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Abstract: Spaceborne Global Navigation Satellite System Reflectometry (GNSS‑R) is a new remote
sensing technology that uses GNSS signals reflected from the Earth’s surface to estimate geophysical
parameters. Because of its unique advantages such as high temporal and spatial resolutions, low ob‑
servation cost, wide coverage and all‑weather operation, it has been widely used in land and ocean
remote sensing fields. Oceanwindmonitoring is themain objective of the recently launched Cyclone
GNSS (CYGNSS). In previous studies, wind speed was usually retrieved using features extracted
from delay‑Doppler maps (DDMs) and empirical geophysical model functions (GMFs). However,
it is a challenge to employ the GMF method if using multiple sea state parameters as model input.
Therefore, in this article, we propose an improved deep learning network framework to retrieve
global sea surface wind speed using spaceborne GNSS‑R data, named GloWS‑Net. GloWS‑Net con‑
siders the fusion of auxiliary information including ocean swell significant wave height (SWH), sea
surface rainfall and wave direction to build an end‑to‑end wind speed retrieval model. In order to
verify the improvement of the proposed model, ERA5 and Cross‑CalibratedMulti‑Platform (CCMP)
wind data were used as reference for extensive testing to evaluate the wind speed retrieval perfor‑
mance of the GloWS‑Net model and previousmodels (i.e., GMF, fully connected network (FCN) and
convolutional neural network (CNN)). The results show that, when using ERA5 winds as ground
truth, the root mean square error (RMSE) of the proposed GloWS‑Net model is 23.98% better than
that of the MVE method. Although the GloWS‑Net model and the FCN model have similar RMSE
(1.92 m/s), the mean absolute percentage error (MAPE) of the former is improved by 16.56%; when
using CCMPwinds as ground truth, the RMSE of the proposed GloWS‑Net model is 2.16 m/s, which
is 20.27% better than the MVE method. Compared with the FCN model, the MAPE is improved
by 17.75%. Meanwhile, the GloWS‑Net outperforms the FCN, traditional CNN, modified CNN
(MCNN) and CyGNSSnet models in global wind speed retrieval especially at high wind speeds.

Keywords: Cyclone Global Navigation Satellite System (CYGNSS); delay‑Doppler maps (DDMs);
ocean wind speed; geophysical model functions (GMFs); deep learning

1. Introduction
Ocean wind speed is of great significance for the numerical prediction of the marine

environment, monitoring of marine disasters, air sea interaction, meteorological forecast‑
ing, climate research, etc. In particular, tropical cyclones, typhoons or storm surges have
seriously damaged infrastructure and endangered people’s lives. For these reasons, it is
very important to monitor the sea wind speed to study and predict some complex weather
(such as tropical cyclone, typhoon or storm surge warning) [1–3]. Long‑term measure‑
ments of ocean wind speed can be made using conventional observational methods such
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as buoys and ships. However, due to less spatial sampling and high cost, they cannot
meet the needs of global observation. At present, there are two main ways for observing
the sea surface wind field through satellite. One is to measure the sea wind through satel‑
lite cloud images, but it only obtains the cloud top wind, which is different from the sea
surface wind field; second, the satellite load, such as the scatterometer, actively transmits
microwave signals to the sea surface to measure the sea breeze. However, the satellite
weight is large, and it can only measure the sea breeze within 50 m/s. If it is applied to
the construction of constellations for quasi real‑time monitoring of the sea wind field, the
cost is very high. Although many monitoring and early warning systems have been estab‑
lishedworldwide, it is also important to useGNSS to achieve an effective and cost‑effective
approach to disaster monitoring. Therefore, the spaceborne GNSS‑R technology can pro‑
vide a more effective alternative for ocean wind speed retrieval because of its remarkable
advantages such as rich signal sources, high resolution, all‑weather, and global fast cov‑
erage, etc. At present, many disaster monitoring systems using GNSS signals have been
developed. For example, on 8 July 2014, the United Kingdom launched the TechDemoSat‑
1 (TDS‑1) satellite [4]. In December 2016, National Aeronautics and Space Administration
(NASA) successfully deployed the Cyclone Global Navigation Satellite System (CYGNSS)
composed of eight small satellites, bringing greater opportunities for retrieving sea surface
wind speed using GNSS‑R technology [5]. More fortunately, BuFeng‑1 A/B dual satellites
were launched on 5 June 2019, which is China’s first GNSS‑R satellite mission dedicated
to GNSS‑R applications. China has become the fourth country after the United Kingdom,
the United States and Japan to install GNSS‑R satellites in the Earth’s orbit. At the same
time, BF‑1 A/B is the only two GNSS‑R constellations in the world. The mission also ac‑
quired the world’s first on‑board BDS DDM [6]. In addition to BF‑1 A/B satellites, China
also launched FengYun‑3E meteorological satellite on 5 July 2021. The GNSS‑R data ob‑
served by the satellite have been used for the retrieval of sea surface wind speed [7]. In
addition, the satellite mission is also committed to GNSS radio occultation (GNSS‑RO)‑
related applications. It is worth mentioning that although the main objective of the above
spaceborne GNSS‑R tasks is to monitor ocean wind speed, these satellite tasks can also be
used for sea surface height retrieval [8,9], sea ice detection [10,11], sea ice concentration
(SIC) retrieval [12,13], sea ice thickness retrieval [14], tsunami detection [15], storm surge
monitoring [16,17], wave height retrieval [18–24], rainfall detection [25,26], rainfall inten‑
sity retrieval [27,28], soil moisture retrieval [29] and biomass retrieval [30], etc.

For the spaceborne platform, Clarizia et al. proposed to use theDDMaverage (DDMA),
DDM variance (DDMV), DDM Allan variance (DDMAV), leading edge slope (LES) and
trailing edge slope (TES) observables to retrieve wind speed [31]. Although the use of
multiple observables has enriched the data information, it increases the computation load
of the algorithm. Ruf et al. developed parametric models for high and low wind speeds
using the normalized bistatic radar cross section (NBRCS) of the sea surface and the LES.
Through a thorough evaluation of wind speed retrieval performance of geophysical model
functions (GMF) by the NBRCS and LES methods, the overall root mean square (RMS) un‑
certainty of wind speed retrieved by CYGNSS has been found to be 1.4 m/s [32]. At high
wind speed, the increased retrieval error is mainly due to the decrease in the sensitivity of
the ocean scattering section towind speed change. Clarizia and Ruf proposed a retrieval al‑
gorithm for the level 2 sea surface wind speed data product of CYGNSS mission [33]. This
algorithm combines the DDMA and LES wind speed estimates into an optimal weighted
estimator based on the method described by Clarizia et al. in 2014. Due to the limita‑
tion of cumulative time and resolution, this algorithm is only applicable to two specific
observables (DDMA and LES) [31]. In [34], the generalized observation (defined as the
linear combination of DDM samples) was optimized by using three different methods (i.e.,
minimum wind speed variance, maximum signal to noise ratio and principal component
analysis (PCA)). The results show that PCA has the best performance. Guo et al. proposed
a sea surface wind speed retrieval method for spaceborne GNSS‑R based on the particle
swarm optimization (PSO) algorithm. The experimental results show that the retrieval
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accuracy of the PSO method is superior to the classical MVE method. Hammond et al.
used the spaceborne Galileo and BDS GNSS‑R data collected by the UK TechDemoSat‑1
mission to assess the geophysical sensitivity for the first time [35]. Unfortunately, due to
the limited amount of reflective BDS data currently available, it is impossible to conduct
a comprehensive analysis of the geophysical sensitivity of BDS signals. This research
shows the possibility of wind speed retrieval and sea ice detection using spaceborne GNSS‑
R to acquire different GNSS reflection signals (such as GPS, Galileo and BDS) in the fu‑
ture. Liu et al. proposed a machine learning (ML) method for the retrieval of sea surface
wind speed based on a multi hidden layer neural network (MHL‑NN). The results show
that MHL‑NN method is superior to other methods in terms of root mean square error
(RMSE) and mean absolute percentage error (MAPE). The method mainly takes DDMA
and LES observables as input variables [36]. With the rapid development of artificial in‑
telligence, the machine learning algorithm has been applied to spaceborne GNSS‑R wind
speed retrieval [36–43], and results with high accuracy have been obtained. In recent years,
some researchers have proposed and improved the calculation method of NBRCS [44–46].
Combined with power calibration, NBRCS can be calculated more accurately, to obtain
better retrieval results, so it can be consistent with the entire sea surface wind speed range.
Based on the DDM data obtained by Bufeng‑1 satellite, Jing et al. developed an empirical
geophysical function model using the NBRCS observable. Preliminary tests showed that
the RMSE between the results obtained by the model and the ECMWF reanalysis wind
speed was 2.63 m/s, and the determination coefficient was 0.55. Bu et al. proposed a com‑
bined wind speed retrieval model using both the NBRCS and LES observables [47]. The
RMSE and determination coefficient of the combined method is 2.1 m/s and 0.906, respec‑
tively. Compared with the single‑observable model based on NBRCS or LES, it achieves
considerable performance improvement.

