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Abstract

Chronic excessive activation of glucocorticoid receptors induces obesity, insulin resistance, glucose
intolerance, dyslipidaemia and hypertension. Subtle abnormalities of the hypothalamic–pituitary–
adrenal axis and/or of tissue sensitivity to glucocorticoids are also associated with these cardiovascular
risk factors in patients with the metabolic syndrome. Furthermore, glucocorticoids have direct effects
on the heart and blood vessels, mediated by both glucocorticoid and mineralocorticoid receptors and
modified by local metabolism of glucocorticoids by the 11b-hydroxysteroid dehydrogenase enzymes.
These effects influence vascular function, atherogenesis and vascular remodelling following intra-
vascular injury or ischaemia. This article reviews the systemic and cardiovascular effects of
glucocorticoids, and the evidence that glucocorticoids not only promote the incidence and progression
of atherogenesis but also modify the recovery from occlusive vascular events and intravascular injury.
The conclusion is that manipulation of glucocorticoid action within metabolic and cardiovascular
tissues may provide novel therapeutic avenues to combat cardiovascular disease.
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Introduction

Atherosclerosis and its occlusive vascular consequences
remain the most common cause of death in many parts
of the world. Several risk factors for the development of
atheroma are amenable to treatment, including
hypercholesterolaemia, hypertension, hyperglycaemia
and cigarette smoking. Secular trends show that
cardiovascular disease is declining in prevalence in the
developed world, and that the outcome from events
such as myocardial infarction is improving, in part due
to modern cardiological interventions (1). However,
there is concern that the pandemic of obesity and
associated metabolic syndrome threatens to reverse
these secular trends. In order to make further
improvements in the prevalence and outcome of
occlusive vascular disease and avoid the threat posed
by obesity, we will need to understand more about the
complex mechanisms that promote atheromatous
plaque formation and instability and determine
recovery following occlusive vascular events. This
review is focused on the role of glucocorticoids in
atherogenesis, and highlights emerging data which
suggest that manipulation of glucocorticoid action has
important potential in improving the outcome of
occlusive vascular disease.
n Journal of Endocrinology
Glucocorticoid signalling and the
cardiometabolic responses to stress

Glucocorticoids such as cortisol play a key role in the
response to stress, including following sepsis, trauma,
starvation and tissue ischaemia (2). Psychological stress
can also activate the hypothalamic–pituitary–adrenal
(HPA) axis, although in humans only selected psycho-
logical stimuli produce a robust increase in cortisol release.
Cortisol induces a host of adaptive responses that may be
homeostatic (adjusting systems to function normally in
the face of a stressful environment) or allostatic (adjusting
systems to function in a manner more appropriate to the
stressful environment). Glucocorticoids provide a crucial
‘brake’ on innate inflammatory mechanisms, promoting
resolution of inflammation (2). Many of these effects of
glucocorticoids are relevant to cardiovascular and meta-
bolic regulation, for example to maintain blood pressure in
the face of septic shock or to promote efficient catabolism in
the face of starvation.

Cortisol mediates its effects via activation of intra-
cellular glucocorticoid receptors (GR: low affinity, type 2
corticosteroid receptors) and also mineralocorticoid
receptors (MR: high affinity, type 1 corticosteroid
receptors; Fig. 1A). GRs are ubiquitously expressed,
but MRs are expressed only in selected tissues and at
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Figure 1 A model for the influence of 11b-HSDs and GR mutants on receptor occupancy. (A) In the absence of 11b-HSDs, intracellular
cortisol and cortisone concentrations reflect free concentrations in plasma, which are substantially higher than those of aldosterone (Aldo).
Cortisol occupies both high-affinity low-capacity MR and low-affinity high-capacity GR. Examples include hippocampal neurones and
probably myocardium. (B) In the presence of 11b-HSD2, intracellular cortisol concentrations are reduced, excluding cortisol from both MR
and GR and allowing access of aldosterone to MR. Examples are in the distal nephron, colon and sweat glands and in vascular endothelial
cells. (C) In the presence of 11b-HSD1, intracellular cortisol concentrations are increased. Occupancy of MR by cortisol may not increase,
since capacity is limited, but occupancy of GR by cortisol is increased. Examples include vascular smooth muscle cells. 11b-HSD1 is also
commonly expressed in cells which express GR but not MR, including hepatocytes, adipocytes, some areas of CNS and macrophages.
(D) Tissue-specific differences in expression of 11b-HSDs may contribute to tissue-specific differences in glucocorticoid sensitivity in subjects
with subtle alterations in GR (Table 1). In cells expressing 11b-HSD1 (C) or 11b-HSD2 (B), actions of GR may not be affected by a subtle shift
in the dose–response curve because intracellular cortisol concentrations are at the extreme ends of the dose–response curve where
the response induced by mutant GR is not markedly different from wild type.
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lower levels. In some sites (such as distal nephron,
colon, salivary and sweat glands and vascular endo-
thelium), MRs bind aldosterone exclusively because
cortisol is excluded by local ‘pre-receptor’ inactivation
by 11b-hydroxysteroid dehydrogenase type 2 (11b-
HSD2, which converts cortisol to the inert 11-keto
metabolite cortisone; Fig. 1B) (3). In other sites
(classically in hippocampus and also probably in
myocardium, vascular smooth muscle and adipose
tissue), in the absence of 11b-HSD2, MRs are occupied
by cortisol in competition with much lower prevailing
concentrations of aldosterone (Fig. 1A and C). 11b-
HSD1 is expressed in tissues that are important for
metabolic (liver and adipose tissue), inflammatory
(macrophage) and cardiovascular (vascular smooth
muscle) function. 11b-HSD1 is predominantly a
reductase, regenerating active cortisol from inert
cortisone and thereby amplifying GR activation
(Fig. 1C) (4, 5).

