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Abstract

Glucocorticoids are steroid hormones that once bound to their receptor interact with the DNA binding

domain. Almost 1000�2000 genes are sensitive to their effects, including immune/inflammatory response

genes. However, their role in pathophysiology and therapy is still debated. We performed a literature

survey using the key words glucocorticoids, inflammation, autoimmune disease, rheumatology and adrenal

glands in order to define important targets for this review on glucocorticoids. Considering endogenous/

exogenous glucocorticoids in chronic inflammatory diseases brought up five major points for discussion:

inadequately low production of endogenous cortisol relative to systemic inflammation (the disproportion

principle); changes of the systemic and local cortisol-to-cortisone shuttle (reactivation and degradation of

cortisol); inflammation-induced glucocorticoid resistance; highlights of present glucocorticoid therapy; and

the role of circadian rhythms in action of cortisol. Much of this information becomes understandable in the

context of neurohormonal energy regulation as recently summarized. The optimization of long-term low-

dose glucocorticoid therapy in chronic inflammatory diseases arises from the understanding of the above

mentioned aspects. Since glucocorticoid resistance is a consequence of inflammation, adequate anti-

inflammatory therapy is mandatory.

Key words: glucocorticoids, relative adrenal insufficiency, substitution of the adrenal gland, cortisol-to-
cortisone shuttle, glucocorticoid resistance, role of circadian rhythm

Rheumatology key messages

. Adrenal cortisol secretion is inadequate relative to inflammation and low-dose exogenous glucocorticoids are a
substitution therapy.

. Changes in hepatic and local cortisol-to-cortisone shuttle lead to cortisol regulation independent of the brain.

. Glucocorticoid resistance is a question of balance between inflammatory load and anti-inflammatory glucocortic-
oid action.

Inadequate production of endogenous
cortisol relative to systemic inflammation

When we look on homeostasis, energy storage in speciali-

zed organs on one side and energy provision to con-

sumers on the other are at the top of the hierarchy of

homeostatic regulation. In the context of acute inflamma-

tion, the hypothalamic�pituitary�adrenal (HPA) axis and

the sympathetic nervous system are instrumental in

releasing from stores energy-rich fuels, such as glucose,

amino acids and free fatty acids, to nourish the activated

immune system [1�4]. They get essential help from growth

hormone, thyroid hormones and the renin�angiotensin�al-

dosterone system [5]. While it is easily recognizable that

the two stress axes are important in acute inflammatory

diseases or acute psychological/somatic stress, one ex-

pects a very similar behaviour of stress axes in chronic

inflammatory diseases.

In the late 1970s and early 1980s, it was recognized that

the two stress axes are activated by circulating cytokines

[6, 7], and IL-1b, IL-6, IFN-g, IFN-a and TNF are the most

important triggers. In the context of energy regulation, an

inflammation-induced increase of these cytokines must

be viewed as an energy appeal reaction [3]; it has also

been called an energy demand reaction. While an acute

energy appeal reaction in the context of cytokine injection

into humans depends on the degree of cytokine serum

concentrations [8], a similar energy appeal reaction is ex-

pected in chronic inflammatory diseases, in which the
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same cytokines circulate in the blood at similar serum

levels.

In the context of acute injection of cytokines into the

human body, a huge rise in serum levels of adrenocorti-

cotropic hormone (ACTH) and cortisol was observed

[9�11]. This is the energy appeal reaction that works per-

fectly after a first shot of a cytokine. However, repeated

injections of the same cytokines desensitize the system so

that nearly no reactions of the HPA axis are observed over

a longer time [9�11]. It should be mentioned that desen-

sitization is stimulus-specific because RA patients seem

to be desensitized towards high IL-6 serum levels, but

respond to hypoglycaemia stress [12�14], which switches

on a brain-dependent energy appeal reaction.

While an acute increase of ACTH and cortisol is import-

ant at the beginning of acute inflammation (for release of

energy-rich fuels and stimulation of leucocyte redistribu-

tion), chronic elevation of ACTH/cortisol is not permitted

by the body due to the danger of sepsis and inappropri-

ately low immune responses towards infectious agents.