Table 1 summarizes the comparison of methods for spaceborne GNSS‑R sea surface
wind speed (WS) retrieval, mainly from the aspects of retrieval methods, GNSS‑R observ‑
ables, retrieval models and retrieval accuracy. Only representative literature is listed in
the table, and “‑” means not involved. Among them, MHL‑NN represents a multi hidden
layer neural network, ANN means an artificial neural network, HMDL denotes a hetero‑
geneous multi‑mode deep learning network, CNNmeans a convolutional neural network,
MCNN indicates a statistically modified CNN and FA‑RDN represents a cyclic neural net‑
work of feature attention mechanisms. It can be seen from Table 1, for the GMF method,
some features (e.g., LES, TES and normalized bistatic radar cross section (NBRCS)) related
to sea surface wind speed are extracted from DDM first. Next, by fitting an empirical func‑
tion that links DDMobservables with wind speed, and linear regression is applied to build
GMF, then the minimum variance estimator (MVE) is used to combine the retrieval results
of single observables and eliminate the residuals [31]. Although, the MVE method can
achieve an accuracy of about 2 m/s for wind speed in the range of 0–30 m/s. However, the
accuracy improvement of the MVE method over a single observable based method is still
limited. Further research shows that the GNSS‑R wind retrieval can be affected by inci‑
dence angle, reflection geometric parameters (such as longitude and latitude of specular
point) [42,48] and sea conditions (such as significant wave height). Ocean swell caused by
non‑local winds may also have an impact on sea surface roughness [41,49,50], especially
at very low wind speeds. It is difficult to develop a joint model through an analytical
approach while considering all the factors. Therefore, in the traditional algorithm devel‑
opment, only a limited set of observations and features are used, which limits the accuracy
of wind speed retrieval. However, it is encouraging that the GNSS‑R wind speed retrieval
algorithm has been significantly improved in recent years, opening a window for retriev‑
ing global wind speed from spaceborne GNSS‑R data. In particular, the algorithm based
on deep learning has been used tomeasure global oceanwind speed and achieved satisfac‑
tory results from spaceborne GNSS‑R data [40–42]. Deep learning provides the ability to
mitigate the impact caused by interfering data. However, due to the uneven distribution of
wind speed samples, the retrieval performance of the deep learning model for high wind
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speeds is poor. Therefore, samples in a wider wind speed range should be selected for
a more generally applicable spaceborne GNSS‑R wind speed retrieval model.

Table 1. Comparison of spaceborne GNSS‑R sea surface wind speed retrieval methods.

Methods Literature GNSS‑R Observables Retrieval Models Retrieval Accuracy

Waveform
matching method [51] Normalized power

value of DDM ‑ 1–2 m/s for WS < 20 m/s

Empirical model
method

[31,33,34,47,
52–54]

DDMA, DDMAV,
ADDMV, LES, TES,
NBRCS, Generalized
Linear Observables

Polynomial fitting,
exponential function,
power function,
combination of
multiple observables.

~2 m/s for WS < 20 m/s

Intelligent
optimization
algorithm

[31,55] NBRCS、 LES Combination model based
on MVE and PSO.

PSO method is better than MVE
method. The RMSE is better than
1.95 m/s for WS < 20 m/s.

Machine/Deep
learning method [36,38–43]

DDM, DDMA, LES,
incidence angle,
NBRCS, GPS satellite
number, RCG,
longitude and latitude
of specular point, etc.

MHL‑NN, ANN, HMDL,
CNN, MCNN, FA‑RDN

The retrieval accuracy of CNN,
MCNN and FA‑RDN models is
the best. When the WS is less than
20‑30 m/s, they are better than
1.36 m/s, 1.53 m/s and 1.45 m/s,
respectively.

To solve the problem that the accuracy of wind speed retrieval of the empirical com‑
bination model is limited, the fully connected network (FCN) is applied to develop a multi
feature wind speed retrieval model [37–43]. However, the improvement is mainly for the
wind speed of 5–10 m/s because most data used are in this range. Due to overfitting, the
estimated RMSE is much larger when it is above 15 m/s. Recently, Chu et al. used the
one‑month long TDS‑1 data set to develop a more advanced architecture and proposed
a multimodal deep learning model that fuses 34 auxiliary parameters with the DDM fea‑
tures extracted by CNN. The results show that the proposed model is substantially im‑
proved compared with FCN [39]. Asgarimehr and Guo et al. also applied multimodal
CNN to the CYGNSS data and achieved decent performance [40,41]. Although these mod‑
els are still affected by the probability density distribution function of wind speed, they
open up a new prospect for GNSS‑Rwind speed inversion through a heterogeneous multi‑
modal deep learning (HMDL) method.

In this paper, we propose an improved deep learning framework (i.e., GloWS‑Net)
for global sea surface wind speed retrieval from spaceborne GNSS‑R data. GloWS‑Net
considers the fusion of auxiliary information (ocean swell SWH, sea surface rainfall and
wave direction) to build an end‑to‑end wind speed retrieval model. Compared with pre‑
vious methods, the proposed model has the following advantages:
(1) GloWS‑Net includes a convolution layer for extracting effective features from the

combination of BRCS DDM and corresponding effective scattering area, and a full
connection layer for processing auxiliary parameters and higher‑level input parame‑
ters. The best architecture is obtained based on the validation set and evaluated on
the testing set to verify the generality of the model.

(2) When training GloWS‑Net, some traditional machine learning strategies are used to
prevent overfitting, including batch normalization and early stop.

(3) Contribution fromdifferent inputs is exploited by theGloWS‑Net deep learningmodel.
Meanwhile, the influence of swell and rainfall on wind speed retrieval performance
is considered and corrected.

(4) The GloWS‑Net model architecture has significantly reduced the underestimation
phenomenon for high wind speeds. It outperforms the CyGNSSnet and
MCNN architectures.
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The rest of this paper is arranged as follows. Section 2 describes the data sets used and
the basic modelingmethods. Section 3 focuses on the design, training and validation of the
GloWS‑Net model. Section 4 compares the wind speed retrieval performance of different
modeling methods, and discusses the results in detail. Section 5 provides the conclusion
of this paper.

2. Data Set and Method Description
2.1. Data Set

To develop and test the retrieval model of the spaceborne GNSS‑R sea surface wind
speed, in this paper, six different data sets are used, including the CYGNSS GNSS‑R L1
level data, ERA5wind speed data, ERA5 swell significant wave height (SWH), ERA5wave
direction data, IMERG rainfall data, and theCross‑CalibratedMulti‑Platform (CCMP) anal‑
ysis wind (v02.1 near real time) products produced by Remote Sensing Systems (RSS).
These data cover all the days of 2021.

