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Spiking Neural Networks (SNNs) are considered as the third generation of artificial

neural networks, which are more closely with information processing in biological brains.

However, it is still a challenge for how to train the non-differential SNN efficiently and

robustly with the form of spikes. Here we give an alternative method to train SNNs by

biologically-plausible structural and functional inspirations from the brain. Firstly, inspired

by the significant top-down structural connections, a global random feedback alignment

is designed to help the SNN propagate the error target from the output layer directly to

the previous few layers. Then inspired by the local plasticity of the biological system in

which the synapses are more tuned by the neighborhood neurons, a differential STDP

is used to optimize local plasticity. Extensive experimental results on the benchmark

MNIST (98.62%) and Fashion MNIST (89.05%) have shown that the proposed algorithm

performs favorably against several state-of-the-art SNNs trained with backpropagation.

Keywords: SNN, plasticity, brain, local STDP, global feedback alignment

1. INTRODUCTION

Deep neural networks (DNNs) have been advancing the state-of-the-art performance in many
domain-specific tasks, such as image classification (He et al., 2016), visual object tracking (Danelljan
et al., 2015), visual object segmentation (Chen et al., 2017), etc. However, they are still far from the
performance of efficiency and accuracy of information processing in the biological system. The
structural connections (e.g., long-term feedback loops in the cortex) and functional plasticity (e.g.,
neighborhood plasticity based on discrete spikes) are carefully designed by the million years of
evolution in the biological brain. This phenomenon has lead to the research of biologically plausible
Spiking Neural Networks (SNNs). SNNs have received extensive research in recent years, and have
a wide range of applications in various domains, such as brain function modeling (Durstewitz et al.,
2000; Levina et al., 2007; Izhikevich and Edelman, 2008; Potjans and Diesmann, 2014; Zenke et al.,
2015; Breakspear, 2017; Khalil et al., 2017a,b, 2018), image classification (Zhang et al., 2018a; Gu
et al., 2019), decision making (Héricé et al., 2016; Zhao et al., 2018), object detection (Kim et al.,
2019), and visual tracking (Luo et al., 2020). The discrete spike activation and high dimension
information representation in SNNs make it more biologically plausible and energy-efficient.
However, due to the non-differentiable characteristics, how to properly optimize the strength of
synapses to improve the performance of the whole-brain network is still an open question.
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Hebbian theory (Amit et al., 1994) could be considered as the
first principle to demonstrate the relations between neurons, with
the description of fire together, wire together. Later, Spiking Time
Dependent Plasticity (STDP) (Bi and Poo, 1998) was proposed
to model the synaptic plasticity. All the methods mentioned
above are based on local adjustments without introducing global
plasticity information.

Learning and inference in the brain are based on the
interactions of feedforward connections and mutual feedback
connections across the hierarchy of cortical areas, as shown in
Figure 1A. Both anatomical and physiological evidences point to
the feedback connections in the brain (Felleman and Van, 1991;
Sporns and Zwi, 2004). A large number of feedback connections
in the cortex connect the feedforward series in the reverse order,
thereby bringing global information from the higher cortex to
the early cortical areas during perceptual inference. Feedback
connections from higher layers will make predictions represented
by the lower layers, and the feedforward path will get the state
of neurons in the entire hierarchy. Therefore, combining global
long-term feedback connections with local plasticity rules to train
the SNNs is an urgent problem to be explored.

In this paper, we proposed an SNN training method that
combines global feedback connections and local differential
STDP learning rule and performs favorably against several
existing state-of-the-art methods. The contributions of this paper
are summarized as follows:

• We introduce the feedback connections in SNNs, which will
help to introduce global plasticity information. The feedback
connections are random, and no additional calculations
are introduced.

• The global feedback connections combined with the local
STDP plasticity rule are combined to directly optimize the
synaptic strengths of all layers, instead of transferring error
layer by layer as Back-Propagation. Compared with other

FIGURE 1 | (A) The feedforward and feedback interactions in the brain. The massive feedback connections interact with feedforward connections contributing to the

learning and inference of the brain. (B) The whole training process of the GLSNN. The global feedforward path uses the LIF spiking neuron model to get the forward

state. The global feedback path uses the direct connection between the output layer and the hidden layers to propagate the target. The local STDP learning rule helps

to update the weight of the neighborhood layers.

methods, it provides an alternative method for training
deeper SNNs.

