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Abstract: No reliable non-invasive glucose monitoring devices are cur-

rently available. We implemented a mid-infrared (MIR) photoacoustic (PA)

setup to track glucose in vitro in deep epidermal layers, which represents a

significant step towards non-invasive in vivo glucose measurements using

MIR light. An external-cavity quantum-cascade laser (1010-1095 cm−1)

and a PA cell of only 78 mm3 volume were employed to monitor glucose

in epidermal skin. Skin samples are characterized by a high water content.

Such samples investigated with an open-ended PA cell lead to varying

conditions in the PA chamber (i.e., change of light absorption or relative

humidity) and cause unstable signals. To circumvent variations in relative

humidity and possible water condensation, the PA chamber was constantly

ventilated by a 10 sccm N2 flow. By bringing the epidermal skin samples

in contact with aqueous glucose solutions with different concentrations

(i.e., 0.1-10 g/dl), the glucose concentration in the skin sample was varied

through passive diffusion. The achieved detection limit for glucose in

epidermal skin is 100 mg/dl (SNR=1). Although this lies within the human

physiological range (30-500 mg/dl) further improvements are necessary

to non-invasively monitor glucose levels of diabetes patients. Furthermore

spectra of epidermal tissue with and without glucose content have been

recorded with the tunable quantum-cascade laser, indicating that epidermal

constituents do not impair glucose detection.

© 2012 Optical Society of America

OCIS codes: (110.5125) Photoacoustics; (140.5965) Semiconductor laser, quantum cascade;

(170.1470) Blood or tissue constituent monitoring; (170.6510) Spectroscopy, tissue diagnos-

tics.
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1. Introduction

Diabetes mellitus is a widespread human disease with worldwide 346 million persons

concerned and an estimated 3.4 million deaths due to high blood glucose level per year [1].

Currently no treatment exists or is under development which could possibly cure this illness

in the near future. The therapy of diabetes mellitus so far consists in monitoring the blood

glucose (BG) level of a patient to avoid the danger of hypo- and hyperglycemia and to assist

in adjusting the diet and medical treatment. To monitor the blood sugar level as accurate as

possible frequent measurements are required. Until today this involves puncturing the fingertip

with a lancing device to obtain a drop of blood. The blood sample is placed on a test strip and

usually analyzed via an electrochemical reaction. This expensive procedure is uncomfortable

especially if frequently performed, it bears the risk of infections and does not represent a

continuous measurement technique, which would be ideal for glycemic control [2]. Hence

a non-invasive glucose sensor would greatly increase the quality of life of diabetes patients.

Despite intensive research towards a non-invasive glucose monitoring method since more

than 25 years still no reliable commercial sensor exists, which circumvents the need of blood

sample taking. An overview of the broad research activity and numerous companies involved

in this area is given in review articles [3–6]. Figure 1 summarizes the vast field of glucose

measurement techniques and distinguishes three different categories: invasive, minimal

invasive and non-invasive approaches. Optical techniques like polarimetry [7, 8], Raman

spectroscopy [9,10], diffuse reflection spectroscopy [11,12], absorption spectroscopy [13–15],
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Fig. 1. Overview of possible techniques and active research areas for in-vivo glucose

measurements.

thermal emission spectroscopy [16, 17], fluorescence spectroscopy [18, 19] and photoacoustic

(PA) spectroscopy [20–22] have been used to sense glucose with respect to non-invasive

monitoring.

Most of the optical attempts use near-infrared (NIR) light because it can penetrate up to

several mm into human tissue. Unfortunately, glucose absorption in this wavelength region

is weak and interferes strongly with other blood and tissue components [23–25], which

hampered a breakthrough to non-invasive glucose monitoring. Attempts using NIR PA

spectroscopy [21, 22, 26–29] mainly employ pulsed lasers as excitation sources.

