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Context: It is widely believed that glucocorticoids cause insulin resistance in all tissues. We have
previously demonstrated that glucocorticoids cause insulin sensitization in human adipose tissue
in vitro and induce insulin resistance in skeletal muscle.

Objective: Our aim was to determine whether glucocorticoids have tissue-specific effects on insulin
sensitivity in vivo.

Design: Fifteen healthy volunteers were recruited into a double-blind, randomized, placebo-con-
trolled, crossover study, receiving both an overnight hydrocortisone and saline infusion. The tissue-
specific actions of insulin were determined using paired 2-step hyperinsulinemic euglycemic clamps
incorporating stable isotopes with concomitant adipose tissue microdialysis.

Setting: The study was performed in the Wellcome Trust Clinical Research Facility, Queen Elizabeth
Hospital, Birmingham, United Kingdom.

Main Outcome Measures: The sensitivity of sc adipose tissue to insulin action was measured.

Results: Hydrocortisone induced systemic insulin resistance but failed to cause sc adipose tissue insulin
resistance as measured by suppression of adipose tissue lipolysis and enhanced insulin-stimulated
pyruvate generation. In primary cultures of human hepatocytes, glucocorticoids increased insulin-
stimulated p-ser473akt/protein kinase B. Similarly, glucocorticoids enhanced insulin-stimulated
p-ser473akt/protein kinase B and increased Insulin receptor substrate 2 mRNA expression in sc, but not
omental, intact human adipocytes, suggesting a depot-specificity of action.

Conclusions: This study represents the first description of sc adipose insulin sensitization by glu-
cocorticoids in vivo and demonstrates tissue-specific actions of glucocorticoids to modify insulin
action. It defines an important advance in our understanding of the actions of both endogenous
and exogenous glucocorticoids and may have implications for the development and targeting of
future glucocorticoid therapies. (J Clin Endocrinol Metab 98: 1631–1640, 2013)

The clinical indications for the use of glucocorticoids
(GCs), both topical and systemic, are many and var-

ied. Although their therapeutic efficacy is not in doubt,
their side effect profile to induce Cushing’s syndrome,
characterized by central obesity, insulin resistance, and in

some cases overt type 2 diabetes mellitus, creates a signif-
icant additional health burden that can limit their use. This
has a high clinical relevance because approximately 1%–2%
of the populations of the United States and the United King-
domuseGCtherapy(1,2). Inaddition,endogenousGCsand
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their metabolism may have a fundamental role in the patho-
genesisofobesity, insulin resistance, and type2diabetesmel-
litus. Modification of GC action has evolved as a potential
treatment target (3). There is therefore an urgent need to
determine the tissue-specific actions of GCs to understand
the mechanisms underpinning their side effect profile that
might lead to the development of newer classes of agent with
improved adverse effect profiles.

In human preadipocytes, we and others have demon-
strated that synthetic and endogenous GCs cause insulin
sensitization in a dose- and time-dependent manner (4–6);
furthermore, these effects persist with prolonged (7 days)
administration (7). Insulin signals through a tyrosine ki-
nase, membrane bound receptor that upon insulin bind-
ing, autophosphorylates and activates a signaling cascade
with the phosphorylation of a number of insulin receptor
substrates (IRSs). This in turn results in phosphatidylino-
sitol 3-kinase activation and the phosphorylation and ac-
tivation of akt/protein kinase B (PKB) ultimately leading
to the translocation of glucose transporter type 4-containing
vesicles to the cell membrane to permit glucose uptake. The
effects of GCs to enhance insulin action in adipose tissue are
mediated through the increased tyrosine phosphorylation of
IRS1 and increased mRNA and protein expression of IRS2
(4). We have proposed that GC-mediated enhanced insulin
action will not only fuel adipocyte differentiation that is crit-
ically dependent on both insulin and GCs (8) but will also
drive lipid accumulation within the adipocyte (5); both of
these mechanisms will contribute to increased fat mass after
GC treatment. These observations contrast with those in
skeletalmuscle (primaryculturesandcell lines) inwhichGCs
decrease insulin-stimulated glucose uptake through the in-
creased inactivating serine phosphorylation of IRS1 (9) that
targets it for degradation and limits its ability to interact with
the insulin receptor (10).