We hypothesized that this short-lived up and down of

HPA axis hormones has been evolutionarily positively

selected in the context of acute stress reactions and

acute infection [15]. In chronic inflammatory diseases,

this short-lived up and down of HPA axis hormones

leads to inadequate glucocorticoid production in relation

to inflammation. Why can it be called inadequate?

In an acute flare of a chronic inflammatory disease or at

the very beginning of an inflammatory disease that

becomes chronic, we can easily give prednisolone at

doses of 60�250 mg/day over a short period of time

(equivalent to 240�1000 mg endogenous cortisol per

day). These doses do not kill the patient; on the contrary,

they save lives. The rheumatologist tries to taper exogen-

ous glucocorticoids within an appropriate interval in order

to minimize side effects; however, therapeutically applied

glucocorticoids are typically much higher during tapering

than endogenous glucocorticoids would ever be (Fig. 1).

Considering the difference between daily endogenous

production of cortisol and daily amounts of exogenous

glucocorticoids given, one best recognizes inadequate

production of endogenous cortisol in relation to inflamma-

tion and in relation to acceptable and helpful glucocortic-

oid doses.

In addition, we know well that patients after glucocortic-

oid therapy can develop adrenal insufficiency in 13�63%

of cases [18]. In a recent meta-analysis, adrenal insuffi-

ciency persisted in 15% of patients retested 3 years after

glucocorticoid withdrawal. The authors concluded that

there is evidence of adrenal insufficiency following low

FIG. 1 Inadequate amounts of endogenous cortisol in relation to inflammation and therapeutically accepted and ad-

ministered doses

(1) Very early after the initial pro-inflammatory stimulus that increases endogenous cortisol to levels up to 240 mg/day,

endogenous production of this hormone is downregulated (e.g. [9]). (2) Downregulation starts early and can be marked

after 3 weeks so that the daily production rate of cortisol of 10 mg/day is not reached [16]. Over time, the low production

rate can normalize but often one observes a continuous downregulation, which has been termed relative adrenal in-

sufficiency [17]. (3) At the beginning of a disease flare, the physician can administer up to 60 mg prednisolone, which is

�240 mg of endogenous cortisol per day. There is a big difference between the two curves, and we realize that high

amounts of prednisolone are needed and wanted. (4) At later time points, the adrenal production of glucocorticoids can

be below the daily need of 10 mg/day. This can result in relative adrenal insufficiency. Long-term substitution can be the

consequence.
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doses and short durations of glucocorticoids [18]. Thus,

high dose and long duration do not seem to play a major

role as stated in earlier times. Unfortunately, the authors

did not discuss the relevance of inflammation, which per

se can induce a state of relative deficiency. In recent

animal experiments, inadequate glucocorticoid secretion

in relation to arthritic inflammation was linked to malfunc-

tioning of adrenocortical mitochondria [19]. This has not

been realized for RA or other chronic inflammatory dis-

eases as similar studies have been prevented for ethical

reasons relating to the inaccessibility of adrenal glands.

When we discuss RA as the prototypical disease, we do

not exclude other chronic inflammatory diseases such as

polymyalgia rheumatica. RA is often used as an example

because most data are available for this particular

disease.

Changes of the systemic and local
cortisol-to-cortisone shuttle

In a recent presentation of the systemic cortisol-to-corti-

sone shuttle, C. Edwards conceptualized the idea of a

hepato�HPA axis, in which the systemic role of the liver

for cortisone reactivation (cortisone to cortisol) and the

role of the kidney for cortisol degradation (cortisol to cor-

tisone) were highlighted [20]. The subject is summarized

for healthy people in Fig. 2A and for patients under inflam-

matory stress in Fig. 2B. Under inflammatory conditions,

hepatic production of cortisol can exceed adrenal produc-

tion due to cytokine-driven activation of 11b-hydroxyster-

oid dehydrogenase (11b-HSD) type 1 in the liver and

subsequent downregulation of ACTH by high cortisol

serum levels. This theory explains in part why loss of an-

drogens and low levels of ACTH relative to cortisol are a

consequence of inflammation-induced activation of sys-

temic cortisone reactivation. It would also explain—on the

basis of simple regulatory mechanisms—that cortisol pro-

duction becomes more independent of central brain-

derived hormonal regulation. All these phenomena are

typical for chronic inflammatory diseases [21, 22].

