIMP as the computational back-end for analysis.

❼ It should be designed to facilitate interactive data-exploration, without any scripting or
code manipulation on the user’s end.

❼ It should support a simple, preferably visual, model specification that uses an intu-
itive graphical user interface, rather than a language based (syntax-sensitive) model
specification.

❼ Just as it supports interactive data-exploration, it should support interactive inspection
of the results (scrolling through the fitted data, zooming in on results, comparing results
from multiple different models, etc.)

❼ Development of the application should be done using a collaborative IDE, with support
for visual GUI design. In addition the IDE used should also be cross-platform and
open-source, eliminating any barriers for potential developers.

Journal of Statistical Software 15

❼ In order to minimize the time spent on so-called ‘plumbing’ code1, the application
should be implemented on top of a RCP. In an academic environment with very limited
resources (often just a single programmer) and limited time this is a very important
requirement. The use of a RCP also adds much desired modularity which facilitates
maintenance and extensibility by future developers.

Various combinations of programming languages, IDE’s and external libraries were evalu-
ated against these requirements. We ultimately selected a Java-based desktop application on
top of the NetBeans RCP, using the NetBeans IDE as a development environment, making
extensive use of the IDE’s excellent Swing GUI builder and seamless integration with the
free project hosting site http://kenai.com/2 for collaborative development. The charting
library JFreeChart was chosen to visualize all plots. JFreeChart is a very well documented
open-source chart library for Java with many example implementations available through the
JFreeChart developer’s guide and the forums (Gilbert 2011). The library has support for
interactivity in the form of clicking, zooming and panning and exporting to various graphics
formats is possible. The ability to actually create an application in Java which can still com-
municate with R is provided by the open-source communication library Rserve. Rserve is a
TCP/IP server which allows other programs to use facilities of R from various languages –
including Java – without the need to initialize R or link to the R library (Urbanek 2003).

4. Application architecture

The Glotaran application is completely written in the programming language Java and is
being developed on top of the NetBeans platform using the NetBeans IDE. It relies on sev-
eral external libraries for plotting, data-handling and communication with the R computing
environment. Glotaran is completely open-source and the source code is published under the
terms of the GNU general public license. It is cross-platform and runs under any operating
system that has a recent version of the Java virtual machine installed. Figure 10 shows the
application architecture diagram.

The application diagram shows Glotaran running on top of the NetBeans RCP, which sits on
top of the Java virtual machine (JVM) controlled by the operating system (OS) of the client.
The Rserve library facilitates the communication with the Rserve binary via the TCP/IP
protocol. The Rserve binary is launched by the R computing platform controlled by the
server’s OS. The client and the server can be physically on the same machine, allowing for
the fastest communication between Java and R. However, the server can also be a much faster
compute server located somewhere in the network (or the Internet), allowing for much faster
processing (at the price of slower communication). In addition the client would not need to
have R installed. In the following section the various blocks in the application diagram are
discussed further.

Glotaran is not a traditional stand-alone Java application, it is actually a collection of modules
that integrates into the NetBeans RCP. The NetBeans platform is a reusable framework for

1The ‘plumbing’ of an application refers to the basic functionality that almost any application needs, such
as: Application state saving, connecting actions to menu items, toolbar items and keyboard shortcuts, window
management (docking, resizing), and so on. An RCP provides all of this very basic functionality out of the
box, freeing time to work on the application’s higher-level functionality.

2http://kenai.com/ will be superseded by http://java.net/ by the end of 2012 according to its project
website.

http://kenai.com/
http://kenai.com/
http://java.net/

16 Glotaran: A Java-Based GUI for TIMP

Figure 10: Application diagram showing the interaction between Glotaran, R and Java.

simplifying the development of Java Swing desktop applications. The platform offers reusable
services common to desktop applications, allowing developers to focus on the logic specific to
their application rather than the basic functionality that is part of any desktop application
(i.e., interface management, windows management, storage management, etc).

The core of Glotaran consists of the modules that provide the user interface components
and handle user input. This includes the data visualization, the visual modeling, the result
visualization and the analysis worker (the module that is responsible for interpreting the
user’s input and delegate it to the available computational support module). The idea behind
separating interpretation of the module and the actual computation is interchangeability.
Currently, all computation is done within the R package TIMP, but it could be done using any
software package as long as the interface with Glotaran is clearly defined in a computational
support module.

4.1. Libraries

Glotaran depends on various external libraries for plotting, communicating with the R com-
puting platform, reading in various file formats and to provide for various mathematical
subroutines.