These classical intracellular MRs and GRs act as
transcription factors on w30% of genes, with the
pattern of response in individual cell types dictated by
the enormous complexity of interactions with hetero-
dimers, co-activators and co-repressors, and epigenetic
factors including chromatin organisation. To add to this
complexity, there may be a role for non-genomic
www.eje-online.org
membrane receptor-mediated responses to glucocorti-
coids, but this remains of uncertain physiological
relevance (6). Note that synthetic steroids vary in
their susceptibility to metabolism by 11b-HSDs and in
their binding affinities for GR and MR (7): 9a-fluoro-
cortisol (‘fludrocortisone’) resists metabolism by 11b-
HSD2 but retains activity at both GR and MR,
prednisolone is susceptible to metabolism by 11b-
HSDs but is relatively selective for GR over MR, and
dexamethasone is relatively resistant to 11b-HSDs (8)
and a potent selective GR agonist.

The metabolic effects of glucocorticoids in the liver,
adipose tissue, pancreas and brain have been reviewed
elsewhere (9–11): broadly, glucocorticoids oppose the
effects of insulin and increase turnover between stored
energy (in glycogen, triglycerides and protein) and freely
available fuel for mitochondrial oxidation (glucose and
free fatty acids). Glucocorticoids also raise blood
pressure, only in part mediated by renal sodium
retention and plasma volume expansion (12, 13). In
addition, both GR and MR are expressed in cardiovas-
cular tissues including the heart and arterial walls,
where glucocorticoids act directly to maintain vascular
tone and modify vascular inflammatory, proliferative
and remodelling responses to injury (see below,
reviewed in (14–16)).
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Glucocorticoids and risk factors for
cardiovascular disease

During chronic activation of the HPA axis, the effects of
glucocorticoids may become maladaptive (17, 18). The
metabolic and cardiovascular consequences are apparent
in Cushing’s syndrome, which is characterised by
central obesity, insulin resistance, hyperglycaemia,
dyslipidaemia and hypertension. Given the similarities
between Cushing’s syndrome and the metabolic
syndrome, subtle abnormalities of cortisol secretion and
action have been sought in subjects with this constellation
of risk factors for cardiovascular disease (19).
The HPA axis

Activation of the HPA axis, with increased cortisol
secretion rate and elevated morning plasma cortisol
levels, has been associated with higher plasma glucose,
triglycerides and blood pressure in several population-
based cohort studies (20). Relationships of plasma
cortisol with obesity, however, are more complex,
since obesity is associated with increased metabolic
clearance rate of cortisol, which tends to lower plasma
cortisol levels despite enhanced cortisol production rate
(20). As a result, elevated plasma cortisol and obesity
have independent and additive effects in predicting
cardiovascular risk factors (21, 22).

