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Abstract
Glucocorticoids (GCs) are broadly prescribed for numerous pathological conditions because

of their anti-inflammatory, antiallergic and immunosuppressive effects, among other

actions. Nevertheless, GCs can produce undesired diabetogenic side effects through

interactions with the regulation of glucose homeostasis. Under conditions of excess and/or

long-term treatment, GCs can induce peripheral insulin resistance (IR) by impairing insulin

signalling, which results in reduced glucose disposal and augmented endogenous glucose

production. In addition, GCs can promote abdominal obesity, elevate plasma fatty acids and

triglycerides, and suppress osteocalcin synthesis in bone tissue. In response to GC-induced

peripheral IR and in an attempt to maintain normoglycaemia, pancreatic b-cells undergo

several morphofunctional adaptations that result in hyperinsulinaemia. Failure of b-cells to

compensate for this situation favours glucose homeostasis disruption, which can result in

hyperglycaemia, particularly in susceptible individuals. GC treatment does not only alter

pancreatic b-cell function but also affect them by their actions that can lead to

hyperglucagonaemia, further contributing to glucose homeostasis imbalance and hyper-

glycaemia. In addition, the release of other islet hormones, such as somatostatin, amylin and

ghrelin, is also affected by GC administration. These undesired GC actions merit further

consideration for the design of improved GC therapies without diabetogenic effects.

In summary, in this review, we consider the implication of GC treatment on peripheral IR,

islet function and glucose homeostasis.
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Introduction
Glucocorticoids (GCs), such as cortisol in humans and

corticosterone in rodents, are produced in the adrenal

cortex and play a key role in the regulation of glucose
homeostasis and nutrient metabolism. Synthetic GCs,

which include dexamethasone and prednisolone, are used

in medical practice because of their anti-inflammatory,
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antiallergic and immunosuppressive effects. Although

synthetic GCs are broadly prescribed in numerous

pathological conditions, they have important adverse

metabolic effects, including peripheral insulin resistance

(IR) and glucose intolerance as well as overt hyper-

glycaemia and diabetes. These side effects are observed

particularly in susceptible individuals such as pregnant

women, obese subjects, IR individuals or first-degree

relatives of diabetic patients (Van Raalte et al. 2009). The

ability of GCs to produce peripheral IR is central to explain

their impact on glucose homeostasis. It is well known that

any reduction in peripheral insulin sensitivity, e.g., when

GCs are administered, is adaptively compensated by

augmented pancreatic b-cell function (Beard et al. 1984,

Nicod et al. 2003, Ahrén 2008, Rafacho et al. 2008). This

islet compensation meets the principle of the disposition

index, the product of insulin secretion and peripheral

insulin sensitivity. When b-cells fail to adjust to the

insulin demand imposed by the GC treatment, fasting

and/or postprandial hyperglycaemia may arise. The

severity and progression of these alterations depend on

several parameters including dosage, period and previous

individual susceptibility among others (Novelli et al. 1999,

Rafacho et al. 2008, Jensen et al. 2012). In addition to the

islet’s compensatory responses to IR, GCs directly affect

b-cell function, which may further complicate adequate

glycaemia regulation. Although less explored than insulin

release, these steroids also affect the secretion of other islet

hormones with important roles in glucose homeostasis,

such as glucagon, somatostatin and amylin. All these

alterations in islet hormonal secretion can exacerbate

GCs’ diabetogenic actions. In the next sections, we review

the main effects of GCs on peripheral tissues and the

endocrine pancreas and also consider the risks and

limitations of their therapeutic use.
Cellular mechanisms of GC action

Ninety-five percent of circulating cortisol is bound to

corticosteroid-binding globulins and albumin (Andrews &

Walker 1999). The plasma levels of the inactive form,

cortisone, are w50–100 nM, and the hormone is largely

unbound to plasma proteins (Walker et al. 1992). Local

conversion between active and inactive forms is catalysed

by 11b-hydroxysteroid dehydrogenase (11b-HSD).

11b-HSD type 1 (11b-HSD1) is a reductase that converts

inactive cortisone (in humans) and 11-dehydrocorticos-

terone (in rodents) to active cortisol and corticosterone

respectively (Low et al. 1994, Voice et al. 1996). The type 2

isoform works as a dehydrogenase that catalyses the
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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opposite reaction (Brown et al. 1993). The actions of

11b-HSD1 and 11b-HSD2 serve as a pre-receptor control

of GC action and determine local GC concentrations.

GC action at the site of cells is activated by the steroid

hormone binding to its receptor. The classical GC receptor

(GR), a ligand-regulated transcription factor that belongs

to the superfamily of nuclear receptors, binds GCs and

regulates transcription of target genes by activation or

repression (Mangelsdorf et al. 1995). The GR is expressed

in virtually all tissues; however, GR is able to regulate

genes in a cell-specific manner, indicating that the

response to GCs is regulated by factors beyond receptor

expression. The GR is guided from the moment of

synthesis to decay through signal transduction and by a

variety of molecular chaperones such as HSP70 (Nelson

et al. 2004) and HSP90 (Pratt et al. 2006), which facilitate

folding, maturation and ligand binding. In addition,

GR-mediated transcriptional activation is modulated

both positively and negatively by phosphorylation

(Ismaili & Garabedian 2004) of kinases and phosphatases.