However, several important questions remain unan-
swered. First, it is crucial to determine whether these ob-
servations translate into the clinical setting. Although
there is little doubt that GCs cause whole-body insulin
resistance when given to both animals and humans (11,
12), we have begun to challenge the widely held belief that
GCs cause global pan-tissue insulin resistance. Second, the
studies published to date have almost exclusively focused
on the sc adipose tissue depot; however, GC administra-
tion causes a more dramatic (although not exclusive) in-
crease in intraabdominal adipose tissue (13, 14). Although
there has been a suggestion that the omental depot may
respond differently to GC treatment (15), detailed studies
have not been performed. Finally, it is widely believed that
GCs cause hepatic insulin resistance, yet in rodent hepa-
tocytes, GCs and insulin work synergistically to promote

lipid accumulation (16). Studies in human models have
not been performed.

Materials and Methods

Clinical protocol
The clinical protocol received full ethical approval from the

South Birmingham Local Research Ethics Committee (reference
10/H1207/15). Fifteen healthy volunteers [mean age 33 � 2
years, body mass index (BMI) 26.6 � 1.0 kg/m2, 9 male, 6 fe-
male] were recruited from local advertisement, and all were non-
diabetic, were on no regular medication, were normotensive, and
had not used GCs within the last 6 months. Female volunteers
had pregnancy excluded and were not taking any hormonal con-
traception. At 5:00 PM, volunteers were admitted to the research
facility, and total body water was estimated using bioimpedance
(model BC418MA; Tanita, Amsterdam, The Netherlands). To
determine the rates of de novo lipogenesis (DNL), volunteers
were given oral 2H2O (3 g/kg total body water in 2 divided doses)
at 6:00 and 10:00 PM followed by drinking water enriched to
0.4%. An adipose tissue microdialysis catheter (CMA Microdi-
alysis, Solna, Sweden) was inserted under a local anesthetic 10
cm lateral to the umbilicus and microdialysis samples taken (0.3
�L/min) hourly until 12:00 AM, 2-hourly overnight and then
every 30 minutes during the hyperinsulinemic clamp. A stan-
dardized meal was provided at 6:00 PM (carbohydrate 45 g, pro-
tein 23 g, and fat 20 g) and after the meal, the volunteer remained
fasted until the end of the clamp. Volunteers were randomized to
receive iv hydrocortisone (0.2 mg/kg�h) or saline in a double-
blind protocol, and the infusion commenced at 6:00 PM until the
end of the clamp the next day.

At 08:00 AM the next morning, the volunteers underwent a
2-step hyperinsulinemic euglycemic clamp after an overnight
fast. A bolus of U-13C-glucose (CK Gas Ltd, Hook, United King-
dom) was administered (2 mg/kg) over 1 minute followed by a
constant infusion rate (0.02 mg/kg/min) for 2 hours prior to
starting the glucose and insulin infusions. Basal steady-state sam-
ples were taken at 3 time points during the final 30 minutes of the
2 hours before insulin and glucose infusions. At 10:00 AM, insulin
(Actrapid; Novo Nordisk, Copenhagen, Denmark) was infused
at 20 mU/m2 � min with concomitant 20% glucose enriched with
U-13C-glucose to 4%. Arterialized blood samples were taken at
5-minute intervals and the glucose infusion rate changed to
maintain fasting glycemic levels. Steady-state samples were
taken at 3 time points in the final 30 minutes, 2 hours after
starting the insulin infusion. The insulin infusion rate was then
increased to 100 mU/m2 � min for 2 hours with sampling as de-
scribed above. Rates of glucose production (Ra glucose) and
glucose disposal were calculated by using modified versions of
the Steele equations (17, 18).