Since it was popularised by Per Bjorntorp (23), the
concept has spread that central obesity and metabolic
syndrome are consequences of psychosocial stress,
mediated by neuroendocrine stress responses includ-
ing activation of the HPA axis. However, empirical
evidence is inconsistent concerning the role of
psychosocial stress – and, in particular, its role as
the basis for HPA axis activation – in metabolic
syndrome (24, 25). An alternative hypothesis is that
activation of the HPA axis is a phenomenon
‘programmed’ by adverse events during early life
which retard fetal growth. This is supported by
associations between low birth weight and elevated
plasma cortisol in adulthood, both in the basal state
(26–28) and in response to stress (29–31). The
molecular basis for this HPA axis activation remains
uncertain, although it may involve epigenetic modifi-
cation affecting transcription of GR (32, 33).
Tissue sensitivity to cortisol

In addition to control of cortisol action by the HPA axis,
tissue sensitivity to cortisol may vary both between
individuals and between tissues. Arguably, our under-
standing of the factors controlling tissue sensitivity to
glucocorticoids (see above and Fig. 1) is simplistic, but
we are at least beginning to understand the influence of
variation in corticosteroid receptors and in pre-receptor
steroid metabolism.

Simple bioassays, e.g. measuring the intensity of
dermal vasoconstriction after overnight steroid appli-
cation, suggest that tissue sensitivity to glucocorticoids is
increased amongst subjects with cardiovascular risk
factors (34–37). In part, this may be determined by
variations in GR function (36). In metabolic syndrome,
GR mRNA has been reported to be increased in skeletal
muscle (38, 39) but not in adipose tissue (40). As detailed
in Fig. 2 and Table 1, polymorphisms in the GR gene,
which influence in vitro receptor function, have been
associated with cardiovascular risk factors including -
obesity (41). One might imagine that changes in GR
function would not be cell-type specific, so that any
change in sensitivity to cortisol in peripheral tissues
would be compensated for by altered negative feedback
control of the HPA axis and hence adjustment of
circulating cortisol levels. Indeed, in very rare families
with mutations in the GR gene causing autosomal
dominant cortisol resistance, the resistance to cortisol
does appear to be sufficiently uniform that the phenotype
can be explained by increased ACTH secretion and hence
excessive adrenal production of mineralocorticoids (11-
deoxycorticosterone) and androgens (42, 43). However,
the GR polymorphisms shown in Fig. 2 and Table 1
probably influence interactions between GR and other
transcription factors, and may not induce uniform
changes in receptor signalling; indeed, the effects may
be not only tissue specific but potentially gene specific.
This is exemplified in the case of the Bcl1 polymorphism,
which increases sensitivity of cortisol suppression by
dexamethasone and of skin vasoconstriction by beclo-
methasone but paradoxically is associated with elevated
plasma cortisol concentration (Table 2). Moreover,
in vitro dose–response curves suggest that these poly-
morphisms are associated with subtle changes in
sensitivity but not in maximum response to GR
activation (44). The model in Fig. 1D illustrates that
Figure 2 Common polymorphisms in the
glucocorticoid receptor gene. Deleterious
mutations causing autosomal dominant
glucocorticoid resistance syndrome are
clustered between exons 4 and 9 (not
shown) and dramatically impact upon
receptor binding to ligand or DNA. More
common polymorphisms occur elsewhere
as shown. Associated phenotypes are
shown in Table 1.
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receptor occupancy and response depend upon intra-
cellular cortisol concentrations, which, in turn, are
influenced by intracellular glucocorticoid metabolism:
thus, subtle variations in the GR dose–response curve
may be more influential in some cells than in others,
according to local expression of 11b-HSDs and whether
the prevailing cortisol concentrations lie in a part of the
dose–response curve which is markedly different
between ‘wild type’ and ‘mutant’ GR. Since 11b-HSD1
is expressed in cells involved in negative feedback
regulation of the HPA axis (45), it is conceivable that
these are relatively unaffected by GR polymorphisms.

Variations in 11b-HSD activity have also been linked
with risk factors for cardiovascular disease. 11b-HSD2
activity is deficient in a substantial minority of patients
with essential hypertension (46, 47) and predicts salt
sensitivity of blood pressure (48). 11b-HSD1 activity is
increased in the adipose tissue of obese people (40, 49–
58) and predicts the severity of associated metabolic
complications of obesity (52, 59, 60). Inhibitors of 11b-
HSD1 are in development for the treatment of type 2
diabetes and other features of metabolic syndrome, and
have shown considerable promise in animal models
(61–65) (see below).

