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Glucocorticoid regulation
of cancer development
and progression
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and Jonathan T. Busada*

Department of Microbiology, Immunology and Cell Biology, West Virginia University School of
Medicine, Morgantown, WV, United States
Glucocorticoids are steroid hormones that regulate a host of cellular and

physiological functions. However, they are arguably best known for their

potent anti-inflammatory properties. Chronic inflammation is well-known to

promote the development and progression of numerous types of cancer, and

emerging evidence suggests that glucocorticoid regulation of inflammation

affects cancer development. However, the timing, intensity, and duration of

glucocorticoid signaling have important but often contradictory effects on

cancer development. Moreover, glucocorticoids are widely used in parallel

with radiation and chemotherapy to control pain, dyspnea, and swelling, but

their use may compromise anti-tumor immunity. This review will explore the

effects of glucocorticoids on cancer development and progression with

particular focus on pro and anti-tumor immunity.
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Background

In 1938, Compound E was synthesized from the adrenal cortex of beef cattle (1).

Within the next decade, adrenal cortical hormones (glucocorticoids or corticosteroids)

were used to successfully treat inflammatory diseases such as rheumatoid arthritis and

rheumatic fever. Since then, glucocorticoids have risen to be one of the most commonly

prescribed drugs in the world. Within the clinic, glucocorticoids are used to treat a host of

conditions and diseases, ranging from improving lung development in premature infants,

treating allergic reactions, autoimmune diseases, and chronic inflammatory diseases, to

anti-cancer therapies. However, despite their widespread clinical use, the mechanisms
Abbreviations: GR, Glucocorticoid Receptor; ER, Estrogen Receptor; AR, Androgen Receptor; HPA axis,

Hypothalamic-Pituitary-Adrenal axis; CRH, Corticotropin-Releasing Hormone; ACTH, Adrenocorticotropic

Hormone; GRE, Glucocorticoid Response Elements; ICB, Immune Checkpoint Blockade; HPV, Human

Papillomavirus; COPD, Chronic Obstructive Pulmonary Disorder; ILC2, Type 2 Innate Lymphoid Cell.
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whereby glucocorticoids regulate diverse cellular and physiological

functions have yet to be fully elucidated.

The glucocorticoid receptor (NR3C1 or GR) is expressed by

most nucleated cell types in humans. Glucocorticoids are reported

to regulate up to 20% of the total transcriptome (2). However, the

response to glucocorticoids varies between different cells and

tissues. Similar functional diversity of glucocorticoid signaling

impacts cancer, and glucocorticoids may inhibit or promote

carcinogenesis depending on the cancer type. In addition, the

effect of glucocorticoid signaling changes as cancers develop and

progress. In some cases, glucocorticoid signaling may suppress

damaging inflammation thereby protecting from neoplasia

development, but these protective roles are reduced or may

reverse during chronic inflammation. Moreover, despite the

unclear roles of glucocorticoid signaling in solid tumors, these

hormones are commonly co-administered with anti-cancer

therapeutic regimens to relieve adverse side effects such as pain,

nausea, and dyspepsia and to improve appetite. This review will

provide an update on the current knowledge of how glucocorticoid

signaling affects cancer development in the pre-tumor

microenvironment and how their roles shift in mature tumors.

Moreover, we will discuss how glucocorticoids interact with

estrogens and androgens in breast and prostate cancer, respectively.
Steroidogenesis

Glucocorticoids are steroid hormones produced as the end

products of the hypothalamic-pituitary-adrenal (HPA) axis. They

are produced in a circadian rhythm and in response to

psychological and physical stress (Figure 1). Glucocorticoid

production is initiated in the hypothalamus with the stimulation of

neurons within the paraventricular nucleus. This signals the release of

corticotropin-releasing hormone (CRH), which acts on the anterior

pituitary to promote the synthesis of proopiomelanocortin by

corticotropic cells (3, 4). POMC is then cleaved into

adrenocorticotropic hormone (ACTH) and released into circulation,

acting upon steroidogenic cells within the zona fasciculata of the

adrenal cortex. ACTH activates an enzymatic cascade whereby

cholesterol is converted into corticosterone (mouse) or cortisol

(human) and released into circulation (5, 6). While the HPA axis is

well-known to be activated in a diurnal pattern and in response to

stress, proinflammatory cytokines and pathogen activated-pattern

recognition receptors also trigger glucocorticoid synthesis (7, 8).