• Extensive experimental results on different datasets indicated
that the proposed algorithm could significantly improve the
learning ability of SNNs.

2. BACKGROUND

The success of DNNs is attributed mainly to the Back-
Propagation algorithm (BP) (Rumelhart et al., 1986), which
can take great advantage of the multilayer structure of neural
networks to learn features related to a given task. However, firstly,
the feedback path will have the symmetric weight of the forward
path, which does not exist in biological systems, calling the weight
transport problem (Lillicrap et al., 2016). Secondly, the precise
derivatives of the operating point used in the corresponding
feedforward path are needed. While for SNNs, information is
transmitted in discrete spikes, and it is difficult to get the precise
derivative of the operating point. Thirdly, the errors propagate
layer by layer, which can easily lead to the problem of gradient
vanishes or explosion. To tackle the problems mentioned above,
many other learning rules are proposed to train the ANNs and
further extended to train SNNs. In this section, we will review
several of these approaches and several SNN frameworks in
recent years.

2.1. Biologically Plausible Methods in ANNs
Recently, non-BP methods used to train neural networks can be
roughly divided into three categories.

One family of promising approaches is Contrastive
Hebbian Learning (Movellan, 1991). Equilibrium Propagation
approaches (Scellier and Bengio, 2017) can be seen as a particular
case of Contrastive Hebbian Learning. These kinds of energy-
based models consist of two phases, the free phase is used
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to achieve the stationary distribution, and the clamp phase
is used to update the network toward the target. Through
the iteration of these two phases, the energy of the network
can reach convergence gradually. However, due to the indirect
feedforward process, the network state is obtained byminimizing
the energy function. When the network becomes deeper, the
entire algorithm will be unstable and therefore, difficult to train.
We will give the experimental results below. Similarly, the free
phase (feedforward propagation) and the clamp phase (feedback
propagation) use the same weights, and the weight transpose
problem still exists, as mentioned in backpropagation.

In order to solve the weight transport problem, the Random
Feedback Alignment (RFA) algorithm (Lillicrap et al., 2016) uses
a fixed random matrix B instead of the transposition of synaptic
weights W, which can enable the network to converge to the
optimal solution efficiently. Subsequent work DFA (Nøkland,
2016) propagates error signals through the direct connection
matrix between the output layer and hidden layers. However, the
error feedback does not influence the neural activity, which has
not been confirmed by known biofeedback mechanisms based on
neural communication.

In the Target Propagation (TP) family, for Difference Target
Propagation (DTP) (Lee et al., 2015), targets for each hidden
layer are passed through feedback connections, which avoids
the weight transport problem, as the feedback connections are
different from feedforward connections. The error-driven local
representation alignment (LRA-E) (Ororbia and Mali, 2019),
attempt to calculate the local target with the local error loss.
Random feedback connections are utilized to transmit errors.
However, the error is calculated and propagated layer by layer,
and as the network deepens, performance will deteriorate.

2.2. Spiking Neural Networks
Much effort has been put into training SNNs, which can be
roughly divided into three categories. First, directly convert
the well-trained ANNs to SNNs. Second, SNNs are processed
in some unique methods so that they can be trained with
BP. Third, training SNNs with STDP and other biologically
plausible methods.

For the conversion methods, SDBN (O’Connor et al., 2013)
mapped an offline-trained deep belief network (DBN) onto an
efficient event-driven SNN based on the Siegert approximation.
The LIF response function is softened to lead to the bounded
derivative value, which helps SDN (Hunsberger and Eliasmith,
2015) to convert the trained static network to a dynamic spiking
network. WTSNN (Diehl et al., 2015) converted the DBNs into
SNNs through weight and threshold balancing. Although these
networks achieve good performance, the good results came from
the well-trained ANNs, which does not reflect the characteristics
of SNNs well.