The role of the HPA axis and variations in tissue
sensitivity to cortisol in determining risk factors for
cardiovascular disease in metabolic syndrome has been
the subject of extensive research in the last decade and
has been reviewed elsewhere (19, 20, 41). Less
attention has been paid to the role of cortisol in
determining the incidence, progression and compli-
cations of atheromatous cardiovascular disease.
Although one might infer from the associations of
abnormalities of the HPA axis, GR and 11b-HSD activity
with cardiovascular risk factors that the same abnorm-
alities would promote atherogenesis, this cannot be
assumed since glucocorticoids also have effects within
the blood vessel wall, which may modify effects
mediated by systemic risk factors.
Glucocorticoid signalling in cardio-
vascular organs

Both GR and MR are expressed widely in the
cardiovascular system, including in the vessel wall
and myocardium (reviewed in (14–16)). GRs are also
present in inflammatory cells, which invade vascular
lesions, notably in macrophages (66). We have
described 11b-HSD1 in vascular smooth muscle and
11b-HSD2 in the endothelium (67, 68), although this
distribution may vary somewhat between species and
between vascular sites ((69, 70), reviewed in (16)). Low
levels of 11b-HSD1 and 11b-HSD2 have also been
reported in rat and human heart (67, 71–75) and 11b-
HSD1 is expressed in differentiated macrophages (76,
77). On the balance of the evidence, with reference to
the model in Fig. 1, myocardial cells may follow Fig. 1A,
Downloaded from Bioscientifica.com at 08/22/2022 07:05:29PM
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Table 2 Cardiovascular effects of glucocorticoids.

Site of action Via glucocorticoid receptors Via mineralocorticoid receptors

Vascular smooth muscle [contractility e.g. to noradrenaline (185) [perivascular inflammation (186)
Yproliferation (138–140) hvasoconstriction (153)
Ymigration (141)

Endothelial cell Yendothelium-dependent vasodilatation (160) hvasodilatation (153)
Yangiogenesis (86, 134)

Myocardium [fibrosis (133, 187)

Macrophage hcytokines (188)
[apoptosis (189)
Yphagocytosis of apoptotic neutrophils (66)

Non-cardiovascular organs Obesity Hypertension
Hypertension Prothrombotic
Dyslipidaemia
Insulin resistance
Glucose intolerance
Prothrombotic

Published data show effects of corticosteroids to: [, increase; Y, decrease; or h, either increase or decrease.
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vascular endothelial cells may follow Fig. 1B, vascular
smooth muscle cells may follow Fig. 1C, and macro-
phages may follow Fig. 1C (but with only GR and not
MR present). There have also been sporadic reports that
vascular tissue and myocardium express the enzymes
necessary for de novo steroidogenesis from cholesterol
(72, 78, 79), although the magnitude, if any, of this
contribution appears to be very small.

The effects of glucocorticoids on cardiovascular
tissues are summarised in Table 2, which shows diverse
effects on vascular development, remodelling, tone and
inflammation. There are substantial weaknesses in this
field, however, since very few experiments have
dissected systemic (e.g. actions in liver or kidney) from
local (intravascular) effects of either glucocorticoids or
mineralocorticoids, it has been difficult to recapitulate
in vivo findings in experiments in isolated vessels in vitro,
and the potential for occupancy of MR as well as GR by
cortisol has not always been taken into account in
interpretation of results.

The influence of 11b-HSDs on vascular function has
been addressed using non-selective enzyme inhibitors
(80–83), antisense knockdown (84) and in global
‘knockout’ mice (68, 85) but not yet by cell-specific
manipulations of 11b-HSDs. While loss of 11b-HSD2
dehydrogenase inactivation of glucocorticoid in the
endothelium was associated with enhanced vasocon-
strictor responses, loss of 11b-HSD1 reductase regen-
eration of glucocorticoid in vascular smooth muscle did
not influence vascular tone. More recent studies suggest
that 11b-HSD1 influences remodelling responses in the
vasculature (see below (63, 86)). In vascular cells and
macrophages in vitro, pro-inflammatory cytokines
up-regulate 11b-HSD1 expression (76, 77, 87), raising
the intriguing possibility that local amplification of
cortisol concentrations provides a counter-regulatory
response which modifies remodelling during vascular
injury or inflammation. However, in in vivo studies we
were unable to confirm this phenomenon (88).

Against this background, the responses to glucocorti-
coids within the blood vessel wall will reflect the balance
between access of ligands to MR and GR, between systemic
versus local effects, and between other complex
determinants of receptor interaction with gene transcrip-
tion and ‘non-genomic’ signalling alluded to above. The
role of glucocorticoids in the incidence and progression of
cardiovascular disease is therefore unpredictable.
Glucocorticoids and incidence of
occlusive vascular disease