Upon their release into circulation, glucocorticoids inhibit further

activation of the HPA axis. Acute activation of the HPA axis is

necessary to suppress immune hyperactivation. However, chronic

glucocorticoid signaling is associated with numerous negative health

outcomes, such as elevated circulating cytokine levels, chronic

inflammation, impaired wound healing, and many other maladies

(9). Prolonged glucocorticoid signaling is especially relevant in cancer,

where chronic pro-neoplastic infections, cancer-associated

psychological stress, corticosteroid therapies, or intra-tumor

steroidogenesis inhibit anti-tumor immune responses and promote

tumor cell survival (10).
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Adrenal steroidogenesis controls systemic glucocorticoid

production, but several factors contribute to local glucocorticoid

availability. Approximately 80% of endogenous glucocorticoids in

the blood are bound by corticosteroid-binding globulin

(SERPINA6), which aids transport and regulates bioavailability

(11). Proteases such as neutrophil elastase can degrade

corticosteroid-binding globulin increasing glucocorticoid

concentrations at sites of inflammation (12). Myeloid-derived

suppressor ce l l s commonly found within the tumor

microenvironment express abundant neutrophil elastase and may

utilize this mechanism to increase the glucocorticoid concentration

within the tumor. At the tissue level, glucocorticoid concentrations

are regulated by hydroxysteroid 11-beta dehydrogenases (HSD11B1

and HSD11B2). HSD11B1 catalyzes the conversion of inactive

cortisone into cortisol, thereby increasing local glucocorticoid

concentrations. HSD11B1 is widely expressed in the liver, lungs,

brain, stomach, adipose tissue, adrenal cortex, uterus, ovaries, and

testes (13–15). HSD11B2 catalyzes the reverse reaction by

converting cortisol to cortisone and is expressed in the kidneys,

colon, and salivary glands (13, 16). These tissues are critical sites of

mineralocorticoid receptor signaling, which has a higher binding

affinity for glucocorticoids than for its endogenous ligand

aldosterone. Thus, HSD11B2 protects the mineralocorticoid

receptor from activation by glucocorticoids. Tumor cells are

reported to alter the expression of these enzymes, thereby
FIGURE 1

The HPA axis integrates internal and external cues to modulate
glucocorticoid production. Increased glucocorticoid signaling is
commonly associated with cancers. Increased stress and tissue
damage act on the hypothalamus to stimulate the release of
corticotropin-releasing hormone (CRH), which in turn stimulates
adrenocorticotropic hormone (ACTH) release into circulation. ACTH
acts on steroidogenic cells within the adrenal cortex to increase
endogenous glucocorticoid production. Exogenous corticosteroids
are also commonly co-administered with anti-cancer therapies.
Within the tumor, infiltrating leukocytes, such as tumor-associated
macrophages (TAMs), activate steroidogenesis and may increase
glucocorticoid concentrations within the tumor. Elevated
glucocorticoids inhibit anti-tumor immune responses and are linked
to increased tumor cell survival.
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modifying glucocorticoid signal ing within the tumor

microenvironment (17). For instance, glucocorticoid signaling

opposes the development of estrogen-dependent breast cancers,

and breast cancers downregulate the expression of HSD11B1

reducing glucocorticoid availability within the tumor (18).

Similarly, expression of HSD11B2 is suppressed in skin cancers,

increasing intra-tumor glucocorticoid concentrations and

promoting invasive and metastatic phenotypes (19).

While the adrenal glands are the primary source of circulating

glucocorticoids, increasing evidence suggests that local

glucocorticoid production is also important for modulating the

functions of healthy tissues and the tumor microenvironment.

Extra-adrenal glucocorticoid production primarily exerts

paracrine effects (20). Within the intestines, glucocorticoid

production by cells within the crypts affects intestinal barrier

function and inflammation (21). Within the thymus, nurse cell

derived-glucocorticoids raise the threshold for T cell negative

selection by suppressing the transcription factors NUR77 and

HELIOS (21, 22). Within the tumor microenvironment,

glucocorticoids produced by tumor-associated macrophages and

tumor-infiltrating T cells promote the expression of T cell

checkpoint proteins and inhibit anti-tumor immunity (23–25).