On the contrary, glucose shows strong characteristic absorption and interferes less with other

tissue components in the mid-infrared (MIR) spectral region [5]. However, MIR light only

penetrates up to 100 µm into human skin due to the strong water absorption [30, 31]. As

a consequence glucose has to be sensed within the interstitial fluid (ISF) of the epidermis

since blood capillaries are not reached. Metabolites and proteins diffuse into the ISF on their

way from capillaries to cells. This leads to a strong correlation of BG levels and ISF glucose

concentration within the physiological range as confirmed in clinical trails [32]. In the ISF

small-to-moderate sized molecules, like glucose (or ethanol), are present in the same proportion

as in blood. Hence a frequent calibration with blood measurements is not necessary [33].

The diffusion process leads to a delayed increase of the glucose concentration in the ISF,

which is stated to be between 5 to 15 minutes [13, 34]. In general the outer skin layers have a

greater time delay and smaller glucose concentration maxima. Concerning the correlation for

decreasing glucose concentration some uncertainty persists, but there is most likely no time

delay due to the high glucose clearance from epidermal ISF [35]. The outer most layer of the

skin, the stratum corneum (SC) - consisting of cell remains (i.e. dead cells) - acts as a barrier

to protect the human body from mechanical, chemicals or microbiological impacts from the

surrounding [36]. Moreover the SC is responsible to prevent transepidermal water loss. This
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layer is only 10 - 20 µm thick (except at the sole of foot and the palm, where it can reach up

to several mm), has a water content of approximately 10 % [31, 37] and contains marginal

amounts of glucose. Thus in vivo glucose sensing has to involve skin layers deeper than the SC.

For in vitro studies of blood samples or homogeneous tissue phantoms, the penetration depth

is not important since glucose can be detected at the surface. In such experiments glucose

concentrations can be readily tracked using MIR light. Some research groups employed a

quantum cascade laser (QCL) or a FTIR spectrometer to perform transmission measurements

with glucose detection limits of 13.8 mg/dl (in whole blood) [38], 9.4 mg/dl [39] and 4

mg/dl [13] (both in aqueous solution). Unfortunately, these sensitive measurements are hardly

convertible to in vivo sensing and therefore of little benefit to non-invasive glucose sensing.

Guo et al. used wavelength-modulated differential laser photothermal radiometry with two

QCLs at 9.5 and 10.4 µm (i.e., on and off a glucose absorption peak) to measure glucose

concentrations (0 - 440 mg/dl) in an homogeneous aqueous phantom [17]. With a pulsed

CO2 laser and a PA detection Christison et al. measured glucose concentrations in aqueous

solutions and whole-blood (18 - 450 mg/dl) [40]. These two approaches have the potential

of adapting from a laboratory setup to a small-sized portable sensor in the future. However,

both approaches sense glucose concentrations at the sample surface and not in deep epidermal

layers as required for in vivo studies. An attempt to apply MIR PA measurements to in vivo
glucose sensing was recently reported by Lilienfeld-Toal at al. [41, 42] but could only indicate

a qualitative correlation between BG and ISF glucose concentration.

We developed a laser PA detection scheme using an external-cavity quantum cascade laser

(tuning range 1010 - 1095 cm−1) as light source and a small-volume PA cell for detection.

This setup bears the potential to shrink from a table size apparatus to a handheld device. When

investigating epidermal skin samples having a high water content, challenges are the detection

of a weak PA signal due to glucose on a strong water background and humidity variations in

the PA chamber due to the evaporation of water. To stabilize the conditions in the PA chamber

(i.e., to maintain a constant relative humidity) for sensitive measurements, a constant N2 flow

is applied to ventilate the cell. Here we report on the performance of this setup by measuring

glucose concentration changes through the SC in human epidermis in vitro. This is a significant

step compared to former measurements since it demonstrates the tracking of glucose by MIR

light not only at the surface but in lower epidermal skin layers. Furthermore by tuning the QCL

a spectrum of human epidermis with and without the presence of glucose could be recorded.