Although the activity of the GR is often thought in terms

of direct gene transactivation, considerable crosstalk also

occurs between the GR and a cohort of molecules to

mediate their function as transcriptional factors, includ-

ing octamer transcription factors, OCT1 and OCT2, cyclic

adenosine monophosphate response element-binding

protein and signal transducers and activators of

transcription 5 (Engblom et al. 2007, Chen et al. 2012,

Ratman et al. 2013). Competition for limiting transcrip-

tion co-activators is an important determinant of the fate

of the crosstalk between the GR and other transcription

factors. In addition to these genomic GC actions, the

steroid hormone can induce effects on aminute time scale,

which is difficult to explain by mechanisms involving

gene expression changes (Long et al. 2005). Localised cell

membrane receptors with GC affinity have recently been

identified (Strehl & Buttgereit 2014).
GC therapy in clinical practice

Drugs based onGCswere introduced in the 1950s andhave

been an important therapeutic strategy to treat rheumatic

and inflammatory diseases ever since. In this regard, the

relevant properties are the immunosuppressive, anti-

inflammatory and antiallergic effects that GCs exert on

primary and secondary immune cells, tissues and organs

(Stahn & Buttgereit 2008). Estimates suggest that between

1 and 2% of the adult population in the Western world is

receiving some form of long-term GC treatment, with a

clear higher usage amongpatients of the geriatric age group
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(Van Staa et al. 2000). In dermatology, GCs are the most

widely used therapy, for example, to treat atopic eczema.

Inhaled GCs are used to treat allergic reactions in airways

and to dampen bronchial hyperreactivity in asthma.

Systemically, GCs are used to combat connective tissue

inflammation, rheumatoid arthritis, bowel diseases and in

allotransplantation (Thiele et al. 2005).
Diabetogenic actions of GCs in skeletal muscle
and adipose, hepatic and bone tissues

There are a myriad of risks associated with excessive GC use;

these riskshavebeen recognised sinceGCs came into clinical

use (Schäcke et al. 2002). Given GCs’ strong capacity to

counteract the action exerted by insulin and raise blood

sugar levels, it is not surprising that IR and glucose

intolerance is aconcern inpatientswithCushing’s syndrome

and disease (endogenous GC overproduction) and in

patients prescribed GC-based therapy for immunomodula-

tory purposes (Raúl Ariza-Andraca et al. 1998). In addition,

hypercortisolaemic conditions share many characteristics

with metabolic syndrome, a cluster of abnormalities

including hyperglycaemia, abdominal obesity, dyslipidae-

mia andhypertension (Anagnostis et al. 2009). Low-doseGC

therapy is considered when the daily dose is !7.5 mg

prednisolone or equivalent (van der Goes et al. 2010).

When such a dose is administrated orally, plasma predniso-

lone levels peak 2–4 h after intake at about 400–500 nM

(w150–200 ng/ml) and return to baseline within 12 h after

steroidadministration (Wilsonet al. 1977,Tauber et al. 1984).

These values are in the same range as normal endogenous

cortisol levels: reference values for samples taken between

0400 and 0800 h are 250–750 nM and for samples taken

between2000and2400 hare 50–300 nM.This indicates that

the absolute cortisol values are not as important for

developing adverse effects during low-dose GC therapy as is

the diurnal variation. Current knowledge gives at hand that

development of diabetes after starting low-dose GC

treatment seems rare, but progression of already impaired

glucose tolerance to overt diabetes is possible (van der Goes

et al. 2010). Therefore, clinical recommendation states that

baseline fasting glucose should be monitored before

initiating therapy and during following up according to

standard patient care. Certainly, the adverse effects aremore

pronounced during high-dose GC therapies (O30 mg

prednisolone or equivalent daily). In a retrospective study

ofHbA1c levels inpatientswith rheumaticdiseases subjected

to prednisolone treatment, it was found that around

82% had HbA1c levels higher than 48 mmol/mol (given in

IFCC standard, corresponding to 6.7% in DCCT standard).
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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Serum HbA1c levels higher than 52mmol/mol (7.1%) were

seen in 46% of the patients and 23% of the patients had

HbA1c levels as high as 57 mmol/mol (7.6%), which should

be considered as a high-risk factor for diabetes. Taken

together, it was found that the cumulative prednisolone

dose was the only factor significantly associated with the

development of steroid-induced diabetes among rheumatic

patients (Origuchi et al. 2011).
Adipose tissue

GCs regulate the maturation of pre-adipose cells into

differentiated adipose cells as well as metabolism in

adipose tissue (Rebuffé-scrive et al. 1992). As the GR is

predominantly expressed in adipose cells located in intra-

abdominal fat, GCs are more highly activated in these fat

deposits (Pedersen et al. 1994). A striking feature observed

under conditions of GC excess is enhanced accumulation

of visceral fat and loss of peripheral fat deposits in the arms

and legs (Reynolds et al. 2012; Fig. 1). In the peripheral fat

deposits, GCs promote the expression of the key lipolytic

enzyme hormone-sensitive lipase (Slavin et al. 1994); thus,

acute infusion of cortisol in healthy humans induces

triglyceride hydrolysis and the release of fatty acids and

glycerol to the systemic circulation (Divertie et al. 1991).

On the contrary, it has been suggested that GCs promote

increased fat mass and triglyceride synthesis in visceral fat.

Hence, GCs and insulin work in concert to activate

lipoprotein lipase (Ottosson et al. 1994), which leads to

relocation of fat deposits from arms and legs to abdominal

sites. Furthermore, GC treatment was shown to inhibit

5 0 AMP-activated protein kinase (AMPK) activity speci-

fically in rat visceral, but not subcutaneous adipose tissue

(Christ-Crain et al. 2008), which may explain the

redistribution of fat deposits that occurs during GC excess.