For the BP training methods, DSN (O’Connor and Welling,
2016) proposed that SNN is equivalent to a deep network of ReLU
units, and could be directly trained with BP. Event-SNN (Neftci
et al., 2017) demonstrated an event-driven random BP rule
for learning deep representations. SCSNN (Wu et al., 2019)
used spike count as a surrogate for gradient backpropagation.
BPSNN (Lee et al., 2016) treated the membrane potentials of

spiking neurons as differentiable signals, which enabled the
backpropagation. HM2-BP (Jin et al., 2018) proposed a hybrid
macro/micro level backpropagation algorithm for training multi-
layer SNNs. Temporal SNN (Mostafa, 2017) trained the SNN
with temporal coding. STBP (Wu et al., 2018) trained the SNNs
with BP both in spatial and temporal domains. The excellent
performance of these methods came from BP, which turns out
to not existed in the brain.

For STDP and other biologically plausible methods,
Unsupervised-SNN (Diehl and Cook, 2015) trained an SNN
with STDP, lateral inhibition, and an adaptive spiking threshold
with a poor little performance 95% on the MNIST dataset.
LIF-BA (Samadi et al., 2017) approximated dynamic input-
output relations with piecewise-smooth functions based on fixed
feedback weights. STCA (Gu et al., 2019) trained SNNs with
credit assignments both in spatial and temporal domains. Both
of them update the weights layer by layer. VPSNN (Zhang et al.,
2018a) and Balance-SNN (Zhang et al., 2018b) trained the SNNs
with Equilibrium Propagation, Balance-SNN is an improved
version of VPSNN, which introduced much more learning rules
to get the training balance of SNNs. However, as they trained
with Equilibrium Propagation, the problems in Equilibrium
Propagation also exist in both of them.

To sum up, a model to propagate the global plasticity
information with a random feedback connection directly to each
layer combined with the local plasticity learning rule to train
SNNs has so far been rarely studied.

3. METHODS

The pipeline of our model is shown in Figure 1B. First, we will
introduce the spiking neuron model used in our framework.
Second, the global and local plasticity learning process will be
introduced. Third, the whole framework will be introduced to
understand our model better.

3.1. The Basic LIF Neuron Model
The spiking neuron model we use for temporal information
processing is the Leaky integrate-and-fire (LIF) model, which is
widely used inmost SNN frameworks. As can be seen in Figure 2,
for the LIF model, the neuron will accumulate the potential from
the input, once its potential reaches the threshold, the neuron will
be fired with a spike.

Generally, the membrane potential V can be calculated with
Equation (1)

I(t)−
V(t)

Rm
= Cm

dV(t)

dt
(1)

Rm is the membrane resistance and Cm denotes the membrane
capacitance. I(t) denotes the total input current from pre-
synaptic neurons. For simplicity, we denoteV(t) withV , I(t) with
I, gL and VL denote leaky conductance and leaky potential. In a
network with a more realistic synapse model, the input current
I is generated as a change in conductance, which is caused by
spikes of presynaptic neurons. The excitatory conductance gE
will be non-linearly increased by the number of the input spikes
δj (Gerstner et al., 2014). VE is the reversal potential from neuron
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FIGURE 2 | Illustration of LIF Neuron Model adopted from Lee et al. (2019)

and Zhang et al. (2018a).

i to neuron j. When the membrane reaches the threshold, the
neuron will produce a spike, and the membrane will be reset
to Vreset . τm = Cm

gL
, τE is the conductance decay of excitatory

neurons, wj,i is the synapse weight from neuron j to neuron i.

{

τm
dVi
dt

= −(Vi − VL)−
gE
gL (Vi − VE)

τE
dgE
dt

= −gE+
∑N

j wj,iδj
(2)

3.2. The Global Plasticity Learning Process
of Our Model
The global plasticity learning process is applied to a multi-
layer feedforward neural network to illustrate better our learning
algorithm, in which neurons in the previous layer are fully
connected to the subsequent layer. In the adjacent layers,
information from pre-synaptic neurons will be transferred to the
post-synaptic neurons. For a deep spiking neural network, if only
the spike is used, it will take a long time for the information
transfer to the subsequent deeper layers, which will make the
network hard to converge. To solve the problems, Diehl and
Cook (2015) has used the spike trace to adjust the network
weights, Zhang et al. (2018a) and Lee et al. (2016)’s work use
voltage-based weight adjustments. Inspired by the residual neural
network (He et al., 2016), which transfers the information as
x + f (x), here we think that in addition to the spikes output by
the LIF neuron can be used to regulate the weight, the input to
the LIF neuron also contains a wealth of information. The final
output of the neuron is denoted as Sj(t+ 1). To convert Equation
(2) into discrete form, the whole process is shown in Equation (3):



