Exogenous anti-inflammatory glucocorticoids

Despite their effects to induce cardiovascular risk factors,
studies in animals have suggested that medium-term
GR-agonist therapy is atheroprotective in mice (89) and
rabbits (90, 91), as judged by markers such as aortic
cholesterol content or cellular proliferation indices.
Conversely, aldosterone reportedly increases, and MR
antagonists decrease, atherogenesis in mice (92, 93).
Further, glucocorticoid excess may promote calcification
within arteriosclerotic lesions (94). In humans, a major
concern has been that anti-inflammatory glucocorticoid
therapy induces atherogenesis in patients with inflam-
matory diseases (95, 96). Indeed, there appears to be a
dose–response relationship between cumulative exposure
to glucocorticoids and the prevalence of carotid artery
atheroma visualised by ultrasound amongst patients with
rheumatoid arthritis (97). It has been difficult, however, to
confidently dissect effects of glucocorticoids from those of
the underlying inflammatory disease, which may itself be
pro-atherogenic.

Glucocorticoid therapy for inflammatory disease was
adopted before the era of randomised controlled trials
www.eje-online.org
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Figure 3 Cardiovascular disease risk in patients receiving anti-
inflammatory glucocorticoid therapy. In a population-based cohort
study, the incidence of cardiovascular events was recorded in
68 781 adults O40 years old receiving therapy with glucocorticoids
and 82 202 adults not receiving glucocorticoids during a 4-year
follow-up period. Daily glucocorticoid dose was quantified as low
(inhaled, nasal and topical steroid only), medium (oral, rectal or
parenteral doses !7.5 mg prednisolone equivalent per day) or high
(R7.5 mg prednisolone equivalent per day). The rate ratio is shown
after adjustment for age, sex, social deprivation, diabetes mellitus,
use of cardiovascular drugs, non-cardiovascular hospitalisation,
cancer, renal disease and use of anti-rheumatic and bronchodilator
therapy. Reproduced with permission from (100). TIA, transient
ischaemic attack.
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(RCTs). Although some short-term RCTs have been
conducted for example to assess efficacy of low-dose
glucocorticoids as disease modifiers in early rheumatoid
arthritis (98), it seems certain that RCTs will never be
conducted which have sufficient statistical power and
duration of exposure to detect effects of glucocorticoids on
cardiovascular events. It would be considered unethical to
withhold glucocorticoid therapy from patients with
inflammatory disease, and unethical to expose patients
who do not need anti-inflammatory therapy to the
known adverse effects of glucocorticoids (fractures,
hyperglycaemia, etc.) (98). In the absence of RCTs, the
next best approach is by pharmacoepidemiology. Since
glucocorticoids are one of the most commonly prescribed
classes of drugs, they lend themselves to this approach. We
have conducted two studies to examine the relationship
between glucocorticoid therapy and cardiovascular
events, making use of the data collected in the universal
National Health Service in the UK (99, 100).

The first study was conducted using a case–control
design comparing O50 000 patients with cardiovascular
disease and the same number of matched controls in the
General Practice Research Database in England (99). In
order for data to be collected, participants needed to be in
contact with their primary care physician (general
practitioner). For this reason, the study was conducted
amongst patients who were all receiving glucocorticoid
therapy of some kind, and the analysis compared doses of
glucocorticoids received in the two groups. The odds ratio
for use of oral glucocorticoid therapy (rather than topical
or inhaled glucocorticoid therapy) in the group with
cardiovascular disease was 1.31 (95% confidence
intervals 1.21–1.29).

The second study was conducted using a population-
based cohort design in O150 000 residents of the
Tayside region in Scotland (100) for whom data were
collected in the Medicines Monitoring Unit for all drugs
prescribed (which are identifiable because all pharmacy
dispensing is recorded) and for morbidity and mortality
from a variety of integrated databases. The rate of
incident cardiovascular disease was w17/1000 patient-
years in subjects not exposed to glucocorticoids but rose
to w24/1000 patient-years in subjects treated with
glucocorticoids by any route. Once adjusted for
confounders (Fig. 3), the excess cardiovascular risk
was entirely attributable to the relatively small group
(w2% of the population) exposed to supraphysiological
doses of glucocorticoids (O7.5 mg prednisolone or its
equivalent each day), in whom the adjusted relative risk
of cardiovascular events was 2.56 (2.18–2.99).

Although the primary end point of these studies was the
occurrence of any cardiovascular event, we also examined
rates of different events. Notably, glucocorticoids were
most strongly associated with occurrence of heart failure
and least strongly with cerebrovascular disease events
(99, 100). This finding is consistent with the suggestion
that glucocorticoids impair recovery from ischaemic
www.eje-online.org
events, for example by inhibiting collateral angiogenesis
and/or by increasing myocardial fibrosis (see below).