This hypothesis remains to be proven in humans but is

supported by the observation that patients with Cushing’s

syndrome exhibited a 70% lower AMPK activity in visceral

adipose tissue (Kola et al. 2008). In Addition, GC-induced

attenuation of insulin signalling in the adipose tissue has

been associated with reduced glucose uptake (Ortsäter

et al. 2012). In summary, GCs exposure leads to impaired

insulin signalling and a systemic elevation of fatty acids

and triglycerides which contributes to IR. Furthermore,

GCs induce abdominal obesity.
Skeletal muscle

Skeletal muscle accounts for w80% of insulin-mediated

glucose uptake (IMGU) and is the largest glycogen store.
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Figure 1

Effects of GCs on peripheral tissues involved in the control of glucose

homeostasis. Excess or prolonged GC treatment may disrupt glucose

homeostasis by interfering with several metabolic-related tissues. In

visceral adipose tissue, GCs elevate LPL activity, leading to fat accumulation

at this fat site. Fat in the limbs appears to respond to GCs with increased

HSL activity, resulting in increased lipid (FFA and glycerol) release,

supplying substrates for hepatic TG synthesis and gluconeogenesis, and

also in intramuscular fat accumulation. These steroids may also affect

insulin signalling in adipose tissue. GCs impair insulin-stimulated glucose

uptake in skeletal muscles and induce muscle wasting, which, in turn,

provides gluconeogenesis substrates. In the liver, GCs have a negative effect

on rate-limiting enzymes controlled by insulin. Finally, GC in excess may

also alter osteocalcin synthesis in osteoblast cells, leading to reduced

osteocalcinaemia. FFA, free fatty acids; GCs, glucocorticoids; G6Pase,

glucose-6-phospatase; HSL, hormone-sensitive lipase; LPL, lipoprotein

lipase; PEPCK, phophoenolpyruvate carboxykinase; TG, triacylglycerol.
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GCs interfere directly with insulin signalling in skeletal

muscle cells. Studies have shown that administration of

dexamethasone reduces the expression and activity of

insulin substrate 1 (IRS1) and phosphatidylinositol-4,5-

bisphosphate 3-kinase in rodent skeletal muscle cells (Saad

et al. 1993, Morgan et al. 2009), which would presumably

lead to a reduction in IMGU and abrogation of glycogen

synthesis (Fig. 1). Indeed, in a study with healthy human

volunteers, prednisolone treatment for 6 days (0.8 mg/kg

per day) reduced insulin-induced leg glucose uptake by

65% compared with placebo treatment (Short et al. 2009).

In a study supporting this, rats treated with GCs were

shown to have reduced insulin-stimulated glucose uptake,

caused by attenuated insulin-induced glucose transporter

type 4 translocation to the cell membrane in myotubes

(Dimitriadis et al. 1997). The condition is worsened by the
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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accumulation of ectopic fat deposition in skeletal muscle

(Fransson et al. 2013; Fig. 1), which originates from the

systemic GC-induced fatty acid elevation as discussed

earlier. Taken together, these data show that GCs directly

interfere with insulin signalling in skeletal muscle cells

leading to reduced IMGU.
Hepatic tissue

Hepatic tissue plays a key role in the control of glucose and

lipid homeostasis. Although insulin does not directly

stimulate glucose uptake in liver cells, the hormone is

responsible for hepatic glycogen synthesis and gluco-

neogenesis suppression. These insulin actions are

mediated via insulin receptor signalling. As in skeletal

muscle, GC excess also interferes with the insulin

signalling cascade in hepatic tissue. In one study,

dexamethasone-treated rats (1.5 mg/kg body weight for

6 consecutive days) exhibited an w50–70% reduction in

insulin receptor binding in hepatocytes (Olefsky et al.

1975). A significant reduction in insulin receptor density

was also observed in hepatocytes from rats chronically

treated with dexamethasone (Caro & Amatruda 1982).

Diminished tyrosine phosphorylation in either insulin

receptor or IRS1 was observed in liver from rats treated

with dexamethasone for 5 consecutive days (Saad et al.

1993). In addition, GCs were shown to augment

endogenous glucose production in several (Rizza et al.

1982, Pagano et al. 1983, Rooney et al. 1993) but not all

(Wajngot et al. 1990) studies conducted in healthy

humans. GC-driven glucose production may be caused

by enhanced gluconeogenesis, as GCs induce rate-limiting

enzymes for gluconeogenesis, e.g., phosphoenolpyruvate

carboxykinase and glucose-6-phosphatase (Lange et al.

1994, Cassuto et al. 2005; Fig. 1). GC-mediated expression

of gluconeogenic enzymes appears to be dependent on

liver X receptor (LXR) expression (Patel et al. 2011).

Indeed, mice lacking LXRb (but not LXRa) were

demonstrated to be resistant to dexamethasone-induced

hyperglycaemia, hyperinsulinaemia and hepatic steatosis,

but remained sensitive to dexamethasone-dependent

immune system repression (Patel et al. 2011). Moreover,

as GCs promote muscle wasting and lipolysis, they also

increase the bioavailability of substrates for gluconeo-

genesis (Divertie et al. 1991, Kim et al. 2012; Fig. 1). Finally,

fat accumulation leads to hepatic steatosis (Fransson et al.