(1) CYGNSS GNSS‑R L1 level data

At present, the National Aeronautics and Space Administration (NASA) mainly pro‑
vides users with three levels of CYGNSS GNSS‑R data for free. The L1 level data product
of version V3.1 is used in this article. This version mainly includes GNSS‑R data from Au‑
gust 1, 2018 (DOY 213) to December 20, 2022. We can access the GNSS‑R data from the
website (https://podaac.jpl.nasa.gov/dataset/CYGNSS_L1_V3.1 (accessed on 19 December
2022)). This type of data records the DDM, specular point coordinates, transmitter posi‑
tions and other relevant information of eight CYGNSS satellites (i.e., CY01, CY02, CY03,
CY04, CY05, CY06, CY07 and CY08). In addition, CYGNSS L1 V3.1 also provides multiple
DDM products (such as brcs, raw_counts, and power_analog). This article uses brcs and
power_analog together with the effective scanning area corresponding to brcs.

(2) ERA5 reanalysis data sets

The Copernicus climate change service (C3S) climate database provides users with
ECMWF reanalysis data products. ERA5 is the fifth generation atmospheric reanalysis of
global climate by ECMWF. The reanalysis data combine the model data with the observa‑
tion data from all over the world to form a global complete and consistent data set. ERA5
replaces its predecessor ERA Interim reanalysis. ERA5 containsmultiple types of data sets.
In this paper, we use ERA5 hourly data on a single level from 1959 to present (https://cds.
climate.copernicus.eu/cdsapp#!/dataset/reanalysis‑era5‑single‑levels (accessed on 1 July
2022)), which includes the data of 2 m temperature, 2 m dewpoint temperature, total
precipitation, average sea level pressure, surface pressure, 10 m u‑component of wind,
10 m v‑component of wind, boundary layer height and sea surface wave height. We used
ERA5 swell height data, ERA5 wave direction data, ERA5 10 m u‑component of wind and
10 m v‑component of wind data. Among them, the ERA5 swell height data represent the
significant height of total swell. The 10 m u‑component of wind and 10 m v‑component
of wind data are matched with other data through bilinear interpolation in space and lin‑
ear interpolation in time. It should be noted that both the cubic and bilinear interpolation
methods can be applied for matching data in a spatial domain, the bilinear method is usu‑
ally used in the GNSS‑R field. Since the results difference between them is negligible, the
bilinear method is chosen here. Then, wind synthesis is conducted, and the resultant wind
speed is used as the reference value of the real sea surface wind speed at 10 m above the
sea surface. It is worth mentioning that the spatial resolution of ERA5 swell height data
and ERA5 wave direction data is 0.5◦ × 0.5◦ and temporal resolution is 1 h. However, the
spatial resolution of 10 m u‑component of wind and 10 m v‑component of wind data is
0.25◦ × 0.25◦ and temporal resolution is 1 h.

https://podaac.jpl.nasa.gov/dataset/CYGNSS_L1_V3.1
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels
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(3) Integrated Multi‑satellite Retrievals for Global Precipitation Measurement (GPM
IMERG) precipitation data sets

The Integrated Multi‑satellite Retrievals for GPM (IMERG) algorithm combines infor‑
mation from the GPM satellite constellation to estimate precipitation over the majority of
the Earth’s surface. This algorithm is particularly valuable over the majority of the Earth’s
surface that lacks precipitation measuring instruments on the ground. Now in the latest
Version 06 release of IMERG, the algorithm fuses the early precipitation estimates collected
during the operation of the TRMM satellite (2000–2015) with more recent precipitation es‑
timates collected during the operation of the GPM satellite (2014–present). GPM‑IMERG
has three types of products, namely IMERGEarly Run (IMERG‑E) (real‑time productswith
a delay of about 4 h), IMERG Late Run (IMERG‑L) (near real‑time processing with a delay
of about 14 h) and IMERG Final Run (IMERG‑F). The spatial resolution of three types of
products is 0.1 ◦ × 0.1 ◦, they all have 1month, 1 day and 30min temporal resolutions. This
article uses an IMERG‑F product with a temporal resolution of 30min, which can be down‑
loaded from the GPM website for free (https://gpm.nasa.gov/data/directory (accessed on
1 July 2022)).

(4) RSS CCMP wind analysis product

The CCMP wind product was also used to evaluate the performance of the proposed
model in retrieving wind speed. The CCMP is a combination of ocean surface (10 m) wind
speed retrievals frommultiple types of satellite microwave sensors and a background field
from reanalysis. That is, CCMP simultaneously integratesmulti‑satellite sea surfacewinds
of scatterometers fromQuikSCAT andMETOP‑A/ASCAT, radiometers from SSM/I, SSMIS,
AMSR, TMI, WindSat and GMI as well as in situ observations fromNDBC, TAO, TRITON,
RAMA, PIRATA and Canadian [56,57]. This data set has its own unique characteristics.
CCMP wind data including u‑ and v‑components were downloaded from Remote Sens‑
ing Systems (https://data.remss.com/ccmp/ (accessed on 19 December 2022)). The spa‑
tial resolution of its 10 m u‑component of wind and 10 m v‑component of wind data is
0.25 ◦ × 0.25 ◦ and temporal resolution is 6 h. The coverage range is (0, 360◦) for longitude
and (−78.375◦, −78.375◦) for latitude. Wind speed at 10 m (U10) was calculated after re‑
spective interpolation of u and v wind components, which was used as the ground truth
wind speeds.

Please note that in consideration of the spatial and temporal resolution difference be‑
tween the CYGNSSGNSS‑R data and ERA5 data set, CCMPwind data and IMERG rainfall
data set, these data must be matched with the real sea surface ERA5 wind speed data at
10 m above the sea surface. Linear interpolation in time and bilinear interpolation in space
are implemented to obtain the co‑located sea surface wind speed.

2.2. Method Description
The data processing flow and model building process of the spaceborne GNSS‑R sea

surface wind speed retrieval method are shown in Figure 1. First, the CYGNSS DDM data
are down sampled and spatiallymatchedwith the ERA5wind speed, ERA5wave direction,
ERA5 swell SWH and IMERG rainfall data to produce the matched data set. To ensure
the quality of the data set, the sampling data need to be quality controlled and filtered
according to the standards listed in [24,28,42], so as to obtain the filtered high‑quality data
set. Then, the data set is randomly divided into training set, verification set and test set.
They account for 30%, 15% and 55% of the filtered data set, respectively. The training set
is used to train the model and the verification set is used to evaluate the performance of
the network configuration. The content of network configuration is described in detail in
Section 3.2. In the model training stage, it is necessary to specify the number of hidden
layers and the number of neurons in each layer, and select the configuration with the best
performance for the ultimate retrieval of global ocean wind speed.

https://gpm.nasa.gov/data/directory
https://data.remss.com/ccmp/
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Figure 1. Data processing and model development process of spaceborne GNSS‑R sea surface wind
speed retrieval.

In order to confirm the improvement of the proposed model, the training model is
further divided into two stages, namely the first stage and the second stage indicated by
the red dotted box in Figure 1. In the first stage, the training set is used to establish the
GMF, FCN and CNN models, and the latter two use the early stop method through the
verification set to avoid overfitting. It should be noted that the ERA5 swell SWH, IMERG
rainfall data and ERA5 wave direction data are not used to retrieve wind speed based on
the GMF method. In this paper, the FCN models are divided into FCN1, FCN2, FCN3
and FCN4 models according to the number of input parameters in the input layer. The
CNN models only have DDM images as input. According to the different types of DDM
images, the CNN models are divided into CNN1 and CNN2 models (see Table 3 below).
In the second stage, the CNN3model is established by adding effective scattering area and
additional auxiliary parameters corresponding to BRCS DDM on the basis of the CNN1
model. Please note that the CNN1, CNN2, CNN3 andGloWS‑Netmodels are independent,
and they are directly trained by the training set and supervised by the verification set. The
CNN3 model is only designed to analyze the impact of introducing additional auxiliary
parameters. For convenience, the proposed improved CNN model is named GloWS‑Net
model, and its retrieved wind speed is hereinafter referred to as GloWS‑Net wind speed.
Finally, the performance of these four models (GMF, CNN1, CNN2 and FCN) in the first
stage and two models (CNN3 and GloWS‑Net) in the second stage are tested on the test
set. The reference wind speed data in the test set include the ERA5 and CCMPwind speed
data, among which, the CCMP wind speed data are not used for model training, so this
data set can better evaluate the robustness and generality of the proposed model. Details
of each stage are provided later.
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3. Development of the GloWS‑Net Deep Learning Model
3.1. CYGNSS Observations and Other Auxiliary Observations