JFreeChart

JFreeChart is the main plotting library used in Glotaran. It has support for many output
types, including Swing components (on display graphics), image files (including PNG and
JPEG), and vector graphics file formats (including PDF, EPS and SVG). A wide variety
of standard plots is available from within the library3, and JFreeChart can be extended to
support different types of plots as well. For this project JFreeChart was extended to support a
new type of Axis called LinLogAxis, as detailed in Appendix A. JFreeChart is being developed
by David Gilbert and the JFreeChart community members.

3Examples of the use of JFreeChart can be found at: http://www.jfree.org/jfreechart/samples.html.

http://www.jfree.org/jfreechart/samples.html

Journal of Statistical Software 17

Rserve

REngine is the library provided with the Rserve software package, to facilitate the communi-
cation between Java and the R server application provided by Rserve. As a wrapper library
for REngine the library JRConnect is used. This ensures stability over multiple iterations
and generations of REngine. JRConnect was developed by Ralf Seger.

5. Conclusions

Glotaran has been introduced as an open-source, cross-platform Java based graphical user in-
terface for the R Package TIMP to facilitate the process of interactive global and target data
analysis. In comparison with existing software Glotaran adds: Interactive data-visualization,
visual modeling and interactive inspection of analysis results. Its well defined ‘project’ struc-
ture facilitates collaborative analysis. Initially its use is mostly targeted towards applications
in the field of Biophysics, specifically for the analysis of time-resolved spectroscopy and mi-
croscopy data analysis. By making use of the NetBeans RCP it was possible to assemble a
highly modular and extensible application. Despite being fully written in Java, it can still
harness the power of R through the rJava interface REngine. R here is used as a computa-
tional engine rather than a full fledged programming environment, delegating all but the core
computational operations to proglangJava subroutines instead.

5.1. Availability

As mentioned before, Glotaran is an open-source application, and is available under the terms
of the GPL license. As such, the application’s source code can be checked out by interested
developers from the project’s hosting site at http://kenai.com/projects/glotaran/. How-
ever, for most users the binary installers, available for the platform Windows, GNU Linux
and Mac OS X, are more practical and can be acquired through the project’s main web-
site: http://glotaran.org/. Installation instruction, general documentation and various
screenshots and video demonstrations are also available.

5.2. Future work

Visual compartmental modeling

Compartmental kinetic models are represented in Glotaran by a combination of a transfer ma-
trix K, a vector representing the kinetic parameters (the rate constants), a vector representing
the branching parameters and finally a vector of inputs (representing the IRF), see Figure 9.
However, it would be advantageous to represent a compartmental model as a target kinetic
scheme, since this is typically how biophysicists think. In Glotaran this could be implemented
using the NetBeans Visual Library (the same system in place to design the analysis scheme)
which is part of the NetBeans RCP.

Reporting functionality

iReport is the free, open source report designer for JasperReports. It allows the user to create
very sophisticated layouts containing charts, images, subreports, crosstabs and much more.

http://kenai.com/projects/glotaran/
http://glotaran.org/

18 Glotaran: A Java-Based GUI for TIMP

Figure 11: Target model (from Hippius et al. 2007, Figure 7): 1 unrelaxed excited state,
2 and 3 relaxed excited state decaying fast or slowly (identical SAS), 4 charge transfer state.

Data can be accessed through a wide variety of methods and support for Glotaran as a data
source could be implemented. It would then be possible to compose an analysis results report
and publish it as PDF, RTF, XML, XLS, CSV, HTML, XHTML, text, DOCX, or OpenOffice.

Integration with databases

One of the development criteria that was put forward for the development TIMP was a
graphical user interface supporting collaborative research and enabling distributed interactive
modeling, where an expert in modeling and parameter estimation can analyze the data and
an experimental scientist can contribute to the interactive modeling by discarding unrealistic
models and suggesting model improvements. The first step for this was made in Glotaran by
introducing the system of project-management, e.g., a project - consisting of datasets, models
and analysis schema can easily be ‘zipped up’ and sent to a collaborator. The next step is
the integration of Glotaran with a database system for easy models storage and potentially
the storage of (selected) measurements as well. The NetBeans platform already offers the
integration with databases ‘for free’ so all that is left is the implementation within Glotaran.

Acknowledgments

This research was funded by Computational Science grant #635.000.014 from the Netherlands
Organization for Scientific Research (NWO). Catharina Hippius and René Williams provided
the data modeled in Section 2. We acknowledge the constructive criticism of the anonymous
reviewers.

References

Bates DM, Watts DG (1988). Nonlinear Regression Analysis and Its Applications. John Wiley
& Sons, New York.