Volunteers then underwent a washout period of at least 2
weeks before undergoing an identical protocol but receiving
the alternative infusion. All volunteers therefore received both
infusions in a random order, separated by at least 2 weeks,
with investigators and volunteers blinded to the nature of each
infusion. A schematic diagram detailing the protocol is in-
cluded in the Supplemental Data (Supplemental Fig. 1, pub-
lished on The Endocrine Society’s Journals Online web site at
http://jcem.endojournals.org).
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Biochemical and stable isotope analysis
Blood counts and biochemistry including nonesterified fatty

acids (NEFAs), cortisol, and insulin were measured using stan-
dard laboratory methods or commercially available ELISAs, and
details are provided in the Supplemental Data. Microdialysate
samples were collected in microvials and analyzed using a mobile
photometric, enzyme-kinetic analyzer (CMA Iscus Flex, Solna,
Sweden) for glucose, pyruvate, lactate, and glycerol. The enrich-
ment of U-13C-glucose in plasma was determined by gas chro-
matography-mass spectrometry (model 5973; Agilent Technol-
ogies, Cheshire, United Kingdom).

Deuterium enrichment of the body water pool was measured
using the Gasbench II (http://www.thermo.com/eThermo/CMA/
PDFs/Product/productPDF_27060.pdf) coupled online to a
ThermoFinnigan Deltaplus XP isotope ratio mass spectrometer
(ThermoFinnigan MAT GmbH, Bremen, Germany). Deuterium
enrichment in the palmitate fraction of total plasma triglycerides
was measured on an automated GC/TC/isotope ratio mass spec-
trometer system (ThermoFinnigan Delta Pus XP; http://
www.thermo.com/eThermo/CMA/PDFs/Product/productPDF_
27059.pdf). Full methods are described in the Supplemental
Data.

Calculation of the contribution of DNL to total
palmitate synthesis

The fraction of endogenous palmitate synthesis produced by
DNL and was calculated from the incorporation of 2H2O in the
palmitate present in the plasma total triglyceride pool and was
calculated using the following formula: fraction � (� 2H/1H
ratio in palmitate methylester/� 2H/1H ratio in waterpool)(34/
22), where 34 is the total number of H atoms in palmitate methy-
lester and 22 is the number of water molecules incorporated into
palmitate via DNL (19–21).

Primary human adipocytes
Paired primary human sc and omental intact adipocytes were

isolated from adipose tissue of healthy, nondiabetic donors aged
43–81 years (10 males, 13 females, median 66 years), BMI 21–
38.8 kg/m2 (median 27.7 kg/m2) undergoing elective surgery for
nonmalignant, noninflammatory conditions as described previ-
ously (22). None were taking GC therapy or any drugs known to
impact on insulin sensitivity. After isolation, cells were incubated
in serum-free media for 24 hours prior to treatment with GCs
(for specific conditions, see Results). In all cell culture experi-
ments investigating insulin signaling cascade protein phosphor-
ylation, the media were spiked with human insulin (0.1 �g/mL;
Sigma, Poole, United Kingdom) for the final 15 minutes of the
treatment period. All treatments and reagents were supplied by
Sigma unless otherwise stated.

Primary human hepatocytes
Primary human hepatocytes were purchased from Celsis In

Vitro Technologies (Baltimore, Maryland). All donors were
healthy, male, and nondiabetic and were on no regular medica-
tions with negative viral hepatitis serology, and none consumed
alcohol above the recommended limits (n � 4, aged 54 � 14
years, BMI 28.4 � 3.3 kg/m2). Cells were cultured overnight in
Williams’ Medium E without any supplements before being
treated with GCs (cortisol dose range 100, 250, and 1000 nM,
24 hours). For insulin signaling studies, media were spiked with

insulin 15 minutes prior to cell harvest as described above. Li-
pogenesis was measured by the uptake of 1-[14C]acetate into the
lipid component as described previously (5) and expressed as
disintegrations per minute per well.