Numerous other tissues and cell types are reported to express

steroidogenesis enzymes. However, more work is needed to

understand the full extent of extra-adrenal glucocorticoid

synthesis and its effects on cellular and tissue function.
Glucocorticoid signaling

Glucocorticoids signal through the GR, a member of the ligand-

dependent transcription factor superfamily. Structurally, the GR is

similar to the other steroid hormone receptors. The GR protein is

comprised of three functional domains: an N-terminal

transactivation domain, a central DNA binding domain, and a C-

terminal ligand binding domain (26). The transactivation domain

interacts with coregulators and the transcriptional machinery. The

DNA binding domain contains two zinc-finger motifs involved in

binding to glucocorticoid response elements (GREs). The DNA

binding domain and ligand binding domain are separated by a

hinge region that is involved in receptor dimerization and contains

two nuclear localization signals, NL1 and NL2. The ligand binding

domain contains a hydrophobic pocket for glucocorticoid binding,

which induces a conformational change (27). The GR protein also

contains several sites for post-translational modifications including,

phosphorylation, sumoylation, acetylation, and ubiquitination that

regulate receptor activity and turn-over (28). In the absence of

ligand, the GR is sequestered in the cytoplasm by a large protein

complex comprised of chaperones PTGES3, HSP90, and HSPA1B,

and the immunophilins FKBP5 and FKBP4 (Figure 2) (27). While

bound in this complex, the ligand binding domain of the GR is

readily accessible, but the nuclear localization signals are masked.

Lipophilic glucocorticoids diffuse freely through the plasma

membrane to bind cytosolic GRs. Upon ligand binding, the GR

undergoes a conformational change, disassociating the protein

complex, and exposing the nuclear localization signals. The
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cellular effects of this complex dissociation are two-fold; ligand-

bound GR is rapidly transported into the nucleus, activating the

classical genomic actions of glucocorticoid signaling. Unbound

chaperone proteins engage with various other cellular pathways

affiliated with some of the non-genomic effects of glucocorticoid

signaling (29).

Once in the nucleus, the classical mechanism through which GR

affects gene transcription is by binding to GREs, distinct

palindromic consensus sequences separated by a 3-5 nucleotide

spacer. Binding occurs through the central zinc finger DNA-

binding domain, which induces a conformational change within

the receptor. Subsequent allosteric interactions promote the

recruitment of coactivator complexes necessary to remodel

chromatin. These complexes are the cAMP response element

binding protein (CREB)/p300 and pCAF, response element-

binding protein (CREB)-binding protein/p300 and p/CAF, both

of which contain intrinsic histone acetylase activity (30). These

proteins acetylate lysine residues to induce nucleosome

rearrangement and DNA unwinding, which leads to promoter

accessibility and the recruitment of the basal transcription

machinery, resulting in target gene transcription. GR monomers

can also directly bind to other transcription factors, modifying their

activity, or undergo composite interactions requiring both GRE

binding and protein interactions with another transcription factor

(Figure 2) (29). GR can also repress gene activation by binding as a

monomer to negative GREs (31). The net effect of these interactions

is to induce or suppress gene transcription.

Glucocorticoids are pleiotropic steroid hormones that exert a

wide array of effects, such as embryological development,
FIGURE 2

In the absence of ligands, the glucocorticoid receptor (GR) is bound
in the cytoplasm by a complex of chaperone proteins. Lipophilic
glucocorticoids freely defuse through the plasma membrane and
bind to the GR. Upon ligand binding, the GR translocate to the
nucleus. Homodimerized GRs bind to glucocorticoid response
elements (GREs). Direct binding of the GR to transcription factors
(TF) and composite binding to GREs and TF affect their
transcriptional activity. These interactions ultimately act to activate
or suppress gene transcription.
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metabolism, cellular proliferation, apoptosis, inflammation, and

cancer development (27, 29, 32). Some reports estimate

glucocorticoids regulate up to 20% of transcribed genes (2).

However, the effects of glucocorticoid signaling are cell-type

specific, owing to their interactions with numerous transcription

factors, differential chromatin accessibility, and non-genomic

effects. The GR mRNA also contains 7 internal translation start

sites, and each GR translational isoform has unique transcriptomes

(33, 34). Moreover, interactions between the GR and other

transcription factors can provide cell-specific effects on

transcription. These interactions and cell-type specific effects are

important within cancer, where glucocorticoids have significantly

divergent roles depending on the cancer type. More work is needed

to uncover the mechanisms regulating cell-type specific actions of

glucocorticoids both in healthy tissues and in cancer.