Vi(t + 1) = Vi(t)−
dt
τm
[Vi(t)− VL +

gE
gL (Vi(t)− VE)]

gE(t + 1) = gE(t)+
dt
τE
(−gE(t)+

∑N
j wj,iSj(t + 1))

δi(t + 1) = 1 Vi = Vreset if Vi > Vth

Si(t + 1) =
∑N

j wj,iSj(t + 1)+ τδi(t + 1)

(3)

τ is the constant to control the magnitude of the output. To
accelerate the calculation, we only calculate the loss at the end
of the simulation to update the target and weight. We denote the
target with ST , Sout denotes the output of the last layer, M is the
number of the samples. For the output layer, the loss function we

choose here is the L2 norm so that the prediction error can be
written as Equation (4):

{

loss =
∑M

i=1 ||Sout − ST ||2

e = 2 ∗
∑M

i=1 |Sout − ST |
(4)

Supposing a network with L layers. The output of the lth layer
is denoted with Sl. For supervised learning, the target of the
penultimate layer ŜL−1 can be directly calculated, as shown in
Equation (5),Wl denotes the forward weight between the lth layer
and the (l+ 1)th. ηt represents the learning rate of the target.

ŜL−1 = SL−1 − ηt1S = SL−1 − ηtW
T
L−1e (5)

For the target of the other hidden layers, the target can not be
directly calculated as Equation (5). By introducing the feedback
connections, the prediction error can be easily transmitted to the
hidden layers, and we denote the feedback layer as Gl. Moreover,
the target of the hidden layer can be written as Equation (6):

{

Ŝl = Sl − Gl(e)
Gl(e) = Bl ∗ e+ bl

(6)

Bl denotes the random feedback weight of the lth layer, and bl
represents the random feedback bias. With the operation of all
layers, we can directly get the target of each layer.

3.3. The Local Learning Process of Our
Model
STDP can be seen as the leading learning rule in the brain,
and it can simulate the expected change of synaptic weights
depending on states between pre-synaptic and post-synaptic (Bi
and Poo, 1998), which can be regarded as a local learning rule.
As introduced in (Xie and Seung, 2000; Hinton, 2007), STDP is
associated with the change of postsynaptic activity. Here we use
the difference between the feedforward state and feedback state
to denote the change, as shown in Equation (7).

1W ∝ SjS
′

i = Sj(Si − Ŝi) (7)

where Sj and Si indicate the pre-synaptic and post-synaptic

output in the forward learning process. Ŝi denotes the target of
the ith layer calculated in Equation (6).

3.4. The Whole Learning Framework
For a multi-layer feedforward SNN, global plasticity information
should be introduced so that STDP can train the whole network
to obtain the desired result. Firstly, the feedforward process is
used to obtain the feedforward state of the network, and then
the feedback is used to obtain the targets of different hidden
layers. Then, the change of weights in different neighborhood
layers are calculated by local STDP plasticity rule in Equation (7).
Finally, the weight of the forward propagation is updated with
Equation (8):

W = W − ηw1W (8)

ηw denotes the learning rate of weight.
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FIGURE 3 | The learning process of our GLSNN compared with BP, RFA, DTP, and DFA. B in RFA and DFA means the random matrix to transfer the error directly.

Blue connection Gl in DTP means the feedback layer needs to update. Red connection GL in GLSNN means the feedback layer without updates.

Inspired by FAs (Lillicrap et al., 2016; Nøkland, 2016),
random weights can be used to transmit the error in the
network. In this paper, we use the random feedback layer to
get the target of the hidden layers. As shown in Figure 3,
in our model, feedback connections are directly connected
from the output layer to the hidden layers, which means that
the neural network can update the parameters of all hidden
layers simultaneously, and the random feedback connections
do not introduce extra computations. The details are shown
in Algorithm 1.

