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Abstract 

Glove-TaikII is a system which translates hand gestures to speech 
through an adaptive interface. Hand gestures are mapped contin­
uously to 10 control parameters of a parallel formant speech syn­
thesizer. The mapping allows the hand to act as an artificial vocal 
tract that produces speech in real time. This gives an unlimited 
vocabulary in addition to direct control of fundamental frequency 
and volume. Currently, the best version of Glove-TalkII uses sev­
eral input devices (including a CyberGlove, a ContactGlove, a 3-
space tracker, and a foot-pedal), a parallel formant speech synthe­
sizer and 3 neural networks. The gesture-to-speech task is divided 
into vowel and consonant production by using a gating network 
to weight the outputs of a vowel and a consonant neural network. 
The gating network and the consonant network are trained with 
examples from the user. The vowel network implements a fixed, 
user-defined relationship between hand-position and vowel sound 
and does not require any training examples from the user. Volume, 
fundamental frequency and stop consonants are produced with a 
fixed mapping from the input devices. One subject has trained to 
speak intelligibly with Glove-TalkII . He speaks slowly with speech 
quality similar to a text-to-speech synthesizer but with far more 
natural-sounding pitch variations. 
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1 Introduction 

There are many different possible schemes for converting hand gestures to speech. 
The choice of scheme depends on the granularity of the speech that you want to 
produce. Figure 1 identifies a spectrum defined by possible divisions of speech based 
on the duration of the sound for each granularity. What is interesting is that in 
general, the coarser the division of speech, the smaller the bandwidth necessary 
for the user. In contrast, where the granularity of speech is on the order of artic­
ulatory muscle movements (i.e. the artificial vocal tract [AVT]) high bandwidth 
control is necessary for good speech. Devices which implement this model of speech 
production are like musical instruments which produce speech sounds. The user 
must control the timing of sounds to produce speech much as a musician plays 
notes to produce music. The AVT allows unlimited vocabulary, control of pitch 
and non-verbal sounds. Glove-TalkII is an adaptive interface that implements an 
AVT. 

Translating gestures to speech using an AVT model has a long history beginning in 
the late 1700's. Systems developed include a bellows-driven hand-varied resonator 
tube with auxiliary controls (1790's [9]), a rubber-moulded skull with actuators for 
manipulating tongue and jaw position (1880's [1]) and a keyboard-footpedal inter­
face controlling a set of linearly spaced bandpass frequency generators called the 
Yoder (1940 [3]). The Yoder was demonstrated at the World's Fair in 1939 by oper­
ators who had trained continuously for one year to learn to speak with the system. 
This suggests that the task of speaking with a gestural interface is very difficult and 
the training times could be significantly decreased with a better interface. Glove­
TalkII is implemented with neural networks which allows the system to learn the 
user's interpretation of an articulatory model of speaking. 

This paper begins with an overview of the whole Glove-TalkII system. Then, each 
neural network is described along with its training and test results. Finally, a 
qualitative analysis is provided of the speech produced by a single subject after 100 
hours of speaking with Glove-TalkI!. 
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Figure 1: Spectrum of gesture-to-speech mappings based on the granularity of 
speech. 

2 Overview of Glove-TalkII 

The Glove-TalkIl system converts hand gestures to speech , based on a gesture-to­
formant model. The gesture vocabulary is based on a vocal-articulator model of 
the hand. By dividing the mapping tasks into independent subtasks , a substantial 
reduction in network size and training time is possible (see [4]). 

Figure 2 illustrates the whole Glove-TalkIl system. Important features include the 
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Figure 2: Block diagram of Glove-TalkII: input from the user is measured by the 
Cyberglove, polhemus, keyboard and foot pedal, then mapped using neural net­
works and fixed functions to formant parameters which drive the parallel formant 
synthesizer [8]. 