2. Photoacoustic signal generation

The PA signal generation in solid samples has been described mathematically first by

Rosencwaig and Gersho. Using an indirect PA detection, namely a detection of the generated

PA signal in a strongly absorbing solid in a gas-filled PA chamber adjacent to the solid surface

is described by their thermal piston model [43]. Depending on the optical and thermal proper-

ties of the solid sample with respect to its length l, this model distinguishes six different cases.

The most important case for our application (l > µa > µs) is pictured in Fig. 2. Here µa = 1/α
denotes the absorption length in the sample (α : absorption coefficient at the employed wave-

length λ ), µs =

√

Ds
π· f denotes the thermal diffusion length with the thermal diffusivity Ds and

the modulation frequency f of the incident radiation. Hence the thermal diffusion length µs can

be controlled by f .

For our case (l > µa > µs) the PA signal amplitude APA is given by [44]

APA ≈
γ ·P0 ·Ds ·

√

Dg · r2

√
π·T0 · ks

·
I0 ·α

V0 · f
3
2

, (1)
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Fig. 2. Definition of lengths used to distinguish between the different cases in the

Rosencwaig Gersho model. lg denotes the length of the gas-filled PA chamber, l the sample

length, µa=1/α the optical absorption length and µs the thermal diffusion length. In this

figure a length ratio of l > µa > µs is pictured, as occurring in the samples investigated in

this work. The periodical PA signal is detected with a microphone (Mic).

where γ=Cp/Cv is the ratio of specific heats of the coupling gas at constant pressure and vol-

ume, P0 and T0 are the ambient pressure and temperature, respectively, I0 is the incident laser

intensity (beam radius r), Dg is the thermal diffusivity of the coupling gas, ks the thermal con-

ductivity of the solid and V0 the volume of the PA cell.

According to Eq. (1) a temperature change in the PA chamber directly translates to a 1/T0-

dependence of the generated pressure amplitude APA. A variation of the relative humidity (RH)

in the coupling gas, however, only indirectly influences the PA signal via Dg. At room tempera-

ture a coupling gas exchange from water-saturated air to pure N2 causes an estimated increase

of Dg of 5.3 %, i.e., of APA of 28 %, whereas a change from dry air to a pure N2 atmosphere

causes an increase of APA by only 2.8 %. The variation of the specific heat ratio γ by a change

of the composition of the coupling gas can be neglected as it contributes <1% to the total sig-

nal change. At higher RH the scattering and the absorption of light in the coupling gas might

also increase. However, these contributions depend strongly on the cell geometry - particularly

the length of the gas-filled PA chamber lg (see Fig. 2) and the microphone position - and the

excitation wavelength.

For a biological sample like human skin considered here, which is characterized by a high water

content, the penetration of MIR light is small due to the strong water absorption in this wave-

length region. Hence the sample length l is usually larger than the optical penetration depth

µa (i.e., l > µa). By adjusting the modulation frequency f one can vary the thermal diffusion

length of the sample µs and restrict the discussion to the case where Eq. (1) holds. Hence, the

signal amplitude APA recorded in the PA cell with a microphone shows the dependence

APA ∝
I0 ·α

V0 · f
3
2

, (2)

i.e., the PA signal directly scales with the incident intensity and the absorption coefficient of

the sample.

3. Experimental setup

The PA setup is pictured in Fig. 3. An external-cavity quantum cascade laser (EC-QCL) (Day-

light Solutions DLS-TLS-001-PL) is employed as excitation source. The EC-QCL is tunable in

0.9 cm−1 wavenumber steps from 1010 - 1095 cm−1 via the external grating. Fine tuning can
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Fig. 3. Setup for photoacoustic measurements: QCL = quantum cascade laser, FM = flip-

ping mirror, L = lens, I = Iris, DL = diode laser (for alignment tasks), CHOP = chopper,

PM = power meter, MIC= microphone and RH-T = relative humidity-temperature sensor.