The greatest limitation of the pharmacoepidemiological
approach is ‘confounding by indication’, i.e. the possibility
that the risk is attributable to the underlying disease being
treated rather than to the use of glucocorticoids. In both of
our studies (99, 100), effects were consistent across
different disease indications. Adjustment for smoking did
not substantially attenuate the effect of glucocorticoids.
However, in other studies involving cohorts of patients
with rheumatoid arthritis, there is some evidence of
interactions between effects of glucocorticoids and the
underlying inflammatory disease on cardiovascular risk.
In a Canadian cohort of O40 000 subjects, no excess risk
of heart failure with glucocorticoid exposure was
identified (101). In a smaller US cohort, a dose-dependent
risk of cardiovascular disease with glucocorticoid
exposure was confirmed, but was only detectable amongst
rheumatoid factor-positive patients (102). Studies in other
disease groups have probably been too small to be
confident of their findings. For example, in one cohort
(nZ136) of polymyalgia/giant cell arteritis patients,
glucocorticoid therapy predicted increased cardiovascular
risk (103), but in another cohort (nZ364) this effect was
not seen (104).

Intriguingly, adjustment for the presence of com-
ponents of the metabolic syndrome (hypertension,
diabetes mellitus and dyslipidaemia) did not eliminate
Downloaded from Bioscientifica.com at 08/22/2022 07:05:29PM
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the effect of glucocorticoids (99, 100, 103), raising the
possibility that the influence of glucocorticoids on
cardiovascular outcome is not mediated exclusively by
known cardiovascular risk factors and might be
aggravated by actions in the blood vessel wall.
Exogenous glucocorticoid replacement therapy

Although representing a small minority of patients being
treated with glucocorticoids, in endocrinology practice
we are concerned with patients with hypopituitarism or
adrenocortical failure receiving replacement doses of
glucocorticoids. The most commonly used steroids for
replacement therapy are cortisol (hydrocortisone) or the
pre-hormone cortisone (which is ‘activated’ to cortisol by
11b-HSD1 on first pass through the liver). Notably,
replacement therapy usually involves non-selective
GR/MR agonists (cortisol), by contrast with anti-
inflammatory therapy, which usually involves selective
GR agonists (prednisolone, etc). The pharmacokinetics of
cortisol, which has high bioavailability and a short half-
life (w90 min), makes it impossible to replicate physio-
logical circulating cortisol levels (105), especially since
the normal peak of circulating cortisol occurs in advance
of waking each morning. In order to achieve sufficiently
prolonged effects after each dose, without excessively
frequent daily dosing, most patients take doses that
induce a supraphysiological level for the first hour or two
after dosing. There is evidence from measurement of total
cortisol metabolite excretion in urine that these
‘standard’ daily doses are supraphysiological (106),
and indeed there is a dose-dependent risk of associated
cardiovascular risk factors including obesity and dysli-
pidaemia (107). By comparison with ‘reference’ values
in the population, cardiovascular event rates are
reported to be higher in patients with hypopituitarism
(108–111) and adrenocortical insufficiency (112).
Although there may be several endocrine factors at play,
it is plausible to attribute this excess to supraphysio-
logical glucocorticoid therapy.
Endogenous glucocorticoids

As described previously, many studies have reported
associations between dysfunction of the HPA axis and
risk factors for cardiovascular disease in the population.
However, data are only now emerging concerning
associations between the HPA axis and the occurrence
of atheromatous disease. These studies are hampered by
the lack of simple measures of HPA axis function which
can be applied in large epidemiological studies. Most
investigators have relied on fasting plasma cortisol
levels, a crude index of HPA axis function. In the
Caerphilly Heart Study, Davey-Smith et al. (113)
reported a positive association between the plasma
cortisol/testosterone ratio and incident vascular
disease; cortisol alone was not an independent predictor.
In smaller studies, higher plasma cortisol has also been
associated with the extent of atheromatous disease
quantified by coronary angiography (114), and pre-
dicted mortality in patients with heart failure (115).
Polymorphisms in the GR gene have recently been
associated with cardiovascular event rate in population-
based studies in Rotterdam (SWJ Lamberts, personal
communication) and Sydney (116) (Table 1).