Glucocorticoid regulation of
inflammation within the pre-tumor
and tumor microenvironments

The relationship between the immune system and cancer is

complex. The immune system is a frontline defense against cancer

development. Natural killer cells and CD8+ cytotoxic T cells

remove nascent cancer cells with altered MHC I expression or

displaying mutated proteins (35, 36). Anti-cancer therapies such as
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immune checkpoint blockade (ICB) rely on increasing anti-tumor

immune activity by stimulating T cells. However, inflammation is a

double-edged sword that can also promote cancer development and

progression (37). Immune responses to infections and or exposure

to irritants, such as inhaled particles, inevitably cause damage to the

surrounding tissue. During a “normal” inflammatory response,

the pathogens are quickly cleared, the inflammation resolves, and

the damaged tissue is healed (Figure 3). However, chronic

“smoldering” inflammation and the resultant prolonged tissue

damage leads to metaplasia development and may promote

carcinogenesis. Inflammation associated with chronic infections

such as Helicobacter pylori (gastric cancer) and Human

Papillomavirus (HPV, cervical cancers), chronic inflammatory

diseases (chronic obstructive pulmonary disorder (COPD) and

Crohn's Disease), and through chronic exposure to irritants such

as tobacco use (oral and lung cancers) promote cancer development

(38–40). At therapeutic doses, glucocorticoids exert powerful anti-

inflammatory effects and have become one of the most prescribed

drug classes worldwide. However, severe side effects associated with

long-term use limit their effectiveness in treating chronic

inflammatory diseases. Glucocorticoids suppress the recruitment

of additional leukocytes to the site of inflammation by blocking the

production of chemokines, histamine, and prostaglandins and by

reducing the expression of adhesion molecules such as integrins and

selectins (32). Glucocorticoids also limit the expression of

proinflammatory cytokines such as IL1B, TNF, INFG, and IL6
FIGURE 3

The effects of glucocorticoids change over the course of tumor development. In the pre-tumor microenvironment, glucocorticoids may protect
from cancer by limiting the intensity of inflammation. Glucocorticoids suppress immune cell recruitment to sites of damage or infection and
suppress proinflammatory cytokine production. However, during chronic inflammation, glucocorticoids may promote tumor development.
Prolonged glucocorticoid signaling inhibits wound healing, thereby causing a feedforward loop of increased release of damage-associated
molecular patterns (DAMPs), which increase inflammation and further promote tissue damage. Simultaneously, glucocorticoids suppress anti-tumor
surveillance by CD8 T cells. Similarly, glucocorticoids suppress anti-tumor immunity within the tumor microenvironment and promote the
expression of immune checkpoint proteins. However, their effects are compounded by increased psychological stress, exogenous steroid treatment,
and local steroidogenesis by tumor-infiltrating immune cells. Furthermore, glucocorticoids may directly promote tumor cell survival by suppressing
apoptosis and promoting tumor cell growth.
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while promoting the expression of anti-inflammatory cytokines

such as IL10 and TGFB. Dysregulation of these inflammatory

processes is associated with cancer development (41).

Approximately 15-20% of all cancers are preceded by infection

(37, 42, 43). Reduced GR expression and polymorphisms that

decrease GR activity have long been associated with an increased

risk of various cancers. However, the exact stage of cancer

development affected by glucocorticoid signaling is unclear. Gastric

cancer is the most common pathogen-associated cancer (44).

Approximately 90% of gastric cancers are associated with long-term

Helicobacter pylori infection. Chronic inflammation is a requisite

driver of H. pylori-associated gastric cancer. Immune-deficient mice

are resistant to Helicobacter-associated gastric pathologies (45).