RNA extraction, reverse transcription, and
real-time PCR

Total RNA was extracted using the Tri-Reagent system. RNA
integrity, reverse transcription, and real-time PCR were per-
formed as described previously (4). All probes and primers were
supplied by an Assay on Demand (Life Technologies, Paisley,
United Kingdom). All reactions were normalized against the
housekeeping gene 18S rRNA. Data were expressed as the cycle
number at which logarithmic PCR plots cross a calculated
threshold line (ct values) and used to determine �ct values[(�ct �
(ct of the target gene) � (ct of the housekeeping gene)]. Fold
changes were calculated using the transformation [fold in-
crease � 2�difference in �CT].

Protein extraction and immunoblotting
Protein extraction and immunoblotting were performed as

described previously (5). Primary [anti-PKB/akt; Biosource, Niv-
elles, Belgium; and antiphospho-PKB/akt (serine 473), R&D
Systems, Abingdon, United Kingdom] and secondary antibodies
(Dako, Glostrop, Denmark) were used at a dilution of 1:1000.
Membranes were reprobed for �-actin. Primary and secondary
antibodies were used at a dilution of 1:5000 (Abcam PLC, Cam-
bridge, United Kingdom). Bands were quantified with Genesnap
by Syngene (Cambridge, United Kingdom).

Statistical approach
Data are presented as mean � SE unless otherwise stated. Area

under the curve analysis was performed using the trapezoidal
method. For comparison of single variables, paired t tests have been
used (or nonparametric equivalents in which data were not nor-
mally distributed). Where repeated samples were taken (either dur-
ing an individual investigation or for comparison of the same in-
vestigation between the 2 different infusions), repeated-measures
ANOVAonrankswasused, incorporatingDunn’s testasaposthoc
analysis. All analyses were performed using the SigmaStat 3.1 soft-
ware package (Systat Software, Inc, Point Richmond, California).

Results

Overnight hydrocortisone infusion significantly increased
circulating cortisol levels (1139 � 60 vs 405 � 42 nmol/L,
P � .00001 vs saline). There was no impact on blood
pressure, renal function, or electrolytes (data not shown).
Total cholesterol levels were unchanged; however, high-
density lipoprotein cholesterol and circulating NEFA
concentrations increased, whereas triglyceride levels de-
creased. Osteocalcin has recently been implicated in GC-
mediated changes in metabolic phenotype (23), and cir-
culating osteocalcin levels were significantly lower after
overnight hydrocortisone infusion (1.9 � 0.6 vs 11.8 �
1.5 ng/mL, P � .005 vs saline). Absolute data are pre-
sented in Supplemental Table 1.
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GCs cause systemic insulin resistance
Fasting insulin levels were unchanged (59.6 � 11.3 vs

38.0 � 6.5 pmol/L, P � .11), but glucose concentrations
increased (5.8 � 0.1 vs 4.5 � 0.1 mmol/L, P � .0001)
(Figure 1, A and B) after hydrocortisone infusion, repre-
senting a failure of insulin secretion in the face of systemic
insulin resistance. During the 2-step hyperinsulinemic
clamp, glucose infusion rates in response to both low and
high insulin concentrations decreased in 13 of 15 volun-
teers after hydrocortisone treatment, consistent with in-
sulin resistance (low insulin: 1.6 � 0.1 vs 3.0 � 0.4 mg/
kg � min, P � .01; high insulin: 7.3 � 0.7 vs 9.1 � 0.5
mg/kg � min, P � .005). Endorsing this observation, body
weight-adjusted rate of glucose disposal rates flowing
both low- and high-dose insulin infusion were lower after
hydrocortisone in comparison with saline (low insulin:
3.8 � 0.6 vs 9.8 � 2.2 �mol/kg � min, P � .01; high in-
sulin: 24.6 � 3.0 vs 33.0 � 2.9 �mol/kg � min, P � .005)
(Figure 1A), indicative of systemic insulin resistance,
largely reflecting the actions of GC upon skeletal muscle.