2013), which, by itself, attenuates insulin sensitivity

(Kim et al. 2012). To summarise, elevated GC levels

promote gluconeogenesis in hepatic tissue leading to

fasting hyperglycaemia.
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Bone tissue

Osteoporosis is a common side effect observed in patients

on GC-based therapy (Hoes et al. 2010). GCs also suppress

osteoblast function, including osteocalcin synthesis

(Prummel et al. 1991; Fig. 1). Osteocalcin is an osteoblast-

specific peptide that is reported to be involved in normal

murine fuel metabolism (Ferron et al. 2008). In a

pioneering work by Lee et al. (2007), it was demonstrated,

both in cell culture and inmice, that osteocalcin increased

pancreatic b-cell proliferation as well as insulin expression

and release, resulting in improved glucose tolerance. In

addition, uncarboxylated osteocalcin increased adiponec-

tin expression and secretion in adipose tissue, which in

turn enhanced insulin sensitivity (Lee et al. 2007). Serum

osteocalcin concentrations are positively correlated with

improved glucose control (Bao et al. 2011) in the

development type 2 diabetes in humans. In another

study, osteoblast-targeted disruption of GC signalling

significantly attenuated the suppression of osteocalcin

synthesis and prevented the development of IR, glucose

intolerance and abnormal weight gain in corticosterone-

treated mice (Brennan-Speranza et al. 2012). Nearly,

identical effects were observed in GC-treated animals

following hepatic expression of both carboxylated and

uncarboxylated osteocalcin. These data suggest a link

between effects of GC on the skeleton and the effects of

steroid hormone on glucose homeostasis.
Effects of GC treatment on pancreatic b-cells
and insulin secretion

Pancreatic b-cells respond to increasing plasma glucose

levels by secreting insulin, which maintains glycaemia

within narrow physiological ranges. This key function can

be altered by GCs through direct and indirect actions and

may also depend on action of GCs as acute or chronic

stimuli. In the next sections, we consider the different

aspects of GCs’ effects on b-cells.

Acute effects of GCs

The direct in vitro effects of GCs on glucose-stimulated

insulin secretion (GSIS) are generally inhibitory and occur

within a fewminutes, as demonstrated in isolated rat islets

exposed to corticosterone (0.02–20 mg/l) (Billaudel &

Sutter 1979; Fig. 2A, left). This inhibitory action involves

a-adrenergic signalling due to the blockage of GCs’ effect

by phentolamine (a non-selective a-adrenergic antagonist;

Barseghian & Levine 1980). This rapid impact of GCs is not

reproduced by synthetic steroids. GSIS inhibition in
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JOE-14-0373 Printed in Great Britain
mouse (Lambillotte et al. 1997) and rat islets (Zawalich

et al. 2006) is manifested only after the third hour of

exposure to 1 mM dexamethasone.

GCsmay also exert a negative in vivo effect during acute

administration. A single oral dose of prednisolone (75 mg;

van Raalte et al. 2010) or dexamethasone (1 mg; Schneiter

& Tappy 1998) in healthy volunteers resulted in decreased

insulin secretion and/or a reduced insulinogenic index

(the ratio between Dinsulinaemia and Dglycaemia) during

ameal or an oral glucose tolerance test (oGTT) respectively.

In contrast, other studies did not demonstrate this acute

GC effect in healthy men (Vila et al. 2010) or normal adult

rats (Stojanovska et al. 1990) during an i.v. or oGTT

respectively. Similar to the in vitro observationsmentioned

earlier, increased sympathetic drive may be involved in

GCs’ inhibition of in vivo insulin secretion (Longano &

Fletcher 1983). This hypothesis is based on a study

conducted in adult Swissmice treated with hydrocortisone

(300 mg/kg bodyweight) 1 h before determining fed blood

glucose and plasma insulin values. The insulinogenic

index was reduced 1 h after steroid administration in fed,

mice but unaltered when chlorisondamine (a ganglionic

blocker) or phentolamine was given 10 min before GC

administration (Longano & Fletcher 1983; Fig. 2B, left).

Overall, acute exposureor administrationofGCsappears to

cause a decline in the insulinogenic index in humans and

rodents, and this effect may be mediated by sympathetic

activation of a-adrenergic receptors. It is important to

highlight that 24 h after interrupting GC administration,

all b-cell function parameters return to normal values

(van Raalte et al. 2010).
Chronic effects of GCs

As observed in acute in vitro experiments, chronic

incubation (hours to days) with synthetic GCs in in vitro

conditions leads to decreased GSIS in rodent isolated islets,

dispersed b-cells and insulin-secreting cell lines

(Lambillotte et al. 1997, Shao et al. 2004, Ullrich et al.

2005, Zawalich et al. 2006). GCs’ deleterious effects on

GSIS involve impaired glucose oxidative metabolism

(Shao et al. 2004), activation of repolarising KC channels

(Ullrich et al. 2005), generation of reactive oxygen species

(Roma et al. 2011), endoplasmic reticulum dyshomeostasis

(Linssen et al. 2011), activation of 11b-HSD1 (Davani et al.

2000) and decreased efficiency of intracellular Ca2C on the

secretory response (Lambillotte et al. 1997, Shao et al.

2004, Zawalich et al. 2006; Fig. 2A, right).

However, in contrast to the above-mentioned inhibi-

tory effects observed in both acute and long-term GC
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Figure 2

Sites of the insulin secretory process affected by in vitro or in vivo (ex vivo)

exposure to glucocorticoids (GCs). In (A), the known components involved

in the acute or chronic in vitro effects of GCs on the b-cell insulin secretory

process are highlighted with a positive signal (indicates GCs stimulate/

increase that action/function) or a negative signal (indicates GCs

inhibit/diminish that action/function). Most notably, GCs impair b-cell

glucose metabolism, favour repolarising Kv
C currents, decrease PKA and

PKC activation, induce ER dyshomeostasis, increase 11b-HSD1 activity and

ROS generation and impair calcium handling. Together, these effects

inhibit insulin secretion. In (B), the known components involved in b-cell

function, which are affected by acute or long-term in vivo GC treatment,

are highlighted with a positive signal, which indicates increased content or

activity. Most notably, augmented glucose metabolism and cholinergic

pathway activity cause increased calcium influx and insulin secretion. In this

context, a positive GC effect on KC and VDCC could not be excluded.