Although the hypothesis is very attractive, some other

cytokine-driven mechanisms can interfere more directly

with HPA axis activity on the hypothalamic, pituitary and

adrenal level [22, 23]. The systemic changes within the

hepato�HPA axis and the direct cytokine-induced inhib-

ition of the HPA axis after prolonged inflammation most

probably happen in parallel.

On the local level of inflamed tissue, we also recognize

a local cortisone-to-cortisol shuttle that depends on dif-

ferent cell types. Using synovial fibroblasts, Hardy,

Cooper and colleagues demonstrated upregulation of

11b-HSD1 and increased cortisone reactivation [24, 25].

They demonstrated that the increase in 11b-HSD1 ex-

pression with TNF/IL-1b occurred via the proximal

HSD11B1 gene promoter and depended on nuclear

factor-kB (NF-kB) signalling [25]. Similarly, in skin fibro-

blasts, 11b-HSD1 is also more active [26].

In contrast to data on fibroblasts, the situation might be

quite different in other cell types such as peripheral blood

mononuclear cells. These cells were studied in patients

with RA, and here 11b-HSD2, responsible for cortisol deg-

radation, was the most up-regulated of more than 4300

genes tested [27]. The 11b-HSD2 gene was one of three

genes (of 20 000) up-regulated in lymphoblastoid B cell

lines derived from identical twins discordant for RA [28]. In

both studies, fibroblasts were not the target of

investigation.

In our own studies on mixed synovial cells in RA pa-

tients, we demonstrated increased activity of 11b-HSD2 in

relation to 11b-HSD1, and density of 11b-HSD2-positive

cells was higher in RA compared with OA [29]. Since in

mixed synovial cells >30% of cells are macrophages,

FIG. 2 The hepato�hypothalamic�pituitary�adrenal axis in

health and disease

Generated on the basis of information from C. Edwards

[18]. (A) The situation in healthy subjects. Since the

enzyme 11b-hydroxysteroid dehydrogenase (11b-HSD)

type 1 functions in the healthy liver, cortisone provided

from the kidneys can be reactivated. Kidneys degrade

cortisol to cortisone so that cortisol is unable to act on the

mineralocorticoid receptor, for which it has perfect affinity.

Loss of 11b-HSD1 activity in certain diseases leads to

increased adrenocorticotropic hormone-dependent acti-

vation of adrenal glands with increased adrenal andro-

gens. (B) Under conditions with systemic inflammation,

11b-HSD1 is markedly activated in the liver by cytokines.

Under these conditions, hepatic production of cortisol can

be higher than adrenal production, adrenocorticotropic

hormone (ACTH) is inhibited and a loss of adrenal andro-

gen secretion is a consequence.
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>15% are lymphocytes and 30% are fibroblasts, the spe-

cific influence of these cells might have increased the 11b-

HSD2 activity over fibroblast-related 11b-HSD1 action.

Others demonstrated increased activity of 11b-HSD1 in

murine T lymphocytes and T cell lines but not in a B

lymphocyte cell line [30]. Activated murine peritoneal

cavity macrophages also increase 11b-HSD1 expression

[31]. However, due to the nature of cells from mice and

quite different inflammatory stimuli, these results might

not be comparable to synovial cells of patients with RA.

Peroxisome proliferator-activated receptor-g seems to

be an important stimulus for 11b-HSD1 activity in human

macrophages, which indicates that co-factors are import-

ant determinants whether 11b-HSD1 or 11b-HSD2 is acti-

vated [32]. Similarly the two co-factors NADPH and NADP

and the respective enzyme reactions that provide them

are important for the activity of 11b-HSD1 and 11b-

HSD2, respectively [33]. In addition, localization of cells

in the context of inflammation seems to be another deter-

minant of 11b-HSD expression [29, 34].