DDM is the basic data recorded by a GNSS‑R receiver and also the most useful data.
For the retrieval of sea surface wind speed using spaceborne GNSS‑R technology, the peak
value of bistatic reflected power will change, and the shape of the delayed Doppler maps
will also change due to the variation in sea surface roughness. In the case of bistatic scat‑
tering, the relationship between wind speed and the peak DDM power is different from
that of the backscattering geometry. When wind speed is low, the strong forward reflec‑
tion will cause the received signal to be very strong. With the increase in wind speed, the
peak power decreases. This is consistent with the situation observed in the DDM diagram
under different wind speed conditions shown in Figure 2. It can be seen that the DDM of
the GNSS signal reflected from the sea surface is horseshoe shaped, and the power value is
usually the largest at the specular point. These differences provide a valuable opportunity
for retrieving the sea surface wind speed based on spaceborne GNSS‑R. Therefore, four
variables (NBRCS, LES, TES and SNR) extracted from DDM have strong correlation with
wind speed [58,59]. These variables are calibrated in the CYGNSS Level 1B product, which
is usually used forwind speed retrieval [33]. The signal to noise ratio (SNR) is also strongly
correlatedwith sea surface roughness [34,35]. NBRCS and LES are the twomost important
observables in CYGNSS products, which are very effective for wind speed retrieval. TES
is the slope of the trailing edge of the integrated delay waveform, which is also useful for
sea surface wind speed [31]. Please note that the TES observation value in this paper is
calculated from the power DDM. In addition, this paper also uses two main measurement
products, BRCS DDM and its corresponding effective scattering area. BRCS DDM has
a size of 17 × 11, which is different from power DDM.
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In addition to the above observables, several other variables related to receiver, satel‑
lite geometry, sea state factors and weather conditions are also considered to improve the
performance of the model. The receiver antenna gain reflects the state of signal recep‑
tion, and the incident angle and specular reflection point describe the satellite geometry.
Sea state factors mainly include swell and wave development degree will increase the un‑
certainty of spaceborne GNSS‑R wind speed retrieval. For example, the wind speed re‑
trieval in CYGNSS L2 is based on two independent GMFs (i.e., one for fully developed
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sea and one for developing sea), taking into account the development of the ocean [54].
The GMF used by NOAA for CYGNSS wind speed retrieval includes SWH as the input
parameter [60,61]. Li and Guo et al. also used swell SWH as input parameter to estab‑
lish their wind speed retrieval model [41,42]. The swell is a long wave. The SWH of the
swell will affect the GNSS signal reflection, so it is used as one input parameter. Similarly,
this paper also uses SWH as a prior knowledge to improve the performance of the wind
speed retrieval model. Secondly, because the sea wave information has an important con‑
tribution to wind speed retrieval based on the deep learning network, it is also helpful to
use more sea wave related parameters as the input of the neural network training. How‑
ever, considering that the structure complexity of the network and the computational load
of the network training will increase significantly, which will affect the convergence of
the training, the SWH of the swell and the wave direction parameters are mainly consid‑
ered in the GloWS‑Net model. In addition, rainfall will also affect the retrieval of space‑
borne GNSS‑R wind speed, especially at low wind speeds (<10 m/s), rainfall will lead to
wind speed retrieval deviation [25,61,62], and wind speed deviation will increase with the
increase in rainfall [61]. In order to consider the effect of rain, rainfall intensity is also
added as an input parameter. For clarity, Table 2 lists the auxiliary parameters used in the
GloWS‑Net model.

Table 2. Specific description of input auxiliary parameters information of GloWS‑Net model.

Input Variables Description

Related to DDM NBRCS Normalized bistatic radar cross section
LES Leading edge slope
TES Trailing edge slope
SNR DDM signal to noise ratio

Related to receiver sp_rx_gain Range corrected gain
Related to satellite geometry sp_lon Specular point longitude

sp_lat Specular point latitude
sp_inc_angle Specular point incidence angle

Other parameters Swell SWH ERA5 swell SWH
Wave direction ERA5 wave direction
Rainfall intensity IMERG rainfall intensity

3.2. GloWS‑Net Model Design
In this section, we describe the general architecture of GloWS‑Net (as shown in

Figure 3) and the scheme for optimizing the network.
Please note that the GloWS‑Net architecture proposed in this paper is different from

the network architecture of Asgarimehr and Guo et al. [40,41]. In Figure 3, the GloWS‑
Net architecture has three input ports, the first for BRCS DDM, the second for effective
scattering area and the third for auxiliary parameters. In particular, the third port inputs
the longitude and latitude, incidence angle, NBRCS, LES, TES, rainfall information and
other auxiliary variables of the specular reflection point. It can be seen from Figure 3 that
the size of the characteristic map gradually decreases through the processing of different
layers, and the results (i.e., wind speed) are finally output through the full connecting layer.

To compare with the GloWS‑Net architecture proposed here, we provide the results
of CNN1 architecturewith only BRCSDDM input andCNN2 architecturewith only power
DDM input, and the results of FCN1, FCN2, FCN3 and FCN4 architectures with only aux‑
iliary parameters but no convolution layer. These architectures are different in terms of
auxiliary parameters and input image types. Information about architectures and auxil‑
iary parameters is shown in Table 3.
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Table 3. Input parameters of FCN, CNN and GloWS‑Net models.

Architecture (Model) Input Image Input Auxiliary Parameters (Variables)

FCN1 No NBRCS, LES
FCN2 No NBRCS, LES, TES, SNR, incidence angle, receiver antenna gain

FCN3 No NBRCS, LES, TES, SNR, incidence angle, receiver antenna gain, longitude
and latitude of specular point

FCN4 No
NBRCS, LES, TES, SNR, incidence angle, receiver antenna gain, longitude

and latitude of specular point, swell SWH, wave direction,
rainfall intensity

CNN1 BRCS DDM No
CNN2 power_analog No
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Table 3. Cont.

Architecture (Model) Input Image Input Auxiliary Parameters (Variables)

CNN3 BRCS DDM, effective
scattering area

NBRCS, LES, TES, SNR, incidence angle, receiver antenna gain, longitude
and latitude of specular point

GloWS‑Net BRCS DDM, effective
scattering area

NBRCS, LES, TES, SNR, incidence angle, receiver antenna gain, longitude
and latitude of specular point, swell SWH, wave direction,

rainfall intensity

Determining the optimal activation function in neural networks is an important task
because it is directly related to network performance. Unfortunately, however, it is difficult
to determine this function analytically. On the contrary, an optimal activation function is
usually determined through repeated trials or adjustments [63]. This paper considers five
activation functions, namely Relu, Tanh, Elu, Sigmoid and softplus:

fRelu(x) = max(0, x) =
{

0, x < 0
x, x >= 0

(1)

fTanh(x) =
2

1 + e−2x − 1 (2)

fElu(x) =
{

x, x > 0
α(ex − 1), x ⩽ 0

(3)

fSigmoid(x) =
1

1 + e−x (4)

fSoftplus(x) = ln(1 + exp(x)) (5)

In the above formula, x is the input value of the previous layer neuron.
The advantage of the Sigmoid activation function is that the gradient is smooth, avoid‑

ing jumping output values. However, the gradient tends to be zero, so the exponential
calculation is slow. The Tanh function has some advantages over the Sigmoid function.
However, when the input is large or small, the output is almost smooth and the gradient
is small, which is not conducive to weight update. The Relu function is a popular activa‑
tion function in deep learning. Compared with the Sigmoid function and Tanh function,
the Relu function does not have the gradient saturation problem, and because the Relu
function only has a linear operation function, its calculation speed is faster than the Sig‑
moid function and Tanh function. However, the Relu function also has disadvantages.
For example, when the input is negative, in the back propagation process, the gradient
will be completely zero.The Elu function solves the problem of Relu. Compared with Relu,
Elu has a negative value, which will make the average value of activation close to zero.
The mean activation close to zero can make learning faster because it makes the gradient
closer to the natural gradient. Please note that although the Elu function is better than the
Relu function in theory, there is no sufficient evidence to show that Elu is always better
than Relu in practice. The Softplus function is similar to the Relu function, but it is rela‑
tively smooth. Aswith Relu, it has unilateral suppression and has awide acceptance range
(i.e., (0, +inf)).