In spontaneous Cushing’s syndrome, few investi-
gators have accumulated sufficient numbers of patients
to generate meaningful data on cardiovascular events.
However, intermediate markers, such as carotid intima–
media thickness, are abnormal in these patients (117)
even after the removal of the tumour responsible for
glucocorticoid excess (118).
Reducing glucocorticoid action and
atheroprotection

Given the association of elevated glucocorticoid action
with obesity, cardiovascular risk factors and occlusive
vascular disease events, it seems attractive to seek to
reduce glucocorticoid action in order to prevent
cardiovascular disease. It appears that simultaneous
reduction of both GR and MR activation by glucocorti-
coids has most to offer (Table 2). With respect to
reducing GR-dependent signalling, the challenge has
been to reduce glucocorticoid action selectively in the
blood vessel wall and/or in metabolically important
tissues such as liver and adipose tissue, without: i)
impairing negative feedback control of the HPA axis,
producing compensatory hypercortisolaemia; ii)
reducing glucocorticoid action in immune cells, produ-
cing a pro-inflammatory state; or iii) preventing an
effective cortisol response during stress. Agents that
inhibit cortisol biosynthesis or antagonise ligand
binding to GR (119, 120) are likely to fall at one of
these hurdles. However, inhibition of the cortisol-
generating enzyme 11b-HSD1 may be safe and success-
ful (4, 61). Since the enzyme is predominantly expressed
in liver and adipose tissue and is also present in vascular
smooth muscle, inhibitors may have disproportionately
greater effects on metabolism and cardiovascular disease
progression than on the HPA axis and the immune
system. Moreover, during stress, although 11b-HSD1
inhibitors will reduce the component of intracellular
cortisol derived from local regeneration, they should not
prevent ‘flooding’ of the cell by cortisol from the
circulation during significant hypercortisolaemia.

Selective 11b-HSD1 inhibitors have recently been
developed and tested in rodents (62–65). In models of
obesity and type 2 diabetes, they improve blood glucose,
dyslipidaemia, hepatic steatosis, central obesity and
insulin sensitivity. Most importantly, in ApoE-deficient
mice 11b-HSD1 inhibition produces very striking
protection from aortic cholesterol accumulation on
Western high-fat diet, which was disproportionate to
the improvement in serum lipid profile, suggesting a
potent atheroprotective effect potentially mediated in the
www.eje-online.org
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blood vessel wall (63). 11b-HSD inhibitors are now being
evaluated in early clinical trials.
Figure 4 Amplification of myocardial angiogenesis and protection
from left ventricular dysfunction in 11b-HSD1K/K null mice. Mice
were studied 7 days after coronary artery ligation to induce a
myocardial infarction (MI, shaded bars) or sham surgery (open bars).
(A) Myocardial vessels were identified at light microscopy in vitro by
von Willebrand factor immunohistochemistry. (B) Left ventricular
ejection fraction was quantified by transthoracic echocardiography
in vivo. 11b-HSD1K/K null mice had increased angiogenesis and
were protected from left ventricular dysfunction induced by coronary
artery ligation. **P!0.01 versus wild type. Adapted from (86).
Glucocorticoids and outcomes from
occlusive vascular disease

The role of glucocorticoids in occlusive cardiovascular
disease may not be limited to promoting the develop-
ment and progression of atheroma. Glucocorticoids may
also influence the outcomes after plaque rupture,
thrombotic occlusion and other vascular injury.

Recovery from myocardial infarction

Given their anti-inflammatory effects, glucocorticoids
have been proposed to be useful in reducing tissue
damage after myocardial infarction (122). However, as
noted above, the mechanisms of glucocorticoid action
are complex. On one hand, acute induction of
endothelial nitric oxide synthase, putatively through
‘non-genomic’ effects of GR, may be protective after both
myocardial infarction (123) and cerebral ischaemia
(124) in mice. Similarly, glucocorticoids may reduce
tissue damage during cardiopulmonary bypass (125),
coronary ischaemia (126) and renal ischaemia (127).
On the other hand, glucocorticoids may limit tetra-
hydrobiopterin availability as cofactor for nitric oxide
synthesis (128), potentially promoting synthesis of
damaging reactive oxygen species rather than protec-
tive nitric oxide (129, 130). Glucocorticoids may also
adversely influence longer term remodelling of the
myocardium following infarction. MR-mediated fibrosis
in the myocardium has received a great deal of attention
since the randomised Aldactone evaluation study
(RALES) and Eplerenone post acute myocardial infarc-
tion heart failure efficacy and survival study (EPHESUS)
studies demonstrated the benefits of MR antagonists in
patients with heart failure (131, 132). Although 11b-
HSD2 has been described in human heart (72–75), its
cellular distribution and magnitude of activity remain
uncertain: it is likely to be insufficient to exclude cortisol
from access to MR. Therefore, it may be cortisol rather
than aldosterone which occupies MR in the myo-
cardium (Fig. 1A) and influences fibrotic responses
(133). In addition, GR activation prevents angiogenesis
(86, 134, 135), a key process in the recovery from
infarction which ensures collateral circulation and
reperfusion. Administration of glucocorticoids beyond
the first few days after infarction might be predicted to
impair reperfusion.