three neural networks labeled vowel/consonant decision (V /C), vowel, and conso­
nant. The V /C network is trained on data collected from the user to decide whether 
he wants to produce a vowel or a consonant sound . Likewise, the consonant network 
is trained to produce consonant sounds based on user-generated examples based on 
an initial gesture vocabulary. In contrast, the vowel network implements a fixed 
mapping between hand-positions and vowel phonemes defined by the user. Nine 
contact points measured on the user's left hand by a ContactGlove designate the 
nine stop consonants (B, D, G, J, P, T, K, CH, NG), because the dynamics of such 
sounds proved too fast to be controlled by the user. The foot pedal provides a 
volume control by adjusting the speech amplitude and this mapping is fixed. The 
fundamental frequency, which is related to the pitch of the speech, is determined by 
a fixed mapping from the user's hand height. The output of the system drives 10 
control parameters of a parallel formant speech synthesizer every 10 msec. The 10 
control parameters are: nasal amplitude (ALF), first, second and third formant fre­
quency and amplitude (F1, A1, F2, A2, F3, A3), high frequency amplitude (AHF), 
degree of voicing (V) and fundamental frequency (FO). Each of the control param­
eters is quantized to 6 bits. 

Once trained, Glove-Talk II can be used as follows: to initiate speech, the user 
forms the hand shape of the first sound she intends to produce. She depresses the 
foot pedal and the sound comes out of the synthesizer. Vowels and consonants 
of various qualities are produced in a continuous fashion through the appropriate 
co-ordination of hand and foot motions. Words are formed by making the correct 
motions; for example, to say "hello" the user forms the "h" sound, depresses the 
foot pedal and quickly moves her hand to produce the "e" sound, then the "I" sound 
and finally the "0" sound. The user has complete control of the timing and quality 
of the individual sounds. The articulatory mapping between gestures and speech 
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Figure 3: Hand-position to Vowel Sound 
Mapping. The coordinates are specified 
relative to the origin at the sound A. The 
X and Y coordinates form a horizontal 
plane parallel to the floor when the user is 
sitting. The 11 cardinal phoneme targets 
are determined with the text-to-speech 
synthesizer. 
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is decided a priori. The mapping is based on a simplistic articulatory phonetic 
description of speech (5]. The X,Y coordinates (measured by the polhemus) are 
mapped to something like tongue position and height l producing vowels when the 
user's hand is in an open configuration (see figure 2 for the correspondence and 
table 1 for a typical vowel configuration). Manner and place of articulation for 
non-stop consonants are determined by opposition of the thumb with the index 
and middle fingers as described in table 1. The ring finger controls voicing. Only 
static articulatory configurations are used as training points for the neural networks, 
and the interpolation between them is a result of the learning but is not explicitly 
trained. Ideally, the transitions should also be learned, but in the text-to-speech 
formant data we use for training [6] these transitions are poor, and it is very hard 
to extract formant trajectories from real speech accurately. 

2.1 The Vowel/Consonant (VIC) Network 

The VIC network decides, on the basis of the current configuration of the user's 
hand, to emit a vowel or a consonant sound. For the quantitative results reported 
here, we used a 10-5-1 feed-forward network with sigmoid activations [7]. The 10 
inputs are ten scaled hand parameters measured with a Cyberglove: 8 flex angles 
(knuckle and middle joints of the thumb, index, middle and ring fingers), thumb 
abduction angle and thumb rotation angle. The output is a single number repre­
senting the probability that the hand configuration indicates a vowel. The output 
of the VIC network is used to gate the outputs of the vowel and consonant net­
works, which then produce a mixture of vowel and consonant formant parameters. 
The training data available includes only user-produced vowel or consonant sounds. 
The network interpolates between hand configurations to create a smooth but fairly 
rapid transition between vowels and consonants. 

For quantitative analysis, typical training data consists of 2600 examples of con­
sonant configurations (350 approximants, 1510 fricatives [and aspirant], and 740 
nasals) and 700 examples of vowel configurations. The consonant examples were 
obtained from training data collected for the consonant network by an expert user. 
The vowel examples were collected from the user by requiring him to move his hand 
in vowel configurations for a specified amount of time. This procedure was per­
formed in several sessions. The test set consists of 1614 examples (1380 consonants 
and 234 vowels). After training,2 the mean squared error on the training and test 

lIn reality, the XY coordinates map more closely to changes in the first two formants, 
FI and F2 of vowels. From the user's perspective though, the link to tongue movement is 
useful. 