In order to determine the activation function for optimal performance, we analyzed
and discussed the influence of the number of neurons in different hidden layers and differ‑
ent activation functions on the accuracy ofwind speed retrieval using the FCN architecture.
Generally, the accuracy of linearmodels is low, so the activation function improves the per‑
formance of the FCN model by adding nonlinear factors. As stated in [38], the number of
hidden layers used in FCN is usually between 1 and 3, and 4 layers are rarely used because
more hidden layers will cause a higher computing cost [38]. Generally, the FCN architec‑
turewith three hidden layers can obtain the best results inwind speed retrieval [50]. There‑
fore, we also adopted the FCN architecture with three hidden layers, and set the number
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of neurons in each layer to 4N, 2N and N, respectively, with N being 4, 8, 12, 24, 32, 48,
64 or 128.

Figure 4 shows the RMSE comparison of wind speed retrieval performance for the
different number of neurons and different activation functions in the three hidden layers.
It can be seen from the figure that different activation functions have a great impact on the
accuracy of wind speed retrieval, so it is very important to select an appropriate activation
function. When N = 128, the Relu activation function achieves the best performance in
RMSE, followed by the Tanh function. Therefore, this paper uses the Relu function as the
best activation function for all neural network architectures, and the hidden layers of FCN1,
FCN2, FCN3 and FCN4 models are set as 512, 256 and 128, respectively.
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In this paper, the mean square error between the predicted wind speed and the refer‑
ence wind speed is used as a loss function:

Loss =
1
N

N

∑
i=1

(ûi − ui)
2 (6)

where N is the number of samples, ûi is the predicted wind speed, and ui is the reference
wind speed.

The optimizer is another important configuration of the trainingmodel. After compar‑
ison, we chose Adam optimization algorithm to train small batches randomly disordered.

3.3. GloWS‑Net Model Training and Verification
The related network is implemented under the Keras architecture and TensorFlow

backend. Table 4 shows the basic configuration of the experimental platform. These net‑
works can be trained on the GeForce GTX 1050Ti GPU. The preprocessed data are normal‑
ized to zero mean and unit variance according to the characteristics. The verification set is
used to avoid overfitting. We adopt the early stop condition with six epochs. The learning
rate is set to 0.0005. To further prevent the overfitting problem, the random deactivation
(dropout) is set to 0.1.

The training set and verification set are separated. The training set is used to train the
network model, and the verification set is used to supervise the model training. The batch
size in this paper is set to 32. When the network updates the weight coefficient each time,
only samples from one batch are used to train the model. To ensure good performance,
the number of epoch is set to 100.
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Table 4. The configuration of experiment platform.

Programming Language Python 3.7

Deep learning API Tensorflow 2.3 and Keras 2.4

CPU Intel core i7‑7700HQ

Running memory 16 GB

GPU GeForce GTX 1050Ti

4. Performance Analysis and Discussion of Wind Speed Retrieval
4.1. Comparison with ERA5 Data

In this section, the performance of the GloWS‑Net model architecture is compared
with the traditional MVE method and some existing network architectures (such as FCN
andCNNmodels). Thewind speed retrieval performance test is conducted on the test data
set, which is not used during training and is separated from the training set and verification
set. Therefore, it is very suitable for evaluating the generalization ability of corresponding
networkmodels on blind data sets. However, this trainingmethod also has a disadvantage
that any systematic errors will be invisible to the algorithm. In the following, we first
compare and analyze the wind speed retrieval performance of different retrieval models,
then evaluate the performance of different retrievalmodels in retrieving globalwind speed,
and finally discuss the results.

As shown in Figure 1 above, wind speed retrieval can be divided into two stages.
The first stage involves the GMF method, CNN1, CNN2, FCN1, FCN2, FCN3 and FCN4
models. The second stage includes wind speed retrieval by CNN3 model and GloWS‑Net
model. Among them, the CNN3 model fuses the DDM image and auxiliary parameters
excluding SWH, wave direction and rainfall information. The GloWS‑Net model includes
SWH of swell, wave direction and rainfall information as input parameters. Table 5 shows
the retrieval accuracy statistics of different retrievalmodels forwind speed less than 10m/s,
10–15 m/s, 15 m/s and 0–30 m/s. In the table, RMSE, mean absolute error (MAE), correla‑
tion coefficient (CC) and MAPE represent root mean square error, mean absolute error,
correlation coefficient and mean absolute percentage error, respectively. The following
conclusions can be drawn from the table:

Table 5. Accuracy of wind speed retrieved from different models using ERA5 data as reference.

Models
<10 m/s 10–15 m/s >15 m/s 0–30 m/s

RMSE (m/s) RMSE (m/s) RMSE (m/s) RMSE (m/s) MAE (m/s) CC MAPE (%)

NBRCS 2.05 2.46 4.48 2.42 1.85 0.83 29.93
LES 2.26 2.54 4.65 2.71 1.98 0.70 32.41
MVE 2.23 2.42 4.29 2.53 1.98 0.81 30.64
FCN1 2.48 2.52 4.08 2.66 2.08 0.80 31.69
FCN2 1.78 2.02 3.33 2.03 1.57 0.89 23.40
FCN3 1.61 2.13 3.42 1.99 1.52 0.89 22.63
FCN4 1.76 1.89 2.89 1.92 1.48 0.90 24.78
CNN1 1.71 2.59 4.68 2.37 1.81 0.85 25.72
CNN2 2.05 2.46 4.54 2.46 1.90 0.82 28.64
CNN3 1.81 2.18 2.81 2.02 1.53 0.89 21.91

GloWS‑Net 1.69 2.10 2.68 1.92 1.43 0.90 20.67

(1) When the wind speed is within the range of 0‑30 m/s, the RMSE of the FCN4 and
the proposed GloWS‑Net model architectures are the lowest (1.92 m/s). However, it can
be observed from the table that the proposed GloWS‑Net model architecture is superior
to the FCN4 model in terms of MAE and MAPE, especially for MAPE. Generally, MAE
and MAPE are less affected by extreme values. However, RMSE uses the square of error
and it is more sensitive to outliers. The FCN3 and CNN3 model architectures with the
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same number of auxiliary parameter inputs also show a similar situation, which indicates
that after adding DDM images, the GloWS‑Net model architecture can obtain the same
RMSE as the FCN model, but MAPE has been significantly improved by 16.56%. In addi‑
tion, in terms of the four indicators (MRSE, MAE, CC and MAPE), the performance of the
proposed GloWS‑Net model architecture is significantly better than the model combing
the results from NBRCS and LES based on the MVE method, with an increase of 23.98%,
27.95%, 11.02% and 32.52%, respectively. Compared with the NBRCSmethod, it increased
by 20.67%, 22.78%, 8.95% and 30.92%, respectively. Comparedwith the LESmethod, it has
increased by 29.16%, 27.85%, 29.19% and 36.21%, respectively.

(2) In the case of strong wind (>15 m/s), the RMSE of all architectures and MVEmeth‑
ods increases. However, adding auxiliary parameters, as done in FCN2, FCN3, FCN4,
CNN3, and GloWS‑Net model architectures, will reduce RMSE. Compared with other ar‑
chitectures, CNN1 and CNN2 that only handle BRCS DDM or power DDM have poor
performance. This shows that even when the wind speed is lower than 9 m/s, it is neces‑
sary to add auxiliary parameters to obtain satisfactory results. It is encouraging to note
that the GloWS‑Net model architecture has the best performance in retrieving wind speed
under strong wind conditions and has obtained the minimum RMSE.