Moreover, overexpression of the proinflammatory cytokines IL1b or

INFg is sufficient to drive gastric cancer development even in the

absence of Helicobacter infection (46, 47), underscoring that

inflammation is both necessary and sufficient to drive gastric

carcinogenesis. Disruption of glucocorticoid signaling is associated

with an increased risk of gastric cancer (48). Given their anti-

inflammatory effects, glucocorticoids likely suppress pro-neoplastic

gastric inflammation. Recently, we reported that adrenalectomized

mice developed spontaneous gastric inflammation stemming from the

activation of type 2 innate lymphoid cells (ILC2s) and the recruitment

of monocyte-derived macrophages (49, 50). Adrenalectomy-induced

gastric inflammation drove atrophic gastritis and pyloric metaplasia

development, which are precursors of gastric adenocarcinoma. It is

important to note that the adrenalectomy-induced gastric

inflammation and pre-neoplastic lesions occurred without

Helicobacter infection, suggesting that glucocorticoids are master

regulators of gastric inflammation. While these studies show an

essential role for glucocorticoids in protecting the stomach from

pro-neoplastic inflammation, excessive glucocorticoid signaling may

compromise protective gastric immunity. For instance, treatment with

the synthetic glucocorticoid dexamethasone duringH. pylori infection

protects from pre-neoplastic epithelial changes but also increases

gastric bacterial load (51). Excessive glucocorticoid signaling is also

linked to peptic ulcer development (52). Thus, the magnitude and

duration of glucocorticoid signaling likely contribute to how these

hormones affect carcinogenesis. Further investigation is needed to

uncover how glucocorticoid signaling duringH. pylori infection affects

gastric cancer development.

The lung is also highly susceptible to inflammation-associated

neoplasia. Lung inflammation caused by tobacco smoking, particle

inhalation, or exposure to gases such as ozone is linked to lung

cancer development (53). While tobacco smoking is the top risk

factor for lung cancers, smokers with chronic lung inflammatory

diseases such as COPD are 3-10 fold more likely to develop

lung cancer than smokers without COPD (54). In mouse mutant

KRAS lung cancer models, lung inflammation accelerates tumor

formation. However, depleting discrete inflammatory cell

populations or reducing the concentration of proinflammatory

cytokines protects from tumor development (55–57). Similarly, in

urethane lung tumor models, glucocorticoid treatment suppressed

lung tumor development while adrenalectomy significantly
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increased tumor number (58, 59). Glucocorticoid treatment also

reduced cancer risk in mice exposed to cigarette smoke (60).

Therefore, glucocorticoid treatments that reduce lung

inflammation protect from cancer development. Within the clinic,

glucocorticoids are a frontline therapy for treating lung

inflammatory diseases (61). Epidemiological studies have found

that inhaled steroid use dramatically reduces the risk of lung cancer

in individuals with lung inflammation, such as COPD (62, 63) and

asthma (64). Thus, glucocorticoids may be critical in suppressing

pro-neoplastic lung inflammation.

G lucoco r t i c o i d s i gna l i ng w i th in th e p r e - t umor

microenvironment is a double-edged sword. While glucocorticoid

signaling suppresses pro-neoplastic inflammation and limits tissue

damage, they may also activate processes that promote neoplasia

development (Figure 3). Glucocorticoids inhibit wound healing by

suppressing collagen deposition, growth factor expression, and

vascularization (65). These delays in wound healing may increase

inflammation, epithelial proliferation, and metaplasia, promoting

carcinogenesis. Tang et al. reported that while deletion of the GR

from the intestinal epithelium increased acute inflammation,

intestinal GR knockout mice exhibited accelerated tissue healing

and fewer intestinal tumors than GR wild type mice (66). Similarly,

treatment with the GR agonist betamethasone suppressed

acuteintestinal inflammation but also prevented epithelial

healing promoting tumor development. Therefore, sustained

glucocorticoid suppression of tissue repair promotes chronic

inflammation and may promote cancer development. In addition

to preventing wound healing, glucocorticoid signaling also

suppresses anti-cancer immune surveillance by CD8+ cytotoxic T

cells (67). Thus, as mutations occur, glucocorticoids may suppress

the removal of developing cancer cells.

Cancer cell escape from immune surveillance is critical

for tumor formation, survival, and growth. Glucocorticoids

potently suppress anti-tumor immunity. Within the myeloid

compartment, glucocorticoids alter the phenotype of tumor-

associated macrophages, suppressing their proinflammatory

functions while promoting anti-inflammatory roles and driving

the production of the anti-inflammatory cytokines TGFB and

IL10 (68). Glucocorticoids also curtail the anti-tumor effects of

dendritic cells by inducing the expression of TSC23D3 (GILZ),

thereby reducing proinflammatory cytokine expression and

suppressing antigen presentation to CD8+ T cells (69). Within

the lymphoid compartment, glucocorticoids directly suppress CD8

+ T cell activation by driving the expression of the immune

checkpoint inhibitors TGIT, PD1, TIM3, and LAG3 and through

promoting the expression of the anti-inflammatory cytokine IL10

(23). CD8+ T cells are key mediators of anti-tumor immunity, and

suppression of these cells through the induction of checkpoint

proteins significantly promotes tumor growth and metastasis.