4. EXPERIMENTS

In this section, we experimentally evaluate the performance of
our model on two benchmark datasets, basic MNIST (LeCun,
1998) and Fashion MNIST (Xiao et al., 2017). The experiments
are performed with PyTorch on TITAN RTX. To fully reflect
the performance of our algorithm, the fully connected network
is considered to carry out the experiment without batch
normalization or weight regularization. The update method of
the weight is the Stochastic Gradient Descent (SGD) method.
In addition, we compare our GLSNN with other state-of-the-
art biological plausible methods. The initiation method of the
weight is the same as DTP (Lee et al., 2015). Also, the ablation
studies are performed to study the effect of the feedback layers.
For the parameters of the network, the learning rate for the target
ηt = 0.5, the learning rate for the weight ηw = 0.015. The
batchsize is 10. For the hyper-parameter of the LIF neuron as
described in section 3, we set VE = 0.2, VI = 0, VL = 0,

Algorithm 1 The whole learning process of our GLSNN.

Require: Initialize a multi-layer neural network with L layers
Feedforward process in Equation (3) Fi
Feedback process in Equation (6) Gi

t= 0, simulation interval dt, and simulation time T, max
iteration EPO

1: for epoch= 1 to EPO do

2: while t ≤ T do

3: for i= 1 to L-1 do
4: Si=Fi(Si−1).
5: t= t + dt
6: end for

7: end while

8: Get the prediction error e with Equation (4).
9: Get the target of the penultimate layer ŜL−1 with

Equation (5).
10: for i= 1 to L-2 do
11: Ŝi=Si − Gi(e)
12: end for

13: for i= 1 to L-1 do
14: Update synapse weights Equations (7) and (8)
15: end for

16: end for

Vth = 0.0009, Vreset = 0, τm = 0.5, τE = 0.2, τ = 0.01,
gleak = 20, the simulated time interval dt = 0.01, and the total
simulation time T = 0.1.
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FIGURE 4 | (A) The test accuracy of GLSNN of different hidden neurons of 3 hidden layers. (B) The train and test accuracy when the hidden layer is set with 800*3.

TABLE 1 | Comparison of classification accuracies of GLSNN with other SNN frameworks on the MNIST dataset.

Model Structure Neural coding Learning rule Acc

SDBN (O’Connor et al., 2013) FC Spike ANN to SNN 94.09

Unsupervised-SNN (Diehl and Cook, 2015) FC Spike STDP 95

LIF-BA (Samadi et al., 2017) FC Spike Broadcast Alignment 97.05

SN (O’Connor and Welling, 2016) FC Rate BP 97.93

Event-SNN (Neftci et al., 2017) FC Rate BP 97.98

Temporal SNN (Mostafa, 2017) FC Spike BP with Temporal Coding 98

SDN (Hunsberger and Eliasmith, 2015) FC Spike ANN to SNN 98.37

VPSNN (Zhang et al., 2018a) FC Spike Equi-prop + STDP 98.52

STCA (Gu et al., 2019) FC Spike Spatial + Tempral Credit Assignment 98.6

GLSNN (This study) FC Spike Global Feedback + STDP 98.62

Balance-SNN (Zhang et al., 2018b) FC Spike Equi-Prop + Multiple Balance Rules 98.64

SCSNN (Wu et al., 2019) FC Rate BP 98.66

BPSNN (Lee et al., 2016) FC Rate BP 98.71

HM2-BP (Jin et al., 2018) FC Rate Macro/Micro level BP 98.88

STBP (Wu et al., 2018) FC Rate Spatial + Tempral BP 98.89

4.1. MNIST
MNIST is the most widely used dataset to measure the
performance of the algorithm in machine learning. It consists
of 60,000 training samples and 10,000 test samples, used to
describe the hand-written digits from 0 to 9. The sample size
is 28*28. The number of epochs is set with 100. We wonder
how our model fares in this benchmark as the model goes
deeper in that target is directed computed from the output
layer. To that end, we have trained a network of 3 hidden
layers of different hidden neurons to evaluate the performance of
the network.

As shown in Figure 4, when the network structure is set
with [784-800-800-800-10], the test accuracy is the highest at
98.62%. To demonstrate the superiority of our GLSNN, we
compare our methods with several different SNN frameworks,

TABLE 2 | The average training time (seconds) per epoch.