Hepatic insulin sensitivity
Despite the increase in fasting blood glucose concen-

trations, endogenous Ra glucose production rates were
not different after hydrocortisone or saline infusions
(12.9 � 0.6 vs 11.9 � 1.1 �mol/kg � min, P � .2) (Figure
1). Glucose production rates were lower after low-dose
insulin infusion in the saline arm (6.5 � 0.6 vs 3.2 � 1.1
�mol/kg � min, P � .005), However, the suppression of glu-
cose production rate by insulin was lower in the hydro-
cortisone arm in comparison with saline, indicative of he-

patic insulin resistance (Ra glucose percentage of basal:
50.0 � 3.0 vs 23.4 � 8.5%, P � .01) (Figure 1C).

To understand the mechanisms that might contribute to
these observations, additional experiments were performed
inprimaryculturesofhumanhepatocytes. Insulinstimulated
akt/PKB serine 473 phosphorylation (p-ser473akt/PKB)
(data not shown), and although treatment with cortisol had
nosignificant impacton total akt/PKBprotein levels, insulin-
stimulated p-ser473akt/PKB increased, consistent with GC-
induced insulin sensitization, contrasting with our in vivo
observations (Supplemental Figure 2).

De novo lipogenesis
The percentage contribution of DNL to palmitate syn-

thesis decreased in 12 of 15 volunteers after hydrocorti-
sone infusion, but this failed to reach statistical signifi-
cance (4.1 � 1.0 vs 5.2 � 1.3%, P � .22) (Figure 2A). Due
to the combinations of stable isotopes used within the
clinical protocol, it was not possible to measure rates of
DNL under hyperinsulinemic conditions.

Extending our clinical observations, cortisol decreased
DNL in the primary cultures of human hepatocytes [data
are expressed as a percentage change from control
(100%); 85.6 � 6.6% (100 nM), 73.5 � 7.9% (250 nM),
55.0 � 5.6% (1000 nM), P � .05] (Figure 2B). Insulin
alone (5 nM, 24 hours) had a modest impact on acetate
incorporation into lipid (129.1 � 13.0%); however, co-
incubation with cortisol (1000 nM, 24 hours) significantly
enhanced insulin-stimulated lipogenesis (148.8 � 10.4%,
P � .05 vs insulin treatment alone) (Figure 2C), indicating
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that GCs and insulin are acting synergistically to enhance
lipid accumulation within hepatocytes.

Depot-specific, adipose tissue insulin sensitization
by GCs

Hydrocortisone increased circulating NEFA levels, and
these decreased after both low- and high-dose insulin infu-
sion (Figure 3A). The magnitude of suppression of circulat-
ing NEFAs by insulin (both low and high dose) was signifi-
cantly greater after hydrocortisone infusion (low insulin:

564 � 40 vs 403 � 38, P � .01 �mol/L � h; high insulin:
712 � 35 vs 443 � 38 �mol/L � h, P � .005) (Figure 3B).
Adipose tissue interstitial fluid glycerol release increased af-
ter overnight hydrocortisone (395 � 49 vs 286 � 40 �mol/
L � h, P � .05) and was suppressed by insulin (low insulin:
143 � 18 �mol/L � h; high insulin: 66 � 14 �mol/L � h, both
P � .05 vs basal) (Figure 3, C and D). The magnitude of the
suppression of lipolysis by insulin (both high and low dose)
wasnotdifferentafterhydrocortisoneorsaline,providingno
evidence for adipose tissue insulin resistance (Figure 3E).
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Based on the assumption that high-dose insulin causes
maximal suppression of circulating NEFAs as well as sc
adipose glycerol generation, the insulin concentrations
causing half-maximal suppression of NEFA (INS-1⁄2-max
NEFA) and glycerol (INS-1⁄2-max GLY) were calculated
for each subject using regression analysis. INS1⁄2-max
NEFA was higher after hydrocortisone (65 � 14 vs 110 �
16 pmol/L, P � .005). However, INS-1⁄2-max GLY was
not different between saline and hydrocortisone (115 � 12
vs 140 � 19 pmol/L, P � .1) (Figure 4), suggesting depot
specificity of action.