Journal of Statistical Software 19

Böck H (2011). The Definitive Guide to NetBeans Platform 7. Apress.

Fellows I (2012). “Deducer: A Data Analysis GUI for R.” Journal of Statistical Software,
49(8), 1–15. URL http://www.jstatsoft.org/v49/i08/.

Gilbert D (2011). “JFreeChart.” http://www.jfree.org/jfreechart/.

Godfrey K (1983). Compartmental Models and their Application. Academic Press, London.

Golub GH, LeVeque RJ (1979). “Extensions and Uses of the Variable Projection Algorithm
for Solving Nonlinear Least Squares Problems.” In Proceedings of the 1979 Army Numerical
Analysis and Computers Conference, volume ARO Report 79-3, pp. 1–12.

Golub GH, Van Loan CF (1996). Matrix Computations. 3rd edition. The Johns Hopkins
University Press, Baltimore.

Grosjean P (2010). “R GUI Projects.” URL http://www.R-project.org/GUI.

Helbig M, Theus M (2005). “JGR: Java GUI for R.” Statistical Computing and Graph-
ics Newsletter, 16(2), 9–12. URL http://stat-computing.org/newsletter/issues/

scgn-16-2.pdf.

Hippius C, Van Stokkum IHM, Zangrando E, Williams RM, Würthner F (2007). “Excited
State Interactions in Calix[4]arene-Perylene Bisimide Dye Conjugates: Global and Target
Analysis of Supramolecular Building Blocks.” Journal of Physical Chemistry C, 111(37),
13988–13996.

Laptenok S, Borst JW, Mullen KM, Van Stokkum IHM, Visser AJWG, Van Amerongen H
(2010). “Global Analysis of Förster Resonance Energy Transfer in Live Cells Measured by
Fluorescence Lifetime Imaging Microscopy Exploiting the Rise Time of Acceptor Fluores-
cence.” Physical Chemistry Chemical Physics, 12, 7593–7602.

Laptenok S, Mullen KM, Borst JW, Van Stokkum IHM, Apanasovich VV, Visser AJWG
(2007). “Fluorescence Lifetime Imaging Microscopy (FLIM) Data Analysis with TIMP.”
Journal of Statistical Software, 18(8), 1–20. URL http://www.jstatsoft.org/v18/i08/.

Mullen KM, Van Stokkum IHM (2007). “TIMP: An R Package for Modeling Multi-Way
Spectroscopic Measurements.” Journal of Statistical Software, 18(3), 1–46. URL http:

//www.jstatsoft.org/v18/i03/.

Mullen KM, Van Stokkum IHM (2009). “The Variable Projection Algorithm in Time-Resolved
Spectroscopy, Microscopy and Mass Spectrometry Applications.” Numerical Algorithms,
51, 319–340.

R Development Core Team (2012). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:

//www.R-project.org/.

Rödiger S, Friedrichsmeier T, Kapat P, Michalke M (2012). “RKWard: A Comprehensive
Graphical User Interface and Integrated Development Environment for Statistical Analysis
with R.” Journal of Statistical Software, 49(9), 1–34. URL http://www.jstatsoft.org/

v49/i09/.

http://www.jstatsoft.org/v49/i08/
http://www.R-project.org/GUI
http://stat-computing.org/newsletter/issues/scgn-16-2.pdf
http://stat-computing.org/newsletter/issues/scgn-16-2.pdf
http://www.jstatsoft.org/v18/i08/
http://www.jstatsoft.org/v18/i03/
http://www.jstatsoft.org/v18/i03/
http://www.R-project.org/
http://www.R-project.org/
http://www.jstatsoft.org/v49/i09/
http://www.jstatsoft.org/v49/i09/

20 Glotaran: A Java-Based GUI for TIMP

Snellenburg JJ, Van Stokkum IHM, Mullen KM (2008). “TIMPGUI: A Graphical User
Interface for the Package TIMP.” Talk at useR! 2008, The R User Conference (Dort-
mund, Germany), URL http://www.statistik.uni-dortmund.de/useR-2008/slides/

Snellenburg+Mullen+van_Stokkum.pdf.

Urbanek S (2003). “Rserve – A Fast Way to Provide R Functionality to Applications.” In
K Hornik, F Leisch, A Zeileis (eds.), Proceedings of the 3rd International Workshop on
Distributed Statistical Computing (DSC 2003). Vienna, Austria. ISSN 1609-395X. URL
http://www.ci.tuwien.ac.at/Conferences/DSC-2003/.

Valero-Mora PM, Ledesma R (2012). “Graphical User Interfaces for R.” Journal of Statistical
Software, 49(1), 1–8. URL http://www.jstatsoft.org/v49/i01/.