500 * 1 500 * 2 500 * 3 500 * 4 500 * 5 500 * 6
80.86 124.99 133.33 178.25 200.08 256.98

as can be seen in Table 1, our GLSNN has surpassed all other
SNN frameworks trained without BP, such as Unsupervised-SNN
(Diehl and Cook, 2015), VPSNN (Zhang et al., 2018a), and

so on. Moreover, for the BP trained SNNs, we have exceeded

most of them. For the Balance-SNN (Zhang et al., 2018b), in

addition to the STDP learning rule, several other rules were
introduced, such as LTP, LTD, STF, STD, however only 0.2%

accuracy improved compared to our GLSNN. For SCSNN (Wu

et al., 2019), BPSNN (Lee et al., 2016), HM2-BP (Jin et al.,
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FIGURE 5 | The spikes in the hidden layer of the three randomly chosen samples.

FIGURE 6 | The test accuracy on MNIST dataset of GLSNN compared with

ANNs trained with BP, Equil-Prop, RFA, DFA, DTP, DTP-delta, and LRA-E with

different hidden layers.

2018), and STBP (Wu et al., 2018), the different levels of
backpropagation was connected to contribute to their superior
performance, however, which is non-existent in the human
brains. To the best of our knowledge, our result could be a
new record for the SNNs trained with STDP. The spike transfer
process is shown in Figure 5, as the network structure is set
with [784-500-500-10].

Also, to prove that our algorithm still performs well when
the network is going deeper, we test the results with different
hidden layers, whose hidden neurons are set with 256 for
consistency with the paper (Ororbia and Mali, 2019). As can
be seen in Figure 6, for Equil-prop methods, the accuracy
quickly drops down when the network is deeper. Also, the
accuracy of the DTP method begins to struggle from 95.06
to 89.9%, which shows the instability of them. Compared
with other stable methods, our GLSNN outperforms better

than them both for the five hidden layers and the eight
hidden layers, which indicates the stability and superiority of
our algorithm.

Also, to measure the computation speed of our model, we test
the average runtime per epoch with different hidden layers as
shown in Table 2.

To demonstrate the underlying mechanism of our GLSNN
model, the t-SNE method (Maaten and Hinton, 2008) was used
to visualize the model’s clustering ability of different layers. The
network structure is set with [784-500-500-10], as shown in
Figure 7, for the original input, samples of different categories
are very close to each other, and some clusters contain samples
from other categories. After the training of SNN, the separability
of the output information of the hidden layer shows more vital
clustering ability than the input layer as the interval between
the class clusters is coming larger. For the output layer, different
categories are distinguished, which has shown that the learning
process of our GLSNN has helped the network to perform better
clustering and classification performances.

4.2. Fashion MNIST
Fashion-MNIST is a more complex version compared to MNIST,
consisting of gray-scale images of clothing items. Since the
dataset is more complicated compared with MNSIT, the training
epoch is set with 200, and we tried networks of different hidden
layers, as shown in Figure 8. When the network structure is set
with five hidden layers of 200 hidden neurons each layer, the
network achieves the best performance with 89.05% accuracy
on the test dataset. Also, we compare our GLSNN with other
biologically plausible methods shown in Table 3. We have chosen
the best results of each method as recorded in (Ororbia and Mali,
2019). Our GLSNN exceeds all of them.

4.3. Ablation Studies
To study the effect of the feedback layers of the network, we create
four networks with 7, 8, 10, and 12 layers separately. All of the
hidden neurons are set with 200. First, we remove all the feedback
connections of the network, which means only the weight of the
last two-layers could be updated. Then we incrementally add
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FIGURE 7 | The visualization on the input layer, hidden layer 1, hidden layer 2, and output layer in GLSNN with t-SNE.

FIGURE 8 | (A,B) The train and test accuracy of GLSNN of different hidden layers of Fashion MNIST, the 200*n, means n hidden layers with 200 neurons each hidden

layer.
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the feedback layers in the network to see the performance of
the network.

As shown in Figure 9, with the increase of the number
of feedback layers, the performance of the network gradually

TABLE 3 | The test accuracy on the Fashion MNSIT dataset of GLSNN compared

with VPSNN and other ANNs trained with BackProp, Equi-Prop, RFA, DFA, DTP,

DTP-delta, and LRA-E.