AC, adenylyl cyclase; Ach, acetylcholine; aAR, a adrenergic receptor;

DAG, diacylglycerol; ER, endoplasmic reticulum; Gi, G-coupled inhibitory

protein; GLUT2, glucose transporter 2; IP3, inositol triphosphate; KC,

ATP- dependent KC channel; Kv
C, voltage-dependent KC channel; M3R,

muscarinic receptor type 3; PIP2, phosphatidylinositol bisphosphate;

PKA, protein kinase A; PLC, phospholipase C; ROS, reactive oxygen species;

VDCC, voltage-dependent Ca2C channel; 11b-HSD1, 11b-hydroxysteroid

dehydrogenase type 1.
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incubation, chronic in vivo administration of these

steroids leads to up-regulation of b-cell function as a result

of the compensatory adaptation to GC-induced IR.

Administration of high doses of prednisolone (30 mg) or

dexamethasone (2–15 mg) to healthy individuals for

prolonged periods (up to 15 days and up to 4 days

respectively) resulted in normoglycaemia or a modest

increase in fasting glycaemia (Beard et al. 1984, Schneiter

& Tappy 1998, Hollindgal et al. 2002, Willi et al. 2002,

Nicod et al. 2003, Ahrén 2008, van Raalte et al. 2010,

Petersons et al. 2013). Importantly, in most of these

studies, volunteers developed hyperinsulinaemia. In fact,

during glucose challenging with a hyperglycaemic-clamp

(Beard et al. 1984, Nicod et al. 2003) or an oGTT (Schneiter

& Tappy 1998, Hollindgal et al. 2002, Willi et al. 2002),

insulin release was significantly higher in GC-treated

individuals compared with control groups. The plasma

C-peptide values were also elevated after treatment with
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JOE-14-0373 Printed in Great Britain
prednisolone in healthy men at basal conditions

(Hollindgal et al. 2002) and during a meal tolerance test

(van Raalte et al. 2010). This enhanced b-cell function was

also observed in adult rats treated for up to 13 consecutive

days with dexamethasone (0.125–2.0 mg/kg) based on

basal hyperinsulinaemia (Novelli et al. 1999, Karlsson et al.

2001, Rafacho et al. 2008) or in vivo glucose challenging

(Rafacho et al. 2008, 2011). This augmented b-cell

function occurred in a dose- (Rafacho et al. 2008) and

time-dependent manner (Rafacho et al. 2011). In normal

adult mice, administration of dexamethasone for 10 days

or corticosterone from the 1st consecutive week also

resulted in basal hyperinsulinaemia (Thomas et al. 1998,

Fransson et al. 2013).

This hyperinsulinaemia is consistent with insulin

hypersecretion observed in pancreatic islets isolated from

GC-treated rats (Novelli et al. 1999, Karlsson et al. 2001,

Rafacho et al. 2008, 2010a,b). This enhanced b-cell
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secretion involves an improvement in glucose responsive-

ness (Karlsson et al. 2001, Rafacho et al. 2008), sensitivity

(Rafacho et al. 2008) and oxidative metabolism (Rafacho

et al. 2010a) as well as augmented Ca2C handling (Rafacho

et al. 2010a) and an improved response to cholinergic

signals (Angelini et al. 2010, Rafacho et al. 2010a, b; Fig. 2B,

right). The islet compensatory response is also

accompanied by structural changes. It has been demon-

strated that, b-cell mass increases in a time- (Rafacho et al.

2011) and dose-dependent manner (Rafacho et al. 2009)

with GC administration, according to the correspondent

degree of insulin insensitivity. Taken together, these

results show that when humans or animal models are

exposed to prolonged steroid treatment, they develop

augmented b-cell function and mass to counteract the IR

resulting from GC administration.
GC treatment, b-cell dysfunction and glucose intolerance

Depending on the GC regimen, glucose homeostasis is

maintained at normal or near normal physiological

conditions by adaptive b-cell compensations. However,

these adaptations do not always guarantee an adequate

glucose homeostasis. Although insulin hypersecretion

observed after prolonged steroid treatment appears to be

consistent in most experiments carried out in healthy

volunteers (Beard et al. 1984, Schneiter & Tappy 1998,

Ahrén 2008, van Raalte et al. 2010) and normal adult rats

(Karlsson et al. 2001, Rafacho et al. 2008, 2009, 2011),

glucose intolerance is also present. In these studies,

hyperinsulinaemia is normally associated with normogly-

caemia or modest increases in blood glucose values, but

the insulin (Schneiter & Tappy 1998, Rafacho et al. 2008,

2011) and C-peptide hypersecretion (van Raalte et al.

2010) during glucose or meal challenges, respectively, do

not prevent elevation in postprandial blood glucose levels.

Therefore, the insulinogenic index may not necessarily

match the peripheral insulin demand imposed by GCs.

The negative impact of GCs on glucose homeostasis is

more apparent in individuals or rodents with any degree of

susceptibility to glucose intolerance, such as those with

low insulin sensitivity (Larsson&Ahrén 1999), low insulin

response to glucose (Wajngot et al. 1992), first-degree

relatives of patients with type 2 diabetes (Jensen et al.