Van Stokkum IHM, Bal HE (2006). “A Problem Solving Environment for Interactive Modelling
of Multiway Data.” Concurrency and Computation: Practice and Experience, 18, 263–269.

Van Stokkum IHM, Larsen DS, Van Grondelle R (2004). “Global and Target Analysis of
Time-Resolved Spectra.” Biochimica et Biophysica Acta, 1657, 82–104. Erratum in 1658,
p. 262.

http://www.statistik.uni-dortmund.de/useR-2008/slides/Snellenburg+Mullen+van_Stokkum.pdf
http://www.statistik.uni-dortmund.de/useR-2008/slides/Snellenburg+Mullen+van_Stokkum.pdf
http://www.ci.tuwien.ac.at/Conferences/DSC-2003/
http://www.jstatsoft.org/v49/i01/

Journal of Statistical Software 21

A. Extending JFreeChart

JFreeChart is an extensive library with support for a great number of different types of
plots. The project website gives a list of examples. However, one type of plot frequently
used in the visualization of time-resolved spectroscopy data, the linear-logarithmic plot, is
not included in the standard set of plots. Because this type of plot is essential for the
working of a global and target analysis tool, it was developed as part of the project. The
result is the Java class LinLogAxis and implementation of the standard JFreeChart class
org.jfree.chart.axis.ValueAxis. Because the LinLog functionality was implemented as
a ValueAxis, it integrates seamlessly with the standard JFreeChart chart library and can be
reused with any XY Plot. The improvement for certain types of data is impressive when
compared side by side; see Figure 12.

The left plot in Figure 12 uses the standard linear NumberAxis only, and the right plot uses
the new LinLog axis. Figure 13 displays the estimated concentration profiles of a sequential
model with lifetimes ranging from 1.76 till 54 ps. The additional information provided by the
LinLogAxis is obvious.

Figure 12: Example of the use of the LinLogAxis implementation.

Figure 13: Two charts showing the estimated concentration profiles of a sequential model,
the left chart uses the standard linear axis and the right charts uses the linear-logarithmic
axis. Lifetimes: 1.76 ps (black), 18.7 ps (red), and 54 ps (blue). Green represents the shape
of the coherent artifact, and is equal to the IRF.

22 Glotaran: A Java-Based GUI for TIMP

Affiliation:

Joris J. Snellenburg, Ivo H. M. van Stokkum
Department of Physics and Astronomy, Faculty of Sciences
VU University Amsterdam
De Boelelaan 1081
1081 HV Amsterdam, The Netherlands
E-mail: j.snellenburg@vu.nl, ivo@few.vu.nl
URL: http://www.few.vu.nl/~jsnel/, http://www.few.vu.nl/~ivo/

Sergey P. Laptenok
Laboratoire d’Optique et Biosciences
CNRS UMR 7645, INSERM U696
L’École Polytechnique
F-91128 Palaiseau, France
E-mail: s.laptenok@vu.nl
URL: http://www.lob.polytechnique.fr

Ralf Seger
Department of Computer Oriented Statistics and Data Analysis (COSADA)
Augsburg University
D-86135 Augsburg, Germany
E-mail: ralfseger@googlemail.com
URL: http://rosuda.org/Moret/main.html

Katharine M. Mullen
Structure Determination Methods Group, Ceramics Division
National Institute of Standards and Technology (NIST)
100 Bureau Drive, M/S 8520
Gaithersburg, MD, 20899, United States of America
E-mail: mullenkate@gmail.com

Journal of Statistical Software http://www.jstatsoft.org/

published by the American Statistical Association http://www.amstat.org/

Volume 49, Issue 3 Submitted: 2011-01-20
June 2012 Accepted: 2011-09-16

mailto:j.snellenburg@vu.nl
mailto:ivo@few.vu.nl
http://www.few.vu.nl/~jsnel/
http://www.few.vu.nl/~ivo/
mailto:s.laptenok@vu.nl
http://www.lob.polytechnique.fr
mailto:ralfseger@googlemail.com
http://rosuda.org/Moret/main.html
mailto:mullenkate@gmail.com
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Introducing Glotaran
	Background and motivation

	The application
	Interactive data exploration
	Singular value decomposition

	Visual modeling
	Parameter estimation
	Interactive results inspection
	Comparison with TIMP

	Requirements and design choices
	Application architecture
	Libraries
	JFreeChart
	Rserve

	Conclusions
	Availability
	Future work
	Visual compartmental modeling
	Reporting functionality
	Integration with databases

	Extending JFreeChart