be obtained by changing the temperature of the QCL chip. The QCL covers a range of glucose

absorption in the MIR, with two strong absorption peaks at 1034 and 1080 cm−1. The maximal

average laser power lies between 20 mW (at 1010 cm−1) and 130 mW (at 1055 cm−1) depend-

ing on the emission wavelength. Normally the sample was irradiated with 30 to 40 mW average

power during measurements. A mechanical chopper (New Focus Model 3501) modulates the

continuous-wave (cw) laser light, which is focused by several anti-reflection coated ZnSe lenses

into the PA cell. The beam passes the PA chamber and is absorbed in the sample sealing the

cell. This leads to the generation of an acoustic wave in the coupling gas which is sensed with

an electret microphone (Knowles FG-23329-P07). The microphone has a diameter of only 2.59

mm, a flat frequency response from 100 Hz to 10 kHz and a sensitivity of 53 dB (relative to 1.0

V/0.1 Pa). The small microphone diameter allows a compact cell design with a small volume

V0 which is favorable in terms of signal amplitude (see Eq. (2)) and sensor size. The detected

PA signal is pre-amplified and measured with a lock-in amplifier (Stanford Research SR830)

before being stored in a computer. The temperature and the RH are recorded simultaneously

with a simple sensor (Sensirion SHT21, 3 mm x 3 mm x 1.1 mm) with an accuracy of ± 0.4 K

and ± 3 %, respectively, to monitor the conditions inside the PA chamber.

3.1. Photoacoustic cell design

A special PA cell which allows measurements on human skin samples in contact with aqueous

glucose solution has been developed. The transversal cross section of the PA cell with the

attached sample and reservoir for liquids is depicted in Fig. 4. The PA cell and the sample

reservoir are constructed out of a copper block (4 x 25 x 35 mm). The PA chamber has a

volume V of only 78.5 mm3 (radius r = 2.5 mm and h = 4 mm), is polished and gold-coated on

the inner surface to minimize spurious PA signals due to absorption on the cell walls. The laser

beam passes perpendicularly through an anti-reflection coated ZnSe window, which seals the

PA cell on the bottom side. The ZnSe window is pressed on a thin rubber sheet into which two

thin needles (length = 19 mm and inner diameter = 0.4 mm) have been introduced. One of the

needles is connected via silicon tubes to a mass flow controller (MKS Instruments, Multi Gas
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Fig. 4. Schematic of the PA cell and the attachable reservoir for liquids. The PA cell is

closed directly by the sample itself (i.e., human skin sample). N2 ventilation is needed, if

the PA chamber is closed with a sample containing volatile components.

Controller 647B) providing a constant flow of N2 to the cell. The other needle is left open. This

guarantees stable conditions in the PA chamber, necessary for precise measurements. At half

height the microphone and the temperature and RH sensor are connected through cylindrical

holes (length = 1 mm, diameter = 1 mm) to the PA chamber. On the sample side the PA chamber

is separated from the reservoir for liquids by a 70 - 100 µm thick human epidermal skin sample.

To allow measurements of other samples, which do not provide a rigid closure of the PA cell

or if measuring without N2 ventilation is preferred, the cell can be sealed with a thin chemical

vapor deposition (CVD) diamond window (Diamond Materials). The diamond window assures

stable conditions in the PA chamber and due to the favorable thermal and optical properties of

diamond strong PA signals of the sample are obtained. A detailed description of the diamond-

window closed cell can be found elsewhere [20, 45].

3.2. Preparation of epidermal skin sample

Epidermal sheets were isolated from forskins obtained from the University Childrens Hospi-

tal of Zurich after routine circumcisions. All patients (and/or their parents) gave their written

consent for this study in accordance with the Ethics Commission of the Canton Zurich (noti-

fication no. StV-12/06). Foreskins were cut into approximately 2 cm2 pieces and digested for

15-18 hours at 4◦C in 12 U/ml dispase in Hanks buffered salt solution containing 5 mg/ml

gentamycin. Thereafter, the epidermis and the dermis could be easily separated using forceps.

Epidermal sheets were stored in a transport medium (DMEM with 1% penicillin/streptomycin)

until further application.