Model Structure Type Performance

VPSNN (Zhang et al., 2018a) FC SNN 82.69

Equiprop (Scellier and Bengio, 2017) FC ANN 85.99

DTP (Lee et al., 2015) FC ANN 86.4

DTP_delta (Ororbia and Mali, 2019) FC ANN 87.01

LRA-E (Ororbia and Mali, 2019) FC ANN 87.69

RFA (Lillicrap et al., 2016) FC ANN 88.01

DFA (Nøkland, 2016) FC ANN 88.41

Backprop (Rumelhart et al., 1986) FC ANN 88.45

GLSNN (This study) FC SNN 89.05

improves. When all the feedback layers are added, the SNN
reaches the highest accuracy. The performance of the network
did not improve linearly with the increase of the feedback
layers. The variation in accuracy can be roughly divided into
three steps:

• In step 1, the linear increment of accuracy with weights tuning
in only top layers.

• In step 2, the non-increment or stabilization of
accuracy with weight tuning in both top and
mid-layers.

• In step 3, the prominent increment toward the best
accuracy with only adding into the weight tuning in the
bottom layer.

The deeper layers play a role in decision-making, while the
former layers play a role in feature extraction. That is to
say, the feedback connections play a significant role in the
perceptual inference, which is consistent with neurophysiology
(Harris and Shepherd, 2015).

FIGURE 9 | (A–D) The test accuracy of GLSNN with different feedback layers on MNIST and Fashion MNIST, and the variation in accuracy can be roughly divided into

three steps.
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4.4. Comparison With Other Traditional
SNNs Trained With STDP
For the SNNs trained with STDP, the problem is how to introduce
global information. The success of the BP algorithm in deep
neural networks training is mainly due to the chain rules,
which introduce the global error. Traditional SNNs trained with
STDP often sidestep this problem, that is they avoid multi-layer
training. For Diehl’s unsupervised SNN (Diehl and Cook, 2015),
only the weight between the input and excitatory neurons is
trained with STDP. The extension (Hao et al., 2020) modified
the last clustering layer to a supervised classification layer.
Masquelier (Masquelier and Thorpe, 2007) introduced a multi-
layer SNN combined with convolutional/pooling layer, feature
discovery layer and a classification layer. However, the first
convolutional layer is set with the Gabor filters, and only the
feature discovery layer is trained with STDP. To solve this,
Tavanaei (Tavanaei and Maida, 2017) introduced a sparse coding
model to replace the handcrafted features in Masquelier and
Thorpe (2007). However, the training is layer-wise, the feature
discovery layer can only be trained after the first convolutional
layer is completed training. Recently, Zhang’s work (Zhang et al.,
2018a) introduced the equilibrium propagation, the forward and
feedback process in SNNs are implicitly defined in the negative
and positive phase in equilibrium propagation, which solved the
multi-layer training in SNNs to a certain extent. However, due to
the implicit definition, when the network went deeper, it becomes
hard to converge to a stable situation. Our GLSNN explicitly
introduced the global feedback connections, which provides a
feasible solution to the training of the multi-layer SNN.

5. CONCLUSION AND FUTURE WORK

In this paper, we propose an SNN training method, which takes
full advantage of the global and local plasticity information.
We mimic the global feedback connections and the local STDP
learning rules in the brain, providing a powerful way to train
a multi-layer SNN. The global random feedback connections
help to propagate the target from the output layer to the hidden
layers. The local STDP learning rule is utilized to optimize
the local synaptic strength of the network with the obtained
target. Our GLSNN offers an alternative way to solve the weight
transpose problem in BP, as well as the feedback layers are
directly connected to the hidden layers, leading the weight of

each layer can be directly updated without the error transmitted
layer by layer. Experiments indicate that our GLSNN model has
performed favorably against several state-of-the-art SNNs on the
standard benchmark MNIST and Fashion MNIST dataset.

In terms of future work, the authors intend to study more
biologically inspired learning rules in this work, as we only
use the STDP local learning rule. The dynamic combination of
different learning rules and different types of spiking neurons
may further enhance the learning performance of the network.
Also, we only verify the performance on the fully connected
network structures, in the following work, we would consider
more complex network structures such as convolutional neural
network and recurrent neural network to accommodate more
complex visual perception tasks, such as video object detection
and visual tracking.
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