Hydrocortisone alone had no effect on pyruvate gen-
eration from adipose tissue in vivo (99 � 13 vs 88 � 15
�mol/L � h, P � .6). As expected, insulin increased inter-
stitial fluid pyruvate generation (low insulin: 134 � 17
�mol/L � h; high insulin: 151 � 18 �mol/L � h, both P �
.005 vs basal) (Figure 5, A and B), and this was dramat-
ically enhanced after hydrocortisone, consistent with in-
sulin sensitization (high insulin: 284 � 23 �mol/L � h, P �
.005 vs saline) (Figure 5C).

Hydrocortisone suppressed lactate levels in adipose in-
terstitial fluid (2.3 � 0.3 vs 4.3 � 0.7 �mol/L � h, P � .05)
(Figure 5, D and E). Insulin infusion had no effect on lac-
tate generation; however, in combination with hydrocor-
tisone lactate, concentrations increased after high-dose in-
sulin infusion, potentially as a consequence of increased

pyruvate (high insulin: 3.5 � 0.4 �mol/L � h, P � .01 vs
basal) (Figure 5F).

Cortisol (1000 nM, 24 hours) had no impact on insulin
receptor expression or phosphorylation in paired isolated
intact sc and omental adipocytes (data not shown). How-
ever, insulin-stimulated p-ser473akt/PKB increased in sc
adipocytes pretreated with cortisol as did IRS2 mRNA
expression (Figure 6, A and B, and Supplemental Table 2).
In contrast, parallel experiments performed in paired iso-
lated intact omental adipocytes failed to show regulation
of insulin-stimulated p-ser473akt/PKB or IRS2 expression
(Figure 6, C and D, and Supplemental Table 2). In both the
sc and omental depots, cortisol increased hormone-sensi-
tive lipase expression, consistent with its known lipolytic
effect (Figure 6, E and F, and Supplemental Table 2). The
response to GC treatment did not differ in isolated intact
adipocytes from lean or obese individuals.

Discussion

Combining in vitro cell biology with clinical data, we have
established tissue-specific actions of GCs upon insulin ac-
tion. We have demonstrated that short-term iv GC ad-
ministration causes skeletal muscle insulin resistance but,
in contrast, in sc adipose tissue, causes insulin sensitization
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(increased insulin stimulated pyruvate generation) in vivo,
which was endorsed by experiments in isolated intact adi-
pocytes as well as previously published observations in
differentiated preadipocytes (4, 5, 7). Similarly, GCs cause
insulin sensitization in primary human hepatocyte cul-
tures and augment the lipogenic action of insulin but ap-
peared to cause hepatic insulin resistance in vivo as evi-
denced by decreased insulin mediated suppression of
endogenous glucose production.

Postprandial glucose uptake is largely driven by the
action of insulin on skeletal muscle. There is little doubt
that GCs cause whole-body insulin resistance (11), and we
would argue that this reflects their action upon skeletal
muscle. We have shown decreased glucose disposal rates
after hydrocortisone compared with saline under both low
and high insulin concentrations. The molecular mecha-
nisms that underpin GC-mediated insulin resistance in
skeletal muscle are not fully understood. We have previ-
ously shown that GCs increase serine phosphorylation of
IRS1 at residue 307, and this impairs the ability if IRS1 to
interact with the insulin receptor and in addition targets it
for proteasomal degradation (9). Interestingly, insulin re-
sistance was not observed in 2 volunteers, and this did not
appear to be related to basal insulin sensitivity, BMI, or
sex. This may well represent variability in the susceptibil-
ity to the adverse effects of GCs that could be underpinned

by differences in GC receptor expression or prereceptor
GC metabolism and/or clearance.