2The V Ie network, the vowel network and the consonant network are trained using 
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Table 1: Static Gesture-to-Consonant Mapping for all phonemes. Note, each gesture 
corresponds to a static non-stop consonant phoneme generated by the text-to-speech 
synthesizer. 

set was less than 10-4 . 

During normal speaking neither network made perceptual errors. The decision 
boundary feels quite sharp, and provides very predictable, quick transitions from 
vowels to consonants and back. Also, vowel sounds are produced when the user hy­
perextends his hand. Any unusual configurations that would intuitively be expected 
to produce consonant sounds do indeed produce consonant sounds. 

2.2 The Vowel Network 

The vowel network is a 2-11-8 feed forward network. The 11 hidden units are 
normalized radial basis functions (RBFs) [2] which are centered to respond to one 
of 11 cardinal vowels. The outputs are sigmoid units representing 8 synthesizer 
control parameters (ALF, F1, AI, F2, A2, F3, A3, AHF). The radial basis function 
used is: 

L(Wji-O.)~ 

oj=e- <l'j2 (1) 

where OJ is the (un-normalized) output of the RBF unit, Wji is the weight from unit 
i to unit j, 0i is the output of input unit i, and (1/ is the variance of the RBF. The 
normalization used is: 

O· 
nj = L J (2) 

mEpom 

where nj is the normalized output of unit j and the summation is over all the units 
in the group of normalized RBF units. The centres of the RBF units are fixed 

conjugate gradient descent and a line search. 
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according to the X and Y values of each of the 11 vowels in the predefined mapping 
(see figure 2). The variances of the 11 RBF's are set to 0.025. 

The weights from the RBF units to the output units are trained. For the training 
data, 100 identical examples of each vowel are generated from their corresponding 
X and Y positions in the user-defined mapping, providing 1100 examples. Noise is 
then added to the scaled X and Y coordinates for each example. The added noise 
is uniformly distributed in the range -0.025 to 0.025. In terms of unscaled ranges, 
these correspond to an X range of approximately ± 0.5 cm and a Y range of ± 0.26 
cm. 

Three different test sets were created. Each test set had 50 examples of each vowel 
for a total of 550 examples. The first test set used additive uniform noise in the 
interval ± 0.025. The second and third test sets used additive uniform noise in the 
interval ± 0.05 and ± 0.1 respectively. 

The mean squared error on the training set was 0.0016. The MSE on the additive 
noise test sets (noise = ± 0.025, 0.05 and 0.01) was 0.0018, 0.0038, 0.0120 which 
corresponds to expected errors of 1.1 %, 3.1 % and 5.5% in the formant parameters, 
respectively. This network performs well perceptually. The key feature is the nor­
malization of the RBF units. Often, when speaking, the user will overshoot cardinal 
vowel positions (especially when she is producing dipthongs) and all the RBF units 
will be quite suppressed. However, the normalization magnifies any slight difference 
between the activities of the units and the sound produced will be dominated by 
the cardinal vowel corresponding to the one whose centre is closest in hand space. 

2.3 The Consonant Network 

The consonant network is a 10-14-9 feed-forward network. The 14 hidden units 
are normalized RBF units. Each RBF is centred at a hand configuration deter­
mined from training data collected from the user corresponding to one of 14 static 
consonant phonemes. The target consonants are created with a text-to-speech syn­
thesizer. Figure 1 defines the initial mapping for each of the 14 consonants. The 
9 sigmoid output units represent 9 control parameters of the formant synthesizer 
(ALF, F1, AI, F2, A2, F3, A3, AHF, V). The voicing parameter is required since 
consonant sounds have different degrees of voicing. The inputs are the same as for 
the manager V Ie network. 

Training and test data for the consonant network is obtained from the user . Tar­
get data is created for each of the 14 consonant sounds using the text-to-speech 
synthesizer . The scheme to collect data for a single consonant is: 

1. The target consonant is played for 100 msec through the speech synthesizer; 

2. the user forms a hand configuration corresponding to the consonant; 

3. the user depresses the foot pedal to begin recording; the start of recording 
is indicated by the appearance of a green square; 

4. 10-15 time steps of hand data are collected and stored with the correspond­
ing formant parameter targets and phoneme identifier; the end of data 
collection is indicated by turning the green square red; 

5. the user chooses whether to save the data to a file, and whether to redo the 
current target or move to the next one. 
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Using this procedure 350 approximants , 1510 fricatives and 700 nasals were collected 
and scaled for the training data. The hand data were averaged for each consonant 
sound to form the RBF centres. For the test data, 255 approximants, 960 fricatives 
and 165 nasals were collected and scaled . The RBF variances were set to 0.05. 