Immune-activating therapies such as ICB are designed to

suppress these checkpoint proteins and promote anti-tumor

immunity. However, elevated expression of GR-regulated genes is

associated with reduced ICB responsiveness (23), and high systemic

glucocorticoid levels are linked to ICB failure (70, 71). Consistent
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with their ability to antagonize ICB efficacy, glucocorticoids are the

standard treatment for immune-related adverse events associated

with ICB (72).
Glucocorticoid effects on cancer cells
and tumor progression

In contrast to their heterogeneous effects on tumor

development, glucocorticoid signaling within established solid

tumors is typically linked to poor clinical outcomes. Elevated

glucocorticoid signaling during cancer occurs through the

activation of the HPA axis and treatment with exogenous

steroids. In preclinical models, chronic psychological stress

suppresses anti-tumor immunity and increases tumor growth

(73). Similar outcomes are reported in clinical studies where

depression and poor patient mood increase systemic

glucocorticoid production and are linked to suppression of anti-

tumor immunity and increased mortality (69, 74). Glucocorticoids

are also commonly co-administered with chemotherapy to reduce

negative side effects such as nausea and edema and to improve

appetite and energy (75). Similar to the negative effects of elevated

endogenous glucocorticoids, corticosteroid treatment is associated

with reduced anti-tumor immune responses, tumor treatment

resistance, and increased metastasis. In addition to a systemic

increase of adrenal-derived glucocorticoids, tumor-infiltrating

immune cells also may produce glucocorticoids within the tumor

(10, 23–25). Local steroidogenesis may be an important paracrine

mechanism by which tumor cells can evade the immune system, but

the overall impact of extra-adrenal glucocorticoid production on

tumor progression and patient outcomes remains unknown.

Glucocorticoid signaling in cancer cells is heterogenous, and

their impacts depend on the cancer type and stage. Within tumor

cells, glucocorticoids promote proliferation, survival, and

migration. These pro-tumor effects are manifested through a

variety of mechanisms. In some cases, direct GR transcriptional

targets are critical for promoting tumor cell survival. For instance,

treatment with dexamethasone protects thyroid cancer cells from

apoptosis by induction of BCL-XL (76). However, consistent with

its high-level role as a transcriptional regulator, many cellular effects

are manifested through the induction of gene expression or

signaling cascades that ultimately promote tumor progression.

This is illustrated by the GR-target glucocorticoid-regulated

kinase 1 (SGK1), which promotes tumor cell survival through

interacting with the PI3K pathway and through the activation of

the Forkhead box family of transcription factors such as FKHRL1

(77). Furthermore, SGK1 phosphorylation of N-MYC downstream

regulated gene 1 (NDRG1) promotes tumor cell growth and tissue

extravasation. NDRG1 expression is elevated in esophageal

squamous cell carcinoma, wherein expression is correlated with

local tumor invasion and poor prognosis (78). Additionally,

NDRG1 dysregulation in esophageal cancer has pro-oncogenic

functions by activating the WNT signaling pathway (79).

Similarly, betamethasone promotes increased expression of
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cytoskeletal proteins such as fibronectin, promoting the activation

and nuclear accumulation of the oncoprotein YAP and the

expansion of chemotherapy-resistant cancer stem cells (80).

Therefore, the effects of glucocorticoids on cancer cells may often

be masked by downstream effectors, and there are likely numerous

effects of glucocorticoid signaling that have not yet been described.

In addition to their classical transcriptional effects, the GR

impacts cancer through rapid non-genomic actions. Within the

A549 lung carcinoma cell line, the GR regulates the activation of

both WT and mutated RAS through non-genomic actions (81). In

the absence of glucocorticoids, cytoplasmic GR directly binds to

RAS, inhibiting its activation. GR suppression of RAS blocks tumor

cell proliferation, and GR-deficient A549 cell xenografts developed

into larger tumors than WT cells which express endogenous GR

(81). Importantly, GR suppression of RAS is blocked by treatment

with dexamethasone. Thus, increased glucocorticoid levels within

the tumor microenvironment would block GR binding to RAS and

promote tumor growth.