In conclusion, while many mechanisms have not been

studied in detail in synovial compartments and synovial

cells of patients with RA, we can at present summarize

that there seems to be a dichotomy between synovial

fibroblasts (higher 11b-HSD1 activity, activation of corti-

sone) and mononuclear cells such as macrophages and

lymphocytes (higher 11b-HSD2 activity, degradation of

cortisol) as summarized in Fig. 3. Whether an adequate

therapy can interfere with 11b-HSD1/2 activity in RA is the

subject of ongoing discussions.

Inflammation-induced
glucocorticoid resistance

Glucocorticoids are very active anti-inflammatory agents

but some patients demonstrate a poor or even absent

response to these compounds, which has been a subject

in asthma research and elsewhere [35]. This phenomenon

was called glucocorticoid resistance, and was described

already in the 1970s using in vitro cell assays (e.g. [36]).

Resistance under inflammatory conditions is a well-studied

subject for many distinct pathophysiologically relevant rea-

sons (Table 1), but many of them have not been related to

the inflammatory process in RA. Due to space constraints,

this article only reports aspects in the context of RA.

Using in vitro cell assays, the phenomenon of gluco-

corticoid resistance might exist in a proportion of patients

with RA, because concanavalin A-stimulated proliferation

of peripheral blood mononuclear cells was not sup-

pressed in all RA patients to the same extent [51]. These

in vitro results were not confirmed by others [52].

Despite early reports on low levels of intracellular gluco-

corticoid receptors (GRs) in RA [53], several studies

demonstrated that GR levels are not different as com-

pared with control (discussed in [54]). However, it is

clear that GR levels are mainly dependent on prior gluco-

corticoid therapy that decreases GR expression [54].

Another study reported higher GRb in patients with RA,

which is an inhibitor of the biologically active GRa, and

subsequent glucocorticoid resistance was observed [38].

However, although attractive in nature, this has not been

confirmed by others.

Recently, polymorphisms in the GR gene associated

with differences in glucocorticoid sensitivity have been

described in RA [55]. For the first time, it was demon-

strated that carriers of the N363S and BclI minor alleles

(responsible for relative hypersensitivity to glucocortic-

oids) had a lower risk of developing RA, while carriers of

the 9b minor allele (responsible for glucocorticoid resist-

ance) had a higher risk of developing RA [55]. This dem-

onstrates an important genetic impact on function of the

endocrine system.

FIG. 3 Hypothetical model of cortisol-to-cortisone shuttle in local cells of the synovial membrane of RA patients

Synovial fibroblasts seem to activate cortisone, which is supported by IL-1b and TNF [24, 25]. In mixed synovial cells with

a higher proportion of macrophages and lymphocytes vs fibroblasts, it seems that degradation of cortisol to cortisone is

more active in RA vs OA [29]. 11b-HSD: 11b-hydroxysteroid dehydrogenase.
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As macrophage inhibitory factor (MIF) is a functional

inhibitor of glucocorticoid actions, it was studied in pa-

tients with arthritis. In RA and JIA, synovial tissue levels

and serum levels of MIF are elevated [39�42]. Local cells

in inflamed synovial tissue express MIF [40], so that func-

tional glucocorticoid inhibition might exist on a systemic

and local level. A new study of Morand’s group demon-

strated that MIF inhibits the anti-inflammatory effects of

glucocorticoids by inducing the glucocorticoid-induced

leucine zipper [56]. In an experimental model of arthritis,

MIF plays an important pro-inflammatory role through its

receptor CD74 [57].

P-glycoprotein 170, a member of the ATP-binding cas-

sette transporter family, causes drug resistance by exclu-

sion of intracellular drugs [49]. P-glycoprotein 170 was

overexpressed in RA lymphocytes compared with

normal lymphocytes, and this was related to disease ac-

tivity and intracellular glucocorticoid exclusion [49].