(3) In the case ofmoderate wind speed (10–15m/s), the retrieval performance of FCN4
and GloWS‑Net model architecture is better than that of the GMF method. However, the
performance of GloWS‑Net is slightly inferior to that of FCN4. Under low wind speed
(<10 m/s), the performance of GloWS‑Net is slightly better than that of FCN4. In this case,
although the RMSE of the MVE method is small, it is still worse than FCN (such as FCN2,
FCN3 and FCN4), CNN (CNN1, CNN2 and CNN3) and GloWS‑Net. In addition, it is
worth noting that the accuracy of the FCN1 model with only NBRCS and LES observables
as auxiliary parameters is much lower than that of the traditional MVE method, which
indicates that more auxiliary parameters need to be added to the FCN1 model for wind
speed retrieval to obtain satisfactory results (such as FCN2, FCN3 and FCN4). Another
important aspect we can notice is that the CNN1model with BRCS DDM as the input only
achieves the same performance as the FCN4 and GloWS‑Net model architectures under
low wind speed. This shows that the CNN1 wind model for low wind speed can benefit
from the accretion layer.

In sum, in terms of overall RMSE, except for FCN1, CNN1 and CNN2, other model ar‑
chitectures have better wind speed retrieval performance than the NBECS, LES and MVE
methods. For the accuracy obtained from the wind speed range of 0–30 m/s, although the
RMSEs of GloWS‑Net and FCN4 are equivalent, the performance of the proposed GloWS‑
Net is better than that of FCN4 in terms of MAE and MAPE, especially for MAPE. In
addition, FCN4 performs worse than GloWS‑Net under low and high wind speeds. It
should be emphasized that only a verification using in situ measurements provided by
weather stations or a campaign with boats on the investigated area will fully validate the
proposed approach.

In order to evaluate the performance of different models, Figure 5 shows the wind
speed scatter density plots of different models and ERA5. The color bar in the figure rep‑
resents the data density, the red dotted line represents the 1:1 reference line, the magenta
solid line represents the linear fitting result between the retrieved and ERA5 wind speeds,
and theCC represents Pearson correlations between retrievedwind speed of themodel and
ERA5 wind speed are also given. The following observations can be seen from the figure:
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(1) Although the FCN4model analyzed above and the GloWS‑Netmodel produce the
same RMSE, the proposed GloWS‑Net model and CNN3 model show better performance
in terms of correlation between retrieved wind speed and ERA5 data. Obviously, there
are more data points distributed symmetrically along the y = x line, and fewer data points
scattered around the line.

(2) The MVE method obviously overestimated the wind speed of 5 to 12 m/s, which
may be caused by insufficient power calibration of CYGNSS data and high noise [48,54].
Within this range, a large number of samples and some measured power values may be
underestimated. This problem has been improved by FCN, CNN and GloWS‑Net. In par‑
ticular, the results retrieved by CNN3 and GloWS‑Net both are more concentrated along
the 1:1 reference line when wind speed is in the range of 5~12 m/s. It is also obvious from
the figure that the MVE method, FCN1, FCN2, FCN3, FCN4, CNN1 and CNN2 model ar‑
chitectures have poor response capability to wind speed in the range of 0–5 m/s. However,
CNN3 and GloWS‑Net model architectures do not have this problem. This shows that af‑
ter adding DDM images to the input layer of the CNN3 and GloWS‑Net wind models, the
architecture incorporating the convolution layer has better performance than those with
only the full connection layer because they use the patterns in DDM. In addition, except
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for CNN3 and GloWS‑Net, other models show overestimation at very low wind speeds
(<5 m/s) and underestimation at high wind speeds (15–30 m/s). The correlation between
the wind speed retrieved by CNN1 and CNN2 models and the ERA5 data is the worst,
which clearly indicates that more auxiliary parameters need to be included in CNN1 and
CNN2 to obtain better results.

(3) It is worth mentioning that, compared with the two most advanced deep learning
model architectures (i.e., MCNN and CyGNSSnet) currently used for spaceborne GNSS‑
R wind speed retrieval [40,41], the GloWS‑Net model architecture proposed in this pa‑
per performs very well in the case of high wind speed, that is, the GloWS‑Net model
significantly mitigates the underestimation phenomenon at high wind speed. Generally,
for marine disasters caused by marine events with large wind speeds such as hurricanes
and typhoons, high‑precision wind speed estimation results at high wind speeds are very
helpful for monitoring those disasters. Although limited to the current level of space‑
borne GNSS‑R technology, wind speed prediction under strong winds is still facing great
challenges [64,65]. However, the excellent performance of the GloWS‑Net model at high
wind speeds is promising for future marine disaster monitoring.

Figure 6 shows the RMSE and MAE of different models for different wind speed
ranges. It can be seen that CNN3 and GloWS‑Net outperform other architectures espe‑
cially for challenging high wind speeds (>20 m/s). In addition, when the wind speed is
greater than 8 m/s, it can be seen that including SWH, wave direction and rainfall infor‑
mation enhances the model performance. However, when the wind speed is greater than
20 m/s, the CNN3 model shows equivalent performance as the GloWS‑Net model archi‑
tecture. The reason may be that strong wind speed is accompanied by heavy rainfall or
strong wind speed causes dramatic changes in sea conditions. Even if rainfall, swell and
wave direction information is introduced into the GloWS‑Net model framework, it is dif‑
ficult to correct these influencing factors completely. Therefore, future research needs to
further optimize the GloWS‑Net model architecture.
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speed ranges.

In order to compare the global performance of wind speed retrieved by GloWS‑Net
and the traditional model, we selected the period from July to August 2021 in the test data
set for analysis. Figure 7 shows the ERA5 wind speed and the results retrieved using the
MVEmethod, FCN4 andGloWS‑Net. Figure 8 shows the deviation distribution histogram
between ERA5 wind speed and the results obtained by the MVE method, FCN4 as well as
GloWS‑Net. In the figure, the average deviation (µ), standard deviation (σ), mean absolute
error (MAE) and 80% quantile (Qua) of the deviation are also given. The blue bar chart de‑
picts the error distribution, the red dotted line represents the fitting curve of the probability
density function of the error and the green dotted line marks the wind speed deviation of
0 m/s. It can be observed from Figure 7 that the performance of FCN4 and GloWS‑Net
is better than the MVE method in retrieving global wind speed, and the results from the
MVE method are significantly different from the ERA5 data in multiple sea areas around
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the world (as shown by the magenta rectangle mark in the figure). Comparing the wind
speed retrieval results of FCN4 and GloWS‑Net with the ERA5 data, it is found that the
performance of the GloWS‑Net model is better. For example, in the sea area within the
longitude of 60◦E–120◦E and the latitude of 10◦S–40◦S, the FCN4 model shows an under‑
estimated wind speed, while the retrieved wind speed of the GloWS‑Net model is highly
consistent with the ERA5 data. From Figure 8, it can also be seen that the performance
of the GloWS‑Net model is better than that of the FCN4 model. The deviation between
the GloWS‑Net model wind speed results and the ERA5 data is very concentrated (80% of
the wind speed deviation is less than 2.28 m/s) and near the deviation line of 0 m/s, while
the wind speed deviation of FCN4 is on the left side of the green line in the histogram.
The negative deviation is more obvious, and 80% of the wind speed deviation is less than
2.34 m/s. From the wind speed deviation histograms of the three models, the global wind
speed retrieved by the MVE method is the worst, and 80% of the wind speed deviation is
3.20 m/s. The above analysis further confirms that the GloWS‑Net model architecture has
strong advantages in retrieving global sea surface wind speed.
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4.2. Comparison with CCMP Data
It is necessary to evaluate the wind speed retrieval performance of the proposed deep