While glucocorticoid signaling in solid tumors is often linked to

poor clinical outcomes, this is not universally true. Patient

hepatocellular carcinomas actively suppress glucocorticoid

signaling by upregulating HSD11B2. Bypassing the HSD11B1/B2

axis through long-term administration of dexamethasone protects

from liver carcinogenesis in mice by suppressing glycolysis and

promoting gluconeogenesis (82). Similarly, short-term

administration of hydrocortisone attenuates the progression of

hepatocellular carcinoma in rats (83). The GR transcriptional

target TSC22D3 suppresses RAS and RAF signaling by directly

binding these proteins and preventing the activation of the MAPK

pathway and RB phosphorylation (84). Similarly, GR promotes the

expression of the phosphatase DUSP1, which inhibits multiple

components of the MAPK pathway including, p38 kinase, JNK,

and ERK (85, 86). These seemingly conflicting results highlight the

cell-type-specific effects of glucocorticoid signaling and the need for

further research on the impact of glucocorticoids on cancer.
Glucocorticoid interactions with other
steroid hormone receptors

All steroid hormone receptors primarily function as ligand-

dependent transcription factors. Many of the mechanisms utilized

to regulate transcription are shared between the steroid hormone

receptors. Estrogen and androgen signaling are central players in

breast and prostate cancer development and progression,

respectively. Glucocorticoids can modulate the activity of these

steroid hormones through multiple mechanisms, including

heterodimerizing with the estrogen receptor (ER) and androgen

receptor (AR) and competing for co-factors (87–89). Moreover, the

DNA response elements recognized by each steroid hormone

receptor are highly similar, often only differing by a few

nucleotides (90). Therefore, certain ER and AR-regulated genes

can also be targeted by the GR.
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In ER-positive breast cancer, GR expression is correlated to a

favorable prognosis (91, 92). Glucocorticoids may inhibit the

development of ER-positive tumors by antagonizing the activity

of ER alpha. GR is reported to antagonize ER signaling through

several distinct mechanisms, such as displacing ER alpha binding to

estrogen response elements and by heterodimerizing with the ER to

recruit co-repressors (87, 93). GR-ER binding is also associated with

increased expression of differentiation markers, inhibition of ER-

induced growth factors, and increased survival of patients with ER-

positive breast cancer (92). Thus, glucocorticoid signaling may be

protective in estrogen-dependent breast cancer. Further supporting

this idea, a recent epidemiological study found that systemic

glucocorticoid therapies were associated with reduced incidence

of ER-positive but not ER-negative invasive breast cancers (94).

However, protection was only associated with grade I and II tumors,

while glucocorticoid use was associated with an increased risk of

metastasis for higher-grade tumors, potentially due to reduced

estrogen dependence in more advanced tumors. In contrast to

their putative protective roles in early-stage ER-positive breast

cancers, glucocorticoids are linked to poor outcomes in patients

with ER-negative tumors (91, 92, 95). In these tumors,

glucocorticoids are reported to assume a role similar to the ER by

inducing the expression of ER-regulated genes, promoting growth

and metastasis (80, 96). Further information about the role of

glucocorticoids in breast cancer can be found in this cited review

article (97).

In prostate cancer, glucocorticoids play important roles in

promoting resistance to anti-androgen therapies. Various reports

disagree on whether the GR is expressed by healthy human prostate

epithelial cells. However, GR expression increases as the tumors

acquire resistance to anti-androgen therapies (98, 99). Treatment

with AR antagonists is also associated with increased circulating

cortisol levels and decreased expression of the cortisol-degrading

enzyme HSD11B2 by prostate cancer cells, increasing local cortisol

concentrations (100, 101). Exogenous corticosteroids are also

commonly co-administered with anti-androgen therapies to

alleviate side effects (102). Collectively, these changes promote

increased glucocorticoid signaling within prostate cancer cells.