P-glycoprotein 170 overexpression was suppressed by

methotrexate but enhanced by corticosteroids [49].

In conclusion, although several aspects of the work

described in Table 1 might also apply to patients with

RA, much more specific work needs to be carried out

on this. Since there are several therapeutic options to

overcome glucocorticoid resistance [35], this is an attract-

ive line of research.

Highlights of present glucocorticoid
therapy and the role of circadian rhythms
in glucocorticoids

This subject is only briefly summarized because extensive

reviews and recommendations have been given else-

where [58�64]. The main highlights of glucocorticoid ther-

apy are given in Table 2.

Two recent important findings changed the classical

view on glucocorticoid therapy. One is the fact that so-

called selective GR agonists are questionable because

new findings demonstrated that there is no strict separ-

ation of beneficial anti-inflammatory transrepression and

opposite transactivation effects of glucocorticoids [68].

For decades, it has generally been believed that the un-

desirable side effects of glucocorticoids are induced by

dimer-mediated transactivation, whereas their beneficial

anti-inflammatory effects are mainly due to the mono-

mer-mediated transrepressive actions of GR. This

dogma has been challenged in recent years [68]. Thus,

development of selective GR agonists is questionable.

The second new finding is the positive role of delayed or

modified release glucocorticoids that exert their anti-

inflammatory effects from 2.00 a.m. onwards when given

at 10.00 p.m. The therapeutic effects have been docu-

mented in important studies in RA [69�73]. The question

arises as to why night-time glucocorticoids can be more

beneficial than morning glucocorticoids.

In order to understand this phenomenon, one has to

realize that activation of the immune system and related

inflammatory reaction undergoes a circadian rhythm [74,

75]. Melatonin, can enhance the immune/inflammatory

reaction at the beginning of the night [76]. This is very

similar for growth hormone and prolactin summarized

elsewhere [77]. Immune activation peaks in the early

morning, which is best demonstrated by the rhythm of

IL-6 serum levels [78]. This rhythm is usually maintained

in RA patients but with much higher levels in the morning.

This is tightly coupled to morning symptoms because pro-

inflammatory factors stimulate plasma extravasation

(oedema formation and stiffness) and pain-related phe-

nomena directly at the nociceptive nerve ending and on

central levels [79]. Therefore, in the early morning endo-

genous glucocorticoids (when in sufficient endogenous

concentrations) should downregulate the immune inflam-

matory response [76]. The enhanced nightly inflammatory

reactivity characterizes several inflammatory diseases

such as RA, gout, allergic asthma and PMR.

We recently hypothesized that nightly immune activa-

tion is due to daytime-dependent allocation of energy-rich

fuels to (i) daytime consumers such as the brain and mus-

cles vs (ii) night-time consumers such as growth-related

processes and adaptive immune activation [3]. Here we

can close the circle in this review: provision of energy-rich

fuels to consumers depends on the circadian rhythm.

It was recognized that immune activation starts at

around 1.00�2.00 a.m. (summarized in [74]). Several fac-

tors play an important role for night-time immune activa-

tion at around midnight: (i) low levels of endogenous

TABLE 1 Reasons for glucocorticoid resistance

Reason for glucocorticoid resistance Reference

GR polymorphisms lead to GC resistance, familial glucocorticoid resistance [37]

GRb and other GR variants (biologically inactive) much higher than GRa [38]

More macrophage inhibitory factor in systemic inflammation [39�42]

Loss of annexin A1 leads to loss of anti-inflammatory GC effects [35]
Increased GR modification by phosphorylation, nitrosylation and ubiquitination [43�45]

Increased transcription factors block GR: NF-kB, AP-1, c-Jun/C-Fos, p38, STAT5 (IFN-a) [46, 47]

Defective histone acetylation (needed for anti-inflammatory effects) [35, 48]

Increased P-glycoprotein 170 leads to increased steroid efflux [49]