2012), obesity (Besse et al. 2005) and those who are older

(Novelli et al. 1999). In these contexts, b-cell function does

not correspond to the peripheral insulin demand, and the

deregulation of glucose homeostasis becomes more

pronounced, reinforcing that individual background is a

critical factor. Indeed, this susceptibility to b-cell failure
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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after treatment with dexamethasone has also been

observed in animal models with an obesity background,

such as fa/fa rats (Ogawa et al. 1992) and ob/ob mice

(Khan et al. 1992).

In an attempt to analyse whether GCs have any direct

effects on b-cells in vivo independent of peripheral GC

actions, a transgenic mice model that specifically over-

expresses GR in these cells was generated (Delaunay et al.

1997, Davani et al. 2004). These mice were normo-

glycaemic, but displayed glucose intolerance associated

with reduced insulin secretion during a glucose load

(Delaunay et al. 1997). When these transgenic mice aged,

hyperglycaemia developed together with marked glucose

intolerance and reduced in vivo and ex vivo GSIS.

Remarkably, no change in b-cell apoptosis was observed

in these mice (Davani et al. 2004). This deterioration in

GSIS was prevented by incubating islets with benextra-

mine (a selective a2-adrenergic receptor antagonist),

suggesting the involvement of adrenergic signals. In any

case, the analysis of direct GC effects on b-cells in vivo is

difficult because the systemic metabolic consequences of

GC treatment most likely mask the GC-mediated changes

in b-cell function. Of note, almost all the morphofunc-

tional b-cell changes elicited by GC administration are

transitory and reversible after 10 days of discontinuation

of steroid treatment in rats, suggesting an unacknow-

ledged plasticity in the regulation of b-cell function and

growth (Rafacho et al. 2010b).
Effects of GCs on glucagon release and
other islet hormones

Glucagon secretion by pancreatic a-cells plays a key role in

glucose homeostasis. Glucagon’s release is enhanced at low

plasma glucose levels, but decreases under hyperglycaemic

conditions (Quesada et al. 2008, Marroqui et al. 2014).

Glucagon is one of the most important hyperglycaemic

hormones and acts as insulin’s counterpart, opposing

numerous anabolic insulin-mediated actions. The hyper-

glycaemic effect is mainly produced by activating hepatic

glycogenolysis and gluconeogenesis, which results in the

release of endogenous glucose into the bloodstream. This

process restores normoglycaemia under hypoglycaemic

conditions (Quesada et al. 2008, Marroqui et al. 2014).

Hyperglucagonaemia may be present in diabetes. In

addition, inhibition of glucagon release at high glucose

levels may be impaired in this metabolic condition. This

impaired a-cell function can lead to higher hepatic glucose

output, further contributing to hyperglycaemia in diabetic

patients (Quesada et al. 2008; Marroqui et al. 2014). As in
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the case of b-cells, in the next section we summarise the

acute and chronic effects of GCs on a-cell function.
Acute effects of GCs on a-cell function and

glucagon release

One study reported that corticosterone (10K7 M) poten-

tiated glucagon release induced by a glucose-free medium

or arginine in isolated perfused rat pancreas (Barseghian &

Levine 1980). In contrast, incubation of mouse pancreatic

islets with dexamethasone (0.5–50 nM), corticosterone

(50 nM) or 11-dehydrocorticosterone (50 nM) for 2 h

reduced glucagon secretion induced by low glucose levels,

effects that were reversed by a GR antagonist (Swali et al.

2008). The inhibitory action of 11-dehydrocorticosterone

was partially reversed by a selective 11b-HSD1 inhibitor.

This fact, along with the co-localisation of this enzyme in

human and rodent islet a-cells, indicates that this islet cell

type serves an important local function in pancreatic GC

metabolism (Swali et al. 2008). This situation may be

different in other species, for example in rats, where this

enzyme is expressed in non-a-cells (Rafacho et al. 2014). In

contrast with the above-mentioned results, prednisolone

(10K5 M) failed to modify glucagon secretion in mouse

pancreatic islets (Marco et al. 1976). Likewise, incubation

of rat pancreatic islets with dexamethasone (1 mM) for 3 h

did not modify glucagon secretion (Rafacho et al. 2014).

Thus, in vitro experiments with acute GC exposure have

reported divergent effects on glucagon secretion. These

divergences may depend on different factors, including

the preparation and species studied as well as the

specificity and potency of the different GCs used.
Chronic effects of GCs on a-cell function and

glucagon release

a-cell growth regulation by long-term GC exposure has

been explored during development. a-cell mass was

decreased in 21-day-old foetuses obtained from pregnant

rats that received dexamethasone in drinking water

(1 mg/ml) either during the last week of pregnancy or

throughout gestation (Dumortier et al. 2011). In contrast,

GR inactivation in the pancreatic b-cell (rat insulin

promoter-Cre transgene) or in cells expressing pancreatic

and duodenal homeobox 1, which is involved in pancreas

development, did not modify a-cell mass in adult mice

(Gesina et al. 2004). Adult rats treated with dexametha-

sone (1 mg/kg) for 5 consecutive days exhibited a 50%

increase in a-cell mass (Rafacho et al. 2014). Similarly,

administration of corticosterone to adult rats fed a
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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high-fat diet promoted a synergistic positive effect on

a-cell mass (Beaudry et al. 2013). In general, GC adminis-

tration in adults appears to up-regulate a-cell mass, while

the opposite effect is observed during development.

Glucagon release is also modulated by GCs. Rats

treated with dexamethasone (1 mg/kg) for 5 consecutive

days exhibited hyperglucagonaemia (Rafacho et al. 2014).