The interaction between GCs and insulin action in hu-
man liver has not previously been investigated in detail.
Insulin was less able to suppress glucose production after
hydrocortisone compared to saline infusion which would
be consistent with GC-induced hepatic insulin resistance.
However, our primary hepatocyte culture experiments
demonstrated increased insulin stimulated p-ser473akt/
PKB after GC treatment. The differences between our in
vivo and in vitro observations are likely to reflect the mul-
tiple factors in vivo that are able to regulate hepatic insulin
sensitivity, contrasting with relatively simplistic cell cul-
ture models and emphasize the importance of translating
laboratory-based findings into the clinical setting. Al-
though accepting that there may be species specificity of
the response to GCs, rodent studies have provided con-
flicting evidence; high-dose prednisolone (10 mg/kg � d)
for 7 days given to mice fed a normal chow diet caused
hepatic insulin resistance (24). However, when fed a high-
fat diet (HFD) for 6 weeks with an identical dose of pred-
nisolone given for the final 7 days of the HFD, there was
no evidence of worsening hepatic insulin resistance during
hyperinsulinemic euglycemic or hyperglycemic clamps (25).

The interaction between GCs and insulin has been ex-
amined previously in rodent models (26, 27), and in these
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Figure 5. Hydrocortisone infusion does not impact on basal rates of pyruvate generation within sc adipose tissue. Insulin increases adipose
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systems there is evidence to suggest that GCs together with
insulin may enhance lipogenesis (16). In primary cultures
of human hepatocytes, GC-suppressed lipogenesis in the
absence of insulin. However, in contrast, although insulin
stimulates lipogenesis, GCs and insulin worked synergis-
tically to further enhance lipid synthesis as has been shown
inprimaryculturesofhumanadipocytes (5). Inour clinical
study, hydrocortisone infusion decreased lipogenesis in 12
of 15 subjects in the fasting state (80%). If our in vitro
observations in the presence of insulin translate to the
clinical setting, then it is likely that in the postprandial
state, GCs and insulin working together will drive triglyc-
eride synthesis within the liver. Rodent models have pro-
vided some support for this hypothesis; the combination
of HFD and GC treatment significantly worsens metabolic
phenotype and exacerbates the development of hepatic
steatosis (28). Importantly, our in vitro data were gener-
ated using hepatocytes exclusively from male donors, but
there were no differences in response in the clinical study
between male and female volunteers. It therefore seems
unlikely that there is a sexual dimorphism in the interac-
tion between GC and insulin. There is an emerging interest
in the interaction between bone and metabolic phenotype.
Until very recently, this had not been explored in the con-
text of GC administration. However, hepatic overexpres-
sion of osteocalcin is able to ameliorate the effects of ex-
ogenous GCs upon hepatic insulin sensitivity (23), and in

this clinical study, we have been able to show that short-
term administration of GCs (albeit at pharmacological
doses) dramatically suppressed osteocalcin levels. Al-
though this is only observational data, it remains plausible
that this may be a crucial mechanism regulating the ad-
verse metabolic effects of GCs.

GCs are potent regulators of lipid metabolism in adi-
pose tissue (29). We and others have shown that GCs cause
insulin sensitization in human adipose tissue and that this
is functionally important leading to increased glucose up-
take and lipogenesis (4, 6). This contrasts with observa-
tions in rodents in which GCs appear to cause adipocyte
insulin resistance and reflects the fact that rodents do not
develop a classical Cushing’s phenotype when treated
with GCs, highlighting the importance of conducting
studies using human models (30, 31). Fasting NEFA levels
increased in the hydrocortisone group, largely reflecting
adipose tissue lipolysis driven by hormone-sensitive lipase
and adipose triglyceride lipase (32, 33). Insulin suppresses
lipolysis and it was able to do this in both the hydrocor-
tisone and saline arm. Although the magnitude of the sup-
pression of circulating NEFA levels by insulin was greater
in the hydrocortisone arm INS-1⁄2-max NEFA was also
increased. Using adipose tissue microdialysis, sc intersti-
tial fluid glycerol concentrations paralleled circulating
NEFA levels. Insulin (both low and high dose) was able to
suppress glycerol release to a similar degree in both hy-
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drocortisone and saline arms, and there was no difference in
INS-1⁄2-max GLY. The differences between the effects of hy-
drocortisone on circulating NEFAs vs interstitial fluid glyc-
erol generation may well reflect adipose depot-specific ac-
tions. Insulin stimulated pyruvate generation in sc adipose
tissue interstitial fluid, and although hydrocortisone alone
was without effect, it dramatically augmented the effect of
insulin consistent with insulin sensitization. Our in vitro ob-
servationshavesuggestedadepotspecificityofeffectofphar-
macological doses of GCs; in sc adipocytes, cortisol caused
insulin sensitization with increased insulin-stimulated
p-ser473akt/PKBandIRS2mRNAexpression,andit is likely
that these 2 mechanisms both contribute independently to
insulin sensitization. However, these responses were absent
in the paired adipocytes isolated from the omental depot and
are consistent with depot-specific observations reported pre-
viously(15).Performingclinicalstudiestoassessthedynamic
response to GCs is challenging and fraught with technically
difficulty, principally due to lack of access to the intraab-
dominal adipose tissue depot.