4. Results and Discussion

4.1. RH dependence in PA measurements

If biological samples with a high water content are investigated with an open-ended PA cell

the evaporation of water causes a steady increase in RH until saturation is reached. This results

in water condensation within the PA chamber and makes sensitive measurements impossible.

In Fig. 5 the RH evolution in the PA chamber during a measurement without laser irradiation
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Fig. 5. Relative humidity (RH) evolution in the PA chamber after placing it on an epider-

mal skin sample. In the open-ended PA cell (solid line) the RH constantly increases, until

it finally leads to condensation. With N2 ventilation the RH decreases below 20 % and

stabilizes.

of an epidermal skin sample is shown. Even though the SC has a low permeability for water,

the RH reaches a level of over 70 % within less than 10 min and still rises further. With

laser irradiation the RH increase is even more pronounced [20]. In vivo this process is even

accelerated due to the transpiration of the human body. If a constant N2 flow (10 standard cubic

centimeters per minute (sccm)) is applied to the PA chamber the RH falls within 2 min to less

than 20 % and stabilizes at a low level (see Fig. 5).

The N2 ventilation causes an increase of the pressure in the PA chamber. For N2 flow rates

between 0 and 40 sccm the pressure dependence is linear. At atmospheric pressure a 10 sccm

rise in the flow rate results in an approximately 1 % increase in the PA signal amplitude, which

has to be taken into account for quantitative measurements.

4.2. Diffusion of glucose into epidermal skin

For the investigation of glucose penetration into epidermal skin the PA chamber is directly

closed with the skin sample (see Fig. 4). The epidermal skin is fixed on the cell with the stratum

corneum towards the PA chamber and the liquid reservoir placed on the lower epidermal layers.

To induce varying glucose concentration in the epidermal skin sample, differently concentrated

solutions (i.e., D-(+)-glucose (Sigma Aldrich) dissolved in distilled water) were placed in the

sample reservoir (see Fig. 4). The lower epidermal skin layers are in direct contact with the

solution. Like in vivo, an exchange of constituents (here mainly water and glucose) occurs

through passive diffusion. In Fig. 6 consecutive PA measurements using different glucose

concentrations are shown. The measurements were performed at 1034 cm−1 (absorption peak

of glucose) with a modulation frequency of 137 Hz, 30 mW average power and an integration

time of 1 s. Each time the sample solution was exchanged, the laser beam was blocked and

the PA signal fell to zero. Immediately after replacing the sample solution the shutter was
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Fig. 6. Time dependence of the PA signal for consecutive sample solutions with different

glucose concentration. During sample exchange, the laser beam was blocked, which leads

to the sharp signal decrease. The arrows mark positions where the glucose concentration of

the consecutive sample solution was increased by 1 g/dl compared to the previous one. The

inset implies that a time of approximately 90 s is necessary to establish a stable glucose

concentration profile within the epidermal skin sample.

reopened. The arrows (numbered 1) - 3)) indicate a 1 g/dl increase of the glucose concentration

of the consecutive samples. For higher concentration the PA signal is larger as expected but

after increasing the concentration, approximately 90 seconds are needed to reach a stable signal

as can be seen in the inset of Fig. 6. This is due to the time the glucose needs to diffuse from

the sample solution into the epidermal skin. It indicates that the time delay between BG and

ISF glucose concentration in vivo should be small (5 -15 min as stated in literature [13, 34]).

Once a steady glucose concentration profile is obtained within the epidermal skin sample a

stable PA signal is measured.

If the glucose concentration is increased shortly after reopening the shutter the PA signal is

still on the same level as before, which shows that the signal contribution from the glucose

solution itself is negligibly small. A rough estimation of the optical penetration depth of skin at

1034 cm−1 - assuming water to be the main absorbing component with a 10 % water content in

a 20 µm thick SC and a 60 % water content in the lower epidermal layer - yields 45 µm. This

is an upper limit of the penetration since other absorbing components have been neglected.