In this model, isolated pancreatic islets exhibited impaired

inhibition of glucagon release at high glucose levels.

Similarly, dexamethasone (0.25 mg/kg) administered for

7 days in rhesus macaques induced fasting hyperglucago-

naemia (Cummings et al. 2013), and prednisolone

(0.2–0.3 mg daily) administered for 4 days increased

basal and arginine-induced glucagon secretion in isolated

mouse islets (Marco et al. 1976). In contrast to the above-

mentioned results obtained for in vivo GC treatment,

glucagon release was suppressed in isolated rat islet cells

incubated for 18 h with dexamethasone at 10K9 and

10K10 M, but was without effect at higher steroid

concentrations (Papachristou et al. 1994). Thus, in vivo

and ex vivo chronic studiesmostly point to enhanced a-cell

secretion after GC administration. The resulting hyperglu-

cagonaemia may aggravate GC-induced hyperglycaemia

by stimulating hepatic glucose release and opposing

insulin actions (Quesada et al. 2008; Fig. 3).

Clinical studies have also evaluated GCs’ effects on

human a-cell function. Administration of prednisolone

(40–100 mg daily) for up to 4 days induced fasting

hyperglucagonaemia and glucagon hypersecretion in

response to arginine (Marco et al. 1973). Similarly, daily

dexamethasone treatment (2 mg) for 3 days led to

increased basal plasma glucagon levels and enhanced

alanine-induced glucagon release in non-obese subjects

(Wise et al. 1973). Both responses were even more

pronounced in obese individuals and patients with

Cushing’s syndrome. Moreover, administration of dexa-

methasone (3 mg twice daily for 2 days) and prednisolone

(30 mg for 2 consecutiveweeks) led to increased fasting and

postprandial glucagon levels (Beard et al. 1984, van raalte

et al. 2013). In contrast, in a few studies, fasting glucagon

concentrations were found to be unchanged by dexa-

methasone (3 mg twice daily for 2 and 1⁄2 days; Larsson &

Ahrén 1999). Thus, the majority of clinical studies show

that GC treatment may up-regulate a-cell function, which

may enhance GCs’ diabetogenic actions (Fig. 3).
Effects of GCs on somatostatin, amylin and ghrelin release

Pancreatic d-cells secrete somatostatin, which indirectly

affects glucose homeostasis, suppressing both insulin and
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Figure 3

Diabetogenic effects of GC treatment: implication of islet hormones. GC

treatment can induce IR in peripheral tissues. As a compensatory adaptive

process, the endocrine pancreas increases insulin release, leading to

hyperinsulinaemia. An adequate compensatory response to the insulin

requirements imposed by IR allows for normoglycaemia. However, an

insufficient b-cell response could lead to impaired glucose tolerance, which

can progress to overt hyperglycaemia and type 2 diabetes. GC treatment

also induces high plasma levels of glucagon and amylin, and may affect

somatostatin concentrations. Although somatostatin inhibits a- and b-cells,

the potential changes in this hormone induced by GCs do not appear to

produce a significant negative effect in these conditions. Hyperglucago-

naemia increases hepatic glucose output, which exacerbates hyperglycae-

mia and glucose intolerance and further opposes insulin action, decreasing

the insulin effect. High amylin levels have been related with increased

predisposition to amyloid formation in decreased insulin sensitivity

conditions, such as those generated by GCs. Amyloid aggregation is related

with increased b-cell death and malfunction. The molecular mechanisms

underlying the high plasma levels of glucagon and amylin induced by

GC treatment are still unknown.
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glucagon release (Quesada et al. 2008). In vivo experiments

showed that dexamethasone administration (0.5 mg/kg)

for 3 or 8 days in rats increased somatostatin gene

expression and protein content in the pancreas

(Papachristou et al. 1994). However, plasma somatostatin

levels were not measured in these conditions. In in vitro

experiments, incubation of isolated islet-cells with dexa-

methasone for 18 h produced a biphasic effect: while low

doses (10K10 M) stimulated the somatostatin gene and

protein expression, high doses (10K8–10K5 M) produced

the opposite effect (Papachristou et al. 1994). At this

chronic exposure, the high doses reduced somatostatin

release into the medium. When foetal pancreatic islets

were cultured for 8 days with corticosterone (0.1 mg/ml),

both the somatostatin concentration in the medium

and the islet somatostatin content were increased

(McEvoy et al. 1981). Thus, few experiments indicate

that GC may regulate directly or indirectly d-cell function

(Fig. 3). Elevation in plasma somatostatin concentrations

should inhibit a and b-cell functions under normal

physiological conditions. However, this appears not
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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to be the case during GC administration, given that

GC treatment results in hyperglucagonaemia and

hyperinsulinaemia.

The islet amyloid polypeptide (IAPP), also called

amylin, is co-secreted with insulin by pancreatic b-cells in

response to food intake, most likely via the same

mechanisms that allow for insulin release. This hormone

decreases postprandial glycaemia by inhibiting gastric

emptying and suppressing glucagon secretion

(Westermark et al. 2011). However, type 2 diabetes has

also been related with the formation of toxic amyloid

aggregates that can induce b-cell apoptosis (Westermark

et al. 2011). This aggregation might be associated with IR

and insulin (and amylin) hypersecretion (Westermark et al.

2011), which also result from GC treatment. With this

enhanced hormonal release, impaired intracellular IAPP

processing may initiate the process of amylin aggregation.

For instance, dexamethasone treatment for up to 12 days

led to increased levels of both proinsulin and IappmRNA in

rat islets (Bretherton-Watt et al. 1989, Koranyi et al. 1992).