model through independent wind speed measurement. The CCMP wind speed is closer
to conventional in situ measurements from ships than the ERA5 product. In [66], CCMP
winds and Tropical Atmosphere Ocean (TAO) mooring observations were compared;
a good agreement with a root mean square error (RMSE) of 1 m/s and a correlation co‑
efficient of 0.95 were obtained. The CCMP wind product is a newly released global ocean
wind data set and suitable for scientific study at various temporal and spatial resolutions,
which iswidely used to verify the retrieval ofwind speed by spaceborneGNSS‑R [55,67,68].
Therefore, the wind speed of CCMP was also collected and compared with the retrieved
wind speed. Figure 9 shows the correlation between the ERA5wind speed data andCCMP
wind speed data used in the testmodel in this study, aswell as the probability density func‑
tion (PDF) distribution curve of ERA5 and CCMP wind speeds. These data cover a wind
speed range of 0 to 30 m/s, but only a few samples have wind speeds of 20–30 m/s, which
may lead to low accuracy at highwind speeds. We can see that the PDF of the two data sets
is almost the same, except that ERA5 wind speed is slightly higher than CCMP at 3–6 m/s
and vice versa at 14–19 m/s. This may be due to the differences in the platforms, hardware
and algorithms used to generate the two data sets. In addition, the RMSE and CC between
the two data sets are 1.46 m and 0.95, respectively, which are highly correlated.
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Table 6 shows the accuracy statistics by comparing the retrieved wind speed data
of different models with the CCMP data. The following conclusions can be drawn from
the table:
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Table 6. Accuracy of wind speed retrieved from different models using CCMP data as reference.

Models
<10 m/s 10–15 m/s >15 m/s 0–30 m/s

RMSE (m/s) RMSE (m/s) RMSE (m/s) RMSE (m/s) MAE (m/s) CC MAPE (%)

NBRCS 2.23 2.58 4.53 2.61 2.06 0.81 30.89
LES 2.45 2.63 4.78 2.87 2.15 0.68 42.36
MVE 2.47 2.52 4.47 2.71 2.12 0.79 41.84
FCN1 2.71 2.63 4.33 2.86 2.22 0.78 42.87
FCN2 1.98 2.18 3.59 2.22 1.71 0.87 31.69
FCN3 1.80 2.27 3.68 2.16 1.66 0.87 31.45
FCN4 2.00 2.07 3.16 2.14 1.67 0.88 36.11
CNN1 1.91 2.66 4.76 2.49 1.92 0.84 33.80
CNN2 2.26 2.52 4.62 2.60 2.02 0.80 37.60
CNN3 2.05 2.33 2.97 2.23 1.70 0.87 29.79

GloWS‑Net 1.97 2.34 2.80 2.16 1.65 0.88 29.70

(1)When thewind speed iswithin the range of 0–30m/s, the RMSE of the FCN4model
architecture is the lowest (2.14 m/s), followed by the proposed GloWS‑Net model architec‑
ture (RMSE = 2.16 m/s) and FCN3 model architecture. The results of comparison between
retrieved wind speed and CCMP are similar to those of ERA5, the difference of RMSE be‑
tween the GloWS‑Net model architecture and FCN model is very small, but MAPE has
been significantly improved by 17.75%. Moreover, in terms of the four indicators (MRSE,
MAE, CC and MAPE), the performance of the proposed GloWS‑Net model architecture
is much better than the model combining the results from NBRCS and LES based on the
MVE method, with an increase of 20.27%, 22.21%, 11.20% and 29.02%, respectively. Com‑
pared with the NBRCS method, it is increased by 17.20%, 20.11%, 8.89% and 3.86%, re‑
spectively. Compared with the LES method, it is increased by 24.71%, 23.45%, 29.70% and
29.90%, respectively.

(2) In the case of strong wind (>15 m/s), except for the GloWS‑Net model architecture,
the RMSE of wind speed retrieved from other models is large. The RMSE of the GloWS‑
Net model is 2.8 m/s, and the retrieval accuracy is 37.42% and 11.58% higher than that of
the MVE and FCN4 models, respectively.

(3) Under medium (10–15 m/s) and low (<10 m/s) wind speed, the results of the com‑
parison between retrieved wind speed and CCMP are similar to those of ERA5. Among
them, the GloWS‑Net and FCN4 model retrieved wind speed has good correlation with
the CCMP data.

Figure 10 shows the wind speed scatter density plots of different models and CCMP.
It can be seen that the comparison results between the wind speed retrieved by different
models and CCMP are consistent with those with the ERA5 data. This further shows that
theGloWS‑Netmodel proposed in this paper is reliable and has high generalization ability,
which means it is good for practical application.

It is also necessary to evaluate the retrieval performance of different retrieval mod‑
els in different wind speed ranges when the CCMP wind speed data are used as refer‑
ence. Figure 11 shows the RMSE and MAE for different wind speed ranges. It can be seen
that CNN3 and GloWS‑Net outperform other architectures especially for challenging high
wind speeds (> 20 m/s). Furthermore, when the wind speed is greater than 8 m/s, it can
be seen that including SWH, wave direction and rainfall information also improves the
GloWS‑Net model performance. When the wind speed is greater than 20 m/s, the GloWS‑
Net model shows the best retrieval performance.



Remote Sens. 2023, 15, 590 20 of 26

Remote Sens. 2023, 15, x FOR PEER REVIEW 20 of 26 
 

 

Figure 10 shows the wind speed scatter density plots of different models and CCMP. 

It can be seen that the comparison results between the wind speed retrieved by different 

models and CCMP are consistent with those with the ERA5 data. This further shows that 

the GloWS-Net model proposed in this paper is reliable and has high generalization abil-

ity, which means it is good for practical application. 

   

   

   

Figure 10. Scatter density plots of retrieved wind speed by different models and CCMP wind 

speed. 

It is also necessary to evaluate the retrieval performance of different retrieval models 

in different wind speed ranges when the CCMP wind speed data are used as reference. 

Figure 11 shows the RMSE and MAE for different wind speed ranges. It can be seen that 

CNN3 and GloWS-Net outperform other architectures especially for challenging high 

wind speeds (> 20 m/s). Furthermore, when the wind speed is greater than 8 m/s, it can be 

seen that including SWH, wave direction and rainfall information also improves the 

GloWS-Net model performance. When the wind speed is greater than 20 m/s, the GloWS-

Net model shows the best retrieval performance. 

Figure 10. Scatter density plots of retrieved wind speed by different models and CCMPwind speed.

Remote Sens. 2023, 15, x FOR PEER REVIEW 21 of 26 
 

 

  

Figure 11. (a) RMSE and (b) MAE for different wind speed ranges when CCMP wind speed is used 

as reference. 

Figure 12 shows the global deviation distribution histogram between CCMP wind 

speed and the results obtained by the MVE method and FCN4 as well as GloWS-Net. 

From Figure 12, it can also be seen that the performance of the GloWS-Net model is better 

than that of the FCN4 model. The deviation between the GloWS-Net model wind speed 

results and the ERA5 data is very concentrated (80% of the wind speed deviation is less 

than 2.60 m/s) and near the deviation line of 0 m/s, while 80% of the wind speed deviation 

of FCN4 model is less than 2.62 m/s, the global wind speed retrieved by the MVE method 

is the worst, and 80% of the wind speed deviation is 3.39 m/s. The above analysis further 

proves that the GloWS-Net model architecture has the best generalization ability in re-

trieving global sea surface wind speed. 

   

Figure 12. Deviation distribution histograms between CCMP wind speed and retrieved wind speed 

by different models. 

4.3. Discussion 

Previous research has successfully utilized a fully connected network (FCN) model 

for wind speed retrieval [37–43]. Inspired by image processing technology, Asgarimehr 

and Guo et al. studied spaceborne GNSS-R wind speed retrieval based on deep learning 

methods (CyGNSSnet and MCNN) [40,41]. Although both models employ the features 

extracted from BRCS DDM, MCNN also uses effective scattering area as the input image. 

However, their research shows that the GNSS-R wind speed retrieval model can benefit 

from the convolution layer. Because the image information in the DDM is integrated, the 

architecture that combines the convolution layer and the full connection layer has better 

performance than the architecture that only has the full connection layer. However, the 

retrieval results of both their models and the GloWS-Net model architecture proposed in 

this paper show that, mainly in the case of high wind speed, the model architecture inte-

grating layer that takes DDM as input with the fully connection layer that takes auxiliary 

parameters as input can obtain more obvious accuracy improvement than the FCN model, 

but their RMSE improvement in the whole wind speed range of 0–30 m/s is not significant. 