The mean square error on the training set was 0.005 and on the testing set was 
0.01 corresponding to expected errors of 3.3% and 4.7% in the formant parameters, 
respectively. Listening to the output of the network reveals that each sound is 
produced reasonably well when the user's hand is held in a fixed position. The only 
difficulty is that the Rand L sounds are very sensitive to motion of the index finger. 

3 Qualitative Performance of Glove-TalkII 

One subject, who is an accomplished pianist, has been trained extensively to speak 
with Glove-TalkII. We expected that his pianistic skill in forming finger patterns 
and his musical training would help him learn to speak with Glove-TalkII . After 
100 hours of training, his speech with Glove-TalklI is intelligible and somewhat 
natural-sounding. He still finds it difficult to speak quickly, pronounce polysyllabic 
words, and speak spontaneously. 

During his training, Glove-TalkII also adapted to suit changes required by the sub­
ject . Initially, good performance of the VIC network is critical for the user to learn 
to speak. If the V Ie network performs poorly the user hears a mixture of vowel and 
consonant sounds making it difficult to adjust his hand configurations to say differ­
ent utterances . For this reason, it is important to have the user comfortable with 
the initial mapping so that the training data collected leads to the VIC network 
performing well. In the 100 hours of practice, Glove-Talk II was retrained about 10 
times . Four significant changes were made from the original system analysed here 
for the new subject. First, the NG sound was added to the non-stop consonant list 
by adding an additional hand shape, namely the user touches his pinkie to his thumb 
on his right hand. To accomodate this change, the consonant and VIC network had 
two inputs added to represent the two flex angles of the pinkie. Also, the consonant 
network has an extra hidden unit for the NG sound. Second, the consonant net­
work was trained to allow the RBF centres to change. After the hidden-to-output 
weights were trained until little improvement was seen, the input-to-hidden weights 
(i.e. the RBF centres) were also allowed to adapt . This noticeably improved per­
formance for the user . Third, the vowel mapping was altered so that the I was 
moved closer to the EE sound and the entire mapping was reduced to 75% of its 
size. Fourth, for this subject, the VIC network needed was a 10-10-1 feed-forward 
sigmoid unit network. Understanding the interaction between the user's adaptation 
and Glove-TalkII's adaptation remains an interesting research pursuit . 

4 Summary 

The initial mapping is loosely based on an articulatory model of speech. An open 
configuration of the hand corresponds to an unobstructed vocal tract, which in 
turn generates vowel sounds. Different vowel sounds are produced by movements 
of the hand in a horizontal X-Y plane that corresponds to movements of the first 
two formants which are roughly related to tongue position . Consonants other than 
stops are produced by closing the index, middle, or ring fingers or flexing the thumb, 
representing constrictions in the vocal tract . Stop consonants are produced by 
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contact switches worn on the user's left hand. FO is controlled by hand height and 
speaking intensity by foot pedal depression. 

Glove-TaikII learns the user's interpretation of this initial mapping. The VIC net­
work and the consonant network learn the mapping from examples generated by 
the user during phases of training. The vowel network is trained on examples com­
puted from the user-defined mapping between hand-position and vowels. The FO 
and volume mappings are non-adaptive. 

One subject was trained to use Glove-TalkII. After 100 hours of practice he is able 
to speak intelligibly. His speech is fairly slow (1.5 to 3 times slower than normal 
speech) and somewhat robotic. It sounds similar to speech produced with a text-to­
speech synthesizer but has a more natural intonation contour which greatly improves 
the intelligibility and naturalness of the speech. Reading novel passages intelligibly 
usually requires several attempts, especially with polysyllabic words. Intelligible 
spontaneous speech is possible but difficult. 
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