It confirms that the generated PA signal almost entirely originates from the epidermal skin

sample (70 - 100 µm thick) and not from the underlying glucose solution (i.e., l > µa > µs as

required for Eq. (2)).
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4.3. Glucose detection in epidermal skin samples

According to the procedure described in section 4.2 different glucose concentrations were

generated in the epidermal skin sample. In Fig. 7 a) the dependence of the PA signal on

glucose concentration in the epidermal skin sample is pictured. The data points 2 - 7 (i.e., up

to 3 g/dl) correspond to the signals displayed in Fig. 6 and were obtained after averaging for

each sample solution. A low modulation frequency (i.e., 137 Hz) was chosen to ensure a long

thermal diffusion length to access not only optical but also thermal information from deeper

skin layers (see Section 2). The PA signal linearly depends on the glucose concentration within

the large concentration range of 0 to 10 g/dl, indicating that even for the highest concentration

the requirements for Eq. (2) (i.e., l > µa > µs) still hold. This would not be the case in pure

water since the optical absorption length for water is 17 µm (absorption coefficient of water

at 1034 cm−1: α1034 = 590 cm−1) which is smaller than its thermal diffusion length for a

modulation frequency of 137 Hz (µs = 19 µm) even without added glucose. Due to a water

content of only 10 % in the SC and of approximately 60 % in the other epidermal layers the

optical absorption length might be up to 45 µm as discussed in section 4.2, resulting in the

observed linear dependence of the PA signal on the glucose concentration.

The RH and the temperature in the PA chamber were monitored simultaneously with the

Fig. 7. a) PA signal dependence on glucose concentration in a human epidermal skin sam-

ple (0 - 10 g/dl). A simultaneous measurement of RH (•) and temperature (+) allows to

compensate PA signal changes due to a variation of these parameters. Compensation for

these drifts leads to an improved correlation between the PA signal and the glucose con-

centration (R2=0.998). b) PA signal dependence on glucose concentration in a human epi-

dermal skin sample for lower concentrations (0 - 2000 mg/dl).

measurement of the PA signal as shown in Fig. 7 a). Thanks to the N2 ventilation variations

in RH are small. Nevertheless fluctuations occur especially when long time measurements are

performed. Recording the RH and temperature enables to compensate PA signal amplitude

fluctuations caused by a variation of these parameters (see Section 2). Since the PA cell length

is rather short (i.e., 4 mm) and the water-vapor absorption within the tuning range of the

QCL is weak (except at 1066 cm−1) the contribution of the gas absorption is negligible. If

the level of RH is well below saturation the effect of MIR scattered light around 10 µm is

small especially since the microphone is connected via a tube with the PA chamber. For the

PA cell geometry used in this work a somewhat larger PA signal increase with increasing RH

is experimentally observed compared to the one predicted solely from the parameter change of
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Dg and γ. Including the mathematical compensation for RH and temperature drifts improves

the correlation between the PA signal and the glucose concentration leading to a R2 of 0.998

(see Fig. 7 a)) .

Figure 7 b) shows PA signals for lower glucose concentration (0 - 2000 mg/dl), i.e., including

the physiological range of 30 - 500 mg/dl. The error-bars correspond to twice the standard

deviation (± σ) using a lock-in integration time of 1 s. This yields a detection limit for glucose

in epidermal skin samples of 100 mg/dl with signal-to-noise ratio (SNR) of 1. The detection

limit is not restricted by the sensitivity of the PA device itself as previous measurements

imply [20] but mainly caused by the mechanical instability of the thin epidermis. A small

pressure change in the PA chamber or a variation of the liquid amount in the reservoir alters

the position of the epidermis slightly (i.e., upwards or downwards bending) and causes

fluctuations in the generated PA signal. Once the solution is placed in the reservoir the PA

signal fluctuations are very small. Only for long time measurements during which a significant

part of the water evaporates into the surrounding and hence alters the water amount in the

reservoir, drifts of the PA signal are observed. These measurements demonstrate the ability of

the MIR PA technique to detect glucose within deep epidermal skin layers.