This may require further optimization of the convolutional layer architecture or training 

of special models for different wind speed ranges [50]. However, the GloWS-Net model 
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as reference.

Figure 12 shows the global deviation distribution histogram between CCMP wind
speed and the results obtained by theMVEmethod and FCN4 aswell as GloWS‑Net. From
Figure 12, it can also be seen that the performance of the GloWS‑Net model is better than
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that of the FCN4 model. The deviation between the GloWS‑Net model wind speed re‑
sults and the ERA5 data is very concentrated (80% of the wind speed deviation is less than
2.60 m/s) and near the deviation line of 0 m/s, while 80% of the wind speed deviation of
FCN4 model is less than 2.62 m/s, the global wind speed retrieved by the MVE method
is the worst, and 80% of the wind speed deviation is 3.39 m/s. The above analysis fur‑
ther proves that the GloWS‑Net model architecture has the best generalization ability in
retrieving global sea surface wind speed.
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4.3. Discussion
Previous research has successfully utilized a fully connected network (FCN) model

for wind speed retrieval [37–43]. Inspired by image processing technology, Asgarimehr
and Guo et al. studied spaceborne GNSS‑R wind speed retrieval based on deep learning
methods (CyGNSSnet and MCNN) [40,41]. Although both models employ the features
extracted from BRCS DDM, MCNN also uses effective scattering area as the input image.
However, their research shows that the GNSS‑R wind speed retrieval model can benefit
from the convolution layer. Because the image information in the DDM is integrated, the
architecture that combines the convolution layer and the full connection layer has better
performance than the architecture that only has the full connection layer. However, the
retrieval results of both their models and the GloWS‑Net model architecture proposed in
this paper show that, mainly in the case of high wind speed, the model architecture inte‑
grating layer that takes DDM as input with the fully connection layer that takes auxiliary
parameters as input can obtain more obvious accuracy improvement than the FCNmodel,
but their RMSE improvement in the whole wind speed range of 0–30 m/s is not significant.
This may require further optimization of the convolutional layer architecture or training
of special models for different wind speed ranges [50]. However, the GloWS‑Net model
architecture proposed in this paper is superior to the FCNmodel architecture in MAE and
MAPE, especially in MAPE. From this point of view, GloWS‑Net achieves better perfor‑
mance improvement than CyGNSSnet and MCNN for the wind speed range of 0–30 m/s.

Although CNN extracts features directly from the input, research shows that the pre‑
diction accuracy of CNN can be improved by using traditional features. For example, the
combination of CNN and handmade features enhances image classification [69,70]. Simi‑
larly, theoretical remote sensing knowledge is increasingly combined with deep learning
to further improve its performance [71]. The analysis in this paper also shows that tradi‑
tional CNN models (such as CNN1 and CNN2) without full connection layer to combine
auxiliary parameters and DDM result in an RMSE of 2.46 m/s. The performance of fully
connected architectures (such as FCN1) with NBRCS and LES as input characteristics is
inferior to CNN1 and CNN2, resulting in an RMSE of 2.66 m/s. However, under high
wind speed (>15 m/s), the performance of FCN1 is better than that of CNN1 and CNN2.
Therefore, the use of convolution layers to directly extract features from DDM, combined
with more auxiliary feature parameters including NBRCS and LES, can provide the best
performance (such as CNN3 and GloWS‑Net models), and RMSE is better than 1.92 m/s.
By comparing the performance of FCN4 and GloWS‑Net, it can be concluded that adding
more auxiliary parameters does not necessarily reduce the RMSEof the test data. Although
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previous research and the results in this paper show that these auxiliary parameters can
improve the retrieval performance of the model, and based on this fact, they have been se‑
lected as the input of the full connection layer. Therefore, it is necessary to further optimize
the previously proposed model and GloWS‑Net model architecture.

MVE is a classical method for retrieving sea surface wind speed. According to the
statistical results in Tables 5 and 6, the GloWS‑Net model framework is superior to the
MVE method in all wind speed ranges. Especially at high wind speeds (>15 m/s), RMSE
is decreased by 37.45%, which shows significant improvement compared with previous
studies. Figures 8 and 12 also confirm that the global performance of the GloWS‑Net
model framework is better than MVE and FCN4, and the deviation has improved glob‑
ally. Compared with the recent model based on the full connection layer for processing
CYGNSS data [36,38], the GloWS‑Net model architecture also shows encouraging perfor‑
mance. However, the differences in data length, version, quality control, filtering and val‑
idation methods should be considered to ensure the estimation of new data sets will have
the same accuracy.

Both MVE and GloWS‑Net underestimated high wind speed, which may be caused
by the sensitivity saturation of DDM observed under strong wind conditions [32]. This is
a common problem of radar scatterometer whose performance will be reduced under high
wind speed [72]. However, compared with previous CyGNSSnet and MCNNmodels, the
GloWS‑Net model has significantly improved the wind speed retrieval performance in
the case of large wind speed, showing good consistence with the ERA5 data. However,
it is still challenging to use the GloWS‑Net model to retrieve high wind speed. Due to
the relatively small number of high wind speed samples involved in the training model,
the performance of the deep learning algorithm is limited when the wind speed is greater
than 15 m/s.

Figure 7 shows the areawith overestimatedwind speeds, especially in the Asia Pacific
region with longitude between 50◦W–0◦. This is consistent with the situation reported by
Asgarimehr et al. [40]. This area is strongly affected by the L‑band signal of the Quasi
Zenith Satellite System (QZSS), which may be a potential source of Radio Frequency Inter‑
ference (RFI). RFI caused by other L‑band signals, especially satellite enhancement system
(SBAS) signals, has been considered as the root cause of the reduction of signal to noise ratio
and thewind speed overestimation of GNSS‑R [73]. Asgarimehr et al. also reported similar
overestimation in the equatorial region in TDS‑1 satellite measurements [74]. Please note
that the similarity of wind speed retrieved byMVE, CyGNSSnet and GloWS‑Net confirms
that overestimation is related to the data quality but not due to the retrieval methods.

5. Conclusions
This paper studies the method of retrieving sea surface wind speed using spaceborne

GNSS‑R data from CYGNSS mission observations, and proposes a GloWS‑Net deep learn‑
ing network model architecture for spaceborne GNSS‑R global sea surface wind speed
retrieval. Extensive test results show that the GloWS‑Net model architecture can obtain
the same retrieval accuracy as the FCN model with respect to RMSE, but MAPE has been
significantly improved. When compared with ERA5 wind speed and CCMP wind speed,
the MAPE improved by 16.56% and 17.75%, respectively. Moreover, when using ERA5
winds as ground truth, compared with the MVEmethod, RMSE, MAE, CC andMAPE are
improved by 23.98%, 27.95%, 11.02% and 32.52%, respectively, when using CCMP winds
as ground truth, RMSE, MAE, CC and MAPE are improved by 20.27%, 22.21%, 11.20%
and 29.02%, respectively. Compared with previous FCN, CNN, CyGNSSnet and MCNN
models, the proposed wind speed retrieval method based on the GloWS‑Net model has
achieved promising overall performance. The research results also show that the GloWS‑
Net model architecture has strong advantages in retrieving global sea surface wind speed.
In particular, the GloWS‑Net model significantly reduces the underestimate phenomenon
at high wind speeds. Compared with CyGNSSnet and MCNN, it also performs very well.
Being limited by current spaceborne GNSS‑R technology level, it still faces a huge chal‑
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lenge to precisely predict wind speed under strong winds. However, the excellent per‑
formance of the GloWS‑Net model at high wind speeds is promising for future marine
disaster monitoring. As we know, buoy data have been widely used as ground truth for
validation. Due to limited access and spatial coverage of the buoy (NDBC, TAO, etc.) data,
the ERA5 and CCMPdata have been employed as the comparison data in this study. In the
future, further validation using buoy data can be conducted once such high quality data
are available.
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