A number of clinical trials have been undertaken to
test the effects of glucocorticoids administered in the
first few days after myocardial infarction. Most of these
were conducted in the 1970s with suboptimal method-
ology, but a recent meta-analysis suggests a small
beneficial effect on mortality (136). The increased
incidence of heart failure amongst glucocorticoid
users in the pharmacoepidemiology studies described
www.eje-online.org
above (99, 100, 137), however, raises the possibility
that longer term glucocorticoid therapy has an adverse
effect on vascular remodelling.

While anti-angiogenic therapy may have a role in
oncology and in treating ischaemic retinopathies, pro-
angiogenic therapy has been sought to improve
collateral revascularisation following ischaemia and
infarction. Since glucocorticoids inhibit angiogenesis
and 11b-HSD1 regenerates glucocorticoids within
blood vessels, we recently tested the hypothesis that
loss of 11b-HSD1 would enhance angiogenesis (86). We
found that 11b-HSD1 null mice exhibit enhanced
angiogenesis in isolated aortic rings, in sponges inserted
subcutaneously, in surgical wounds, and in the
myocardium following coronary artery ligation and
myocardial infarction. This was associated with
improved recovery from infarction as judged by left
ventricular ejection fraction (Fig. 4).

Recovery from intravascular injury

One of the reasons for improved survival from
cardiovascular disease is the advent of intravascular
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interventions, including balloon angioplasty (1). A
major limiting factor following such procedures,
however, is the occurrence of early restenosis in which
vascular smooth muscle neo-intimal proliferation is
prominent. Similar pathological processes may also be
relevant in the spontaneous formation of occlusive
plaques. On the basis that glucocorticoids are anti-
inflammatory and have anti-proliferative (138–140)
and anti-migratory (141) effects on smooth muscle
cells, they have been employed to prevent restenosis
(16, 142). Systemic administration was effective in
many animal models (reviewed in (16)). However,
in clinical trials, glucocorticoids have been successful
in some (143–146) but not all (147–151) studies. A
likely explanation for discrepant results is that the
benefits of local anti-inflammatory effects in the injured
blood vessel are offset by adverse systemic effects.
Alternatively, the observation that MR antagonists
also reduce neo-intimal lesion formation (152) suggests
that the anti-inflammatory effects of GR activation may
be offset by pro-inflammatory MR activation (153). To
overcome these limitations, glucocorticoid-eluting
stents have been proposed to deliver local anti-
inflammatory therapy (154–156) using glucocorticoids
devoid of affinity for MR, such as dexamethasone and
prednisolone (7). However, there remains the risk that
GR may induce changes within the vessel which offset
any benefit of conventional anti-inflammatory effects,
for example by increasing local angiotensin II (157,
158) or endothelin-1 (159) generation or by decreasing
endothelial nitric oxide generation (160).
Conclusions

The evidence reviewed above suggests that glucocorti-
coid excess not only induces cardiovascular risk factors,
but also hastens the incidence and progression of
atheromatous vascular disease. This probably reflects
the combined effects of systemic and local vascular
actions of glucocorticoids. Systemic effects are mediated
through GR activation in liver, adipose tissue, pancreas
and muscle; MR activation in kidney may also be
involved in people with impaired 11b-HSD2 activity.
Local effects in the blood vessel wall and myocardium
are mediated by both GR and MR and modified in a cell-
specific pattern by 11b-HSD1 and 11b-HSD2. These
local effects may influence not only atherogenesis but
also the outcomes of vascular occlusion and injury.
They may be both protective (preventing neointimal
proliferation via GR) and adverse (preventing angiogenesis
via GR and promoting perivascular inflammation and
myocardial fibrosis via MR). It is probable that cortisol is the
principal ligand occupying MR in cardiovascular tissues, so
that the focus on the renin–angiotensin–aldosterone axis
in interpreting the clinical benefits of MR antagonists is
arguably misplaced. In addition to MR antagonism,
inhibition of 11b-HSD1 provides a route to prevent both
MR and GR activation in many tissues including liver,
adipose tissue and vascular smooth muscle. The net effect of
11b-HSD1 inhibition appears to be atheroprotective and
beneficial after myocardial infarction in mice. These
findings offer the promise of therapeutic potential for
tissue-specific manipulation of glucocorticoid action in the
prevention and treatment of cardiovascular disease in
humans.
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