The information was taken from two recent reviews [35, 50]. AP-1: activator protein 1; GC: glucocorticoid; GR: glucocorticoid

receptor; NF-kB: nuclear factor-kB; STAT5: signal transducer and activator of transcription 5.
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cortisol; (ii) low sympathetic nervous system activity; (iii)

elevated melatonin serum levels; (iv) elevated prolactin

serum levels; and (v) elevated growth hormone serum

levels. All these factors would support an activation of

the immune system [75, 76]. Although in intact human

subjects, the interrelation between hormone levels and

immune system function was demonstrated in a correla-

tive way, hundreds of experimental studies of cells in vitro

demonstrated the respective hormone effects that are ne-

cessary to achieve the described function in vivo (e.g.

[80]).

Since glucocorticoid effects are rapid in nature, for ex-

ample, immediate inhibition of the NF-kB pathway within

minutes, glucocorticoids should be given early during the

rise of a cascading inflammatory response that might start

with NF-kB activation. Such a cascading inflammatory ac-

tivation starts at around 2.00 a.m. Thus, it is only logical

to start the exogenous glucocorticoid treatment at this

early time point, in order to support reduced endogenous

glucocorticoid production, and indeed extensive therapy

studies favour this notion [69�72] (Fig. 4). In one study,

modified release glucocorticoids increased endogenous

production of cortisol, which can be an important sign of

normalization of the HPA axis [71].

Conclusions

Glucocorticoids are a mainstay of anti-rheumatic treat-

ment, especially for diseases characterized by chronic

immune/inflammatory reaction. We should call gluco-

corticoids also disease-modifying anti-rheumatic drugs

[81]. Low-dose glucocorticoids must be seen as a substi-

tution therapy for adrenal glands when due to the inflam-

matory process adrenal production of cortisol is

TABLE 2 Highlights of glucocorticoid therapy

Highlight Reference

High dose glucocorticoids are anti-inflammatory [65]

Genomic and non-genomic actions of glucocorticoids exist but are not differentially
used in therapy

[66]

Glucocorticoids in addition to standard therapy can substantially reduce erosions because
they are DMARDs

[67]

New expectantly favourable glucocorticoids like lazaroids, nitrosteroids and liposomal forms did
not enter the hospital

—

Dogma strongly challenged: GR-induced transrepression (beneficial anti-inflammatory) vs transactivation
(adverse events) but selective GR agonists are questionable

[68]

GR, glucocorticoid receptor.

FIG. 4 Cascade of immune system activation during the night (model)

High levels of growth hormone (GH), prolactin and melatonin as well as low levels of immunosuppressive hormones like

cortisol or adrenaline stimulate nightly immune activation leading to a continuous rise of serum cytokines until 6.00 a.m.

(left panel) [74]. Since cytokines such as TNF and IL-1b can trigger their own release in macrophages, such a cascade of

immune activation might stimulate increasing cytokine serum levels. It is expected that this happens in organs with an

inflammatory milieu such as the synovial tissue and secondary lymphoid organs. The early administration of gluco-

corticoids suppresses the continuous increase of cytokines when given during the night [69, 71] (applied during time in

the red box).
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inadequately low in relation to inflammation and relative to

acceptable and helpful doses of exogenous glucocortic-

oids. This is best characterized as an HPA axis deficit.

Part of the HPA axis deficit is explained by inflammatory

stimulation of hepatic cortisol production, which un-

couples the central nervous system from the adrenal

glands. In addition, part of it is explained by cytokine-

induced attenuation of HPA axis activity on other levels.

New glucocorticoids with delayed release during the

night-time are better than morning glucocorticoids at the

same dose. With the help of a new theory, which explains

re-allocation of energy-rich fuels from storing organs to an

activated immune system, that circadian activation of the

immune system happens mainly during sleep. Finally,

since immunosuppressive effects of glucocorticoids are

fast, it becomes understandable why night-time adminis-

tration of glucocorticoids has a stronger immunosuppres-

sive effect compared with treatment in the morning [76].

Finally, the phenomenon of glucocorticoid resistance is

still hotly debated, and one expects that therapies will

come from this field of inquiry.
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