The GR and AR are structurally similar and share nearly

identical DNA response elements (90). Cells that co-express the

AR and GR have significant overlap in their regulated

transcriptomes (98, 103). During anti-androgen therapies, when

only the GR is transcriptionally active, the GR drives the expression

of typically AR-regulated genes related to apoptotic resistance and

tumor cell survival (104, 105). It is important to note that while

there is significant overlap between AR and GR-regulated

transcriptomes, they are not identical, and each steroid hormone

receptor regulates a host of specific genes and cellular functions.

However, the similarity between these receptors allows for some

functional overlap. Indeed, numerous studies have reported the

immunomodulatory roles of androgens (106, 107). We recently

reported that glucocorticoids and androgens regulate the

transcription of proinflammatory cytokines within ILC2s,

suppressing gastric inflammation and metaplasia (50). Therefore,

many of the effects of glucocorticoids on anti-cancer immunity

could also be influenced by androgens. Interactions between
Frontiers in Endocrinology 07
glucocorticoids and androgens likely play critical roles in the

development of numerous types of cancers and warrant

further investigation.
Clinical implications

Glucocorticoids are used extensively as cancer therapy

adjuvants for the treatment of solid tumors. Synthetic

glucocorticoids such as dexamethasone, prednisolone, and

betamethasone have long been utilized for improving adverse

symptoms associated with chemotherapy and radiation therapy

(108–110). Dexamethasone ameliorates chemotherapy-induced

cytotoxicity especially in breast and prostate cancer (104, 111). In

brain tumors, dexamethasone is used to reduce intracranial

pressure and edema (112). Despite their significant use for

managing symptoms in solid tumors, corticosteroid use is linked

to the failure of anti-tumor therapies and poor patient outcomes.

Glucocorticoid treatments are linked to suppression of anti-tumor

immunity, ICB failure, cancer cell resistance to chemotherapy, and

increased tumor metastases (113–115). In a retrospective study of

181 glioblastoma patients receiving anti-PDL1 therapy,

dexamethasone treatment was the strongest predictor for reduced

patient survival (71, 116). Corticosteroid treatment as an adjuvant

to radiotherapy for glioblastoma has consistently shown a reduction

in overall patient survival and promotes tumor recurrence (117,

118). Similarly, in non-small cell lung cancer and urothelial

carcinoma, glucocorticoid treatment is associated with reduced

patient survival (119).

Despite these host of negative effects, glucocorticoid treatments

offer considerable positive benefits. As a chemotherapy adjuvant,

glucocorticoids suppress nausea, improve appetite and energy, and

reduce pain (75). Suppression of these negative side effects improves

patient quality of life and increases patient adherence to oral

chemotherapy regimens (120). Corticosteroids are often utilized

during tumor resections to reduce anesthesia-related nausea and

vomiting and suppress inflammation within the surgical site.

Glucocorticoid treatments after resection of Barret’s esophagus or

esophageal carcinoma protect from the development of esophageal

strictures (121). Retrospective studies have found that intra- and

post-operative treatments with corticosteroids have no impact on

patient survival or cancer recurrence, demonstrating that carefully

constructed therapeutic regimens may be able to deliver the benefits

while avoiding the negative complications of glucocorticoid

therapies (122, 123). However, the exact effects of glucocorticoids

likely vary depending on tumor type, and much more work is

needed to fully elucidate how glucocorticoid adjuvant therapies

affect various cancer types.

Conclusions

Glucocorticoid signaling is highly divergent across different

cancer types, and their effects significantly change as cancers

develop. Despite their widespread clinical use to combat the side

effects of chemotherapy, there is a significant gap in our knowledge

concerning how glucocorticoid signaling affects specific cancer
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types. However, even less is known about how glucocorticoids affect

early tumor development. Our summary of the literature suggests

that glucocorticoids may be a double-edged sword in the pre-tumor

microenvironment where they protect from pro-neoplastic

inflammation early, but sustained activation may promote

carcinogenesis by promoting chronic inflammation and inhibiting

wound repair. Significantly more work is needed to improve our

knowledge of how these hormones affect cancer development and

how the clinical use of glucocorticoids affects anti-cancer treatment

efficacy. Finally, interactions between glucocorticoids and other

steroid hormones clearly affect breast and prostate cancer, but

these interactions likely affect numerous other cancer types.

Glucocorticoid and androgen signaling, in particular, shape the

anti-tumor T cell response. More work is needed to uncover how

interactions between stress and sex hormones affect anti-

tumor immunity.
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