There are few published data that have examined the tis-
sue-specific interaction between GCs and insulin in vivo.
Prednisolone 7.5 mg daily for 2 weeks had few adverse met-
abolic effects in contrast to 30 mg daily, which increased
hepatic glucose production rate, decreased suppression of
hepatic glucose production by insulin, and interestingly de-
creased lipolysis (34). Prednisone 10 mg (that requires acti-
vation by 11�-hydroxysteroid dehydrogenase type 1) given
to healthy male volunteers daily for 1 week had a minimal
impact upon glucose disposal, whereas higher doses of pred-
nisone (25 mg daily) decreased glucose disposal (35). The
discrepancies between these observations and our own may
perhaps reflect the duration of treatment, the route of ad-
ministration and/or differences between prednisolone/pred-
nisone and hydrocortisone.

Importantly, there are limitations in the interpretation of
the data from this study. Due to the challenges in obtaining
primarycultures for invitroexperiments, themetabolicchar-
acteristics of the donors of the cells may not be as closely
matched to those in the clinical study as would have been
desired, although important discrepancies have been
avoided (coexistent diabetes and other pathology, medica-
tion including glucocorticoids). As part of the clamp studies,
we have not infused somatostatin and this may result in dif-
ferences in insulin concentration between the peripheral and
portal circulations. Furthermore, the lower dose of insulin
chosen(20mU/m2 � min)may, insomeindividuals, fullysup-
press endogenous glucose production, limiting the interpre-
tationof thedata.However, thiswasnot thecase inourstudy
(Figure 1A). Finally, we have not measured adipose tissue
bloodflowaspartof themicrodialysisprotocol;however,we
are reassured by data from previous studies that has shown

that hydrocortisone has no effect on adipose tissue blood
flow (36).

In conclusion, this study has enhanced our understanding
of the impact of both pharmacological GC treatment as well
as endogenous GCs upon insulin action and metabolic phe-
notype. We have challenged the concept that GCs cause in-
sulin resistance in all tissues and clearly demonstrated a tis-
sue-specific interaction between GCs and insulin in vivo.
There is little doubt that GCs cause skeletal muscle insulin
resistance. In the liver, in the fed state when insulin is high,
they may potentiate the action of insulin to drive lipogenesis,
and this may explain the development of hepatic steatosis in
Cushing’s syndrome (37). In adipose tissue, GCs drive adi-
pocytedifferentiation (8)andspecificallywithin thescdepot,
enhancing insulinactionwill decrease lipid turnover through
decreased lipolysis and increased lipogenesis. In the omental
depot, thispositive interactionbetweenGCsand insulindoes
not occur, perhaps resulting in sustained NEFA release and
increased lipid turnover that may fuel the global GC-associ-
ated metabolic phenotype with NEFA delivery to liver and
skeletal muscle. Understanding this interaction has signifi-
cant clinical implications. The timing and patterns of GC
administration in the fed or fasted state are likely to be im-
portant. Prolonged exposure to GCs in the absence of insulin
in the fasting state may lead to adverse fuel mobilization
rather than safe storage. Furthermore, synthetic GCs with
differing and often prolonged pharmacokinetic profiles in
comparison with cortisol are likely to have different meta-
bolic effects in vivo, reflecting the critical interaction with
insulin.
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