Similarly, both enhanced plasma amylin levels and

amylin secretion from isolated pancreata were found in

dexamethasone-induced IR rats (Pieber et al. 1993, Mulder

et al. 1995). Similar findings in amylin changes have been

reported in humans after dexamethasone treatment

(Ludvik et al. 1993), indicating that GC administration

may enhance IAPP release (Fig. 3).

Ghrelin is released not only by P/D1 cells from the

stomach but also by 3-cells from the pancreas (Wierup et al.

2013). Only few 3-cells are present in each islet. Ghrelin

inhibits insulin and somatostatin secretion, but increases

glucagon release (Chuang et al. 2011, Wierup et al. 2013).

In addition, this hormone potently stimulates growth

hormone release from the anterior pituitary gland and

stimulates appetite (Malik et al. 2008). In hypercortiso-

lemic patients with Cushing’s disease, plasma ghrelin

concentrations increased after successful surgery, while

prednisolone administration (30 mg/day) for 5 days

decreased plasma ghrelin levels in healthy individuals

(Otto et al. 2004). However, no changes were observed in

response to a unique bolus of hydrocortisone (0.6 mg/kg)

in healthy men (Vila et al. 2010). In a neonatal rat model,

dexamethasone (0.5–0.05 mg/kg) administrated for

4 consecutive days led to augmented plasma ghrelin levels

in newborns (Bruder et al. 2005). However, any of the

above-mentioned studies discriminated the ghrelin

source, either the stomach or the pancreas. Thus, much

research is necessary to address whether GCs can affect the

function of 3 islet-cells.
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Conclusions and future perspectives

The diabetogenic effects of GCs are a limiting factor to

their clinical use, particularly in individuals with diabetes

risk factors. These side effects include unfavourable actions

on peripheral tissues, such as skeletal muscle, liver, bone

and adipose tissue, which mainly result, among other

effects, in decreased insulin sensitivity, augmenting

insulin needs. In response to this GC-induced IR, the

endocrine pancreas undergoes compensatory b-cell

changes in function and mass, which lead to hyperinsu-

linaemia and enhanced stimulated insulin release, to

maintain normoglycaemia. Despite the fact that most of

these adaptations are observed in healthy subjects and

animal models under GC treatment, the adaptations do

not necessarily guarantee an adequate insulinogenic index

to prevent glucose intolerance. These b-cell adaptations

are less efficient in susceptible individuals, increasing the

risk of impaired glucose homeostasis during GC treat-

ment. Up-regulated b-cell function resulting from steroid

treatment contrasts with the direct inhibitory actions

observed in both acute and long-term in vitro GC

exposures. Thus, the effects derived from in vivo GC

treatmentmay prevail over the potential direct GC actions

on b-cells. In any case, further research is necessary to

unravel the molecular mechanisms of both direct and

indirect GC actions on the endocrine pancreas.

Several studies have also documented acute and

chronic GC effects on non-b pancreatic cells. The

mechanisms implicated are not clear, but may involve

multiple factors, including direct actions on islet cells as

well as effects derived from adaptations to IR, hyperglycae-

mia, hyperinsulinaemia or other conditions. Remarkably,

the majority of in vivo animal studies and clinical reports

show that, in addition to hyperinsulinaemia, GC treat-

ment induces higher plasma levels of glucagon and amylin

and may probably affect somatostatin. The increased

plasma amylin levels might also be considered diabeto-

genic because enhanced IAPP concentrations may lead to

increased rates of toxic amylin aggregation (Couce et al.

1996). In addition, the hyperglucagonaemia observedwith

GC treatment opposes insulin actions and may aggravate

steroid-induced hyperglycaemia by increasing hepatic

glucose output, as indicated in diabetes (Quesada et al.

2008). Thus, the impaired release of the different islet

hormones may increase the diabetogenic effects of GCs.

The majority of studies about GC actions involve the

use ofmurinemodels, and thus, prudence is requiredwhen

translating this experimental data to humans. However, it

is also important to mention that the prolonged duration
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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of several GC therapies in clinical practice may exceed the

safe period proposed in experimental approaches in

human studies, which generally do not surpass 2–15 days

of GC treatment (van Raalte et al. 2009). Thus, experi-

mental data from human, although of great relevance, fail

to totally mimic the conditions of clinical practice (i.e.

duration). Elaboration of protocols to investigate GC

actions in human volunteers is not feasible, considering

the risk of irreversible negative effects, ethical issues, aswell

as the nature of ex vivo and in vitro techniques available for

the mechanistic studies (van Raalte et al. 2009). In this

regard, animal models are valuable tools, because part of

the above-mentioned limitations can be resolved.

Improved knowledge of GCs’ intracellular signalling

mechanisms and effects will help to design better GC

therapies. In this regard, it has been suggested that gene

transrepression accounts for the majority of therapeutic

GC effects, while transactivation of metabolic target genes

ismainly responsible for the side effects (Strehl&Buttgereit

2013). Using this concept, several GR agonists dissociating

transrepression from transactivationwere developed (Löw-

enberg et al. 2008). Some of these agonists have proven

useful for maintaining GCs’ anti-inflammatory and

immunosuppressive effects, while reducing side effects

such as hyperglycaemia. However, the above-mentioned

concept may be over-simplistic, and side effects may not

only be explained by transactivation but also by non-

genomic actions (Vandevyver et al. 2013). Thus, a great deal

of research is still necessary to develop GR agonists with

reduced drawbacks for glucose homeostasis. Moreover, the

combination of GC-based therapies with glucose-lowering

drugs could also be an interesting alternative explored to

minimise the disadvantages of GC treatment.
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