4.4. Spectra of epidermal skin samples

The tuning capability of the EC-QCL enables the recording of a PA spectrum from 1010 to

1095 cm−1. This covers two strong glucose absorption peaks at 1034 and 1080 cm−1. When

tuning the EC-QCL by rotating the grating, the cavity length is not maintained and mode-hops

occur approximately every 0.9 cm−1. Fine tuning is obtained by adjusting the temperature of

the QCL chip with a thermoelectric cooler.

For the measurements pictured in Fig. 8 a) distilled water, 2 g/dl and 10 g/dl aqueous glucose

solutions were successively placed in the liquid reservoir. After the completion of the diffusion

process a stable PA signal was obtained. The EC-QCL was then tuned via the external grating

Fig. 8. a) PA spectrum of a human epidermal skin sample in contact with water x, 2 g/dl

(+) and 10 g/dl glucose solution (•). b) PA spectrum of different glucose concentrations (2

and 10 g/dl) in human epidermal skin samples with subtracted water and skin background.

A comparison of a FTIR attenuated total reflection spectrum of glucose shows a good

correlation with the PA measurement.

in steps of 1 cm−1 to record a PA spectrum. Due to the wavelength-dependent QCL output in-
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tensity the PA signal is power normalized. The spectrum of the epidermal skin in contact with

water shows four unresolved absorption peaks at 1032, 1048, 1052 and 1076 cm−1. In the 1010

to 1095 cm−1 fingerprint region covered by the QCL nucleic acids, carbohydrated lipids and

proteins show characteristic C-O-P, C-O-C and C-C vibrations [46]. By comparing the meas-

ured peak positions to the FTIR spectra of SC reported by Garidel [36] the absorption peak at

1076 cm−1 can be assigned to the symmetric PO−
2 stretch between 1070 - 1080 cm−1. Its exact

position significantly depends on the presence of cations and hydration effects. Additional IR

contributions arise from the ν (CC) skeletal trans conformation (1077 cm−1) and cis confor-

mation (1032 cm−1) [47, 48]. The double peaks at 1048 and 1052 cm−1 might be caused by a

C-OP stretch (1047 cm−1 [36]) and albumin absorption (1052 cm−1 [42]). However the exact

assignment of the vibrational modes is difficult since in literature the focus usually lies on the

stronger absorption peaks like the amide I and amide II absorption at 1650 and 1550 cm−1,

respectively, which can be used for example to determine the water content of the SC [49, 50].

The subtraction of the pure water and epidermal skin spectrum from the spectra with 2 and

10 g/dl glucose in Fig. 8 a) reveals the glucose spectrum with its two prominent absorption

peaks at 1034 and 1080 cm−1 (see Fig. 8 b)). For comparison a FTIR attenuated total reflec-

tion (ATR) spectrum of a corresponding glucose solution (with subtracted water background)

recorded with a resolution of 1 cm−1 is pictured in Fig. 8 b). This shows good agreement with

the PA spectrum and demonstrates the possibility of recording a glucose spectrum in a human

epidermal skin sample.

5. Conclusion

The N2 ventilated PA cell has proven to provide stable measurement conditions for the investi-

gation of biological samples with high water content. Measurements on human epidermal skin

samples showed that RH decreases within less than 2 min from room RH to below 20 %.

Different glucose concentrations were generated in the epidermal skin sample by passive dif-

fusion from a glucose solution in contact with the lower epidermal layers. This process takes

approximately 90 s, which confirms that in in vivo measurements a short time delay between

BG and ISF glucose concentration is expected. Due to the construction of the human epider-

mis the outer most layer, the SC, contains negligible glucose concentrations. Hence by placing

the PA cell on the SC it is necessary to measure glucose through the 10 - 20 µm thick SC.

Our PA setup is able to sense glucose through the SC in the lower epidermal skin layers with

a detection limit of 100 mg/dl (SNR=1). It is currently limited by the mechanical stability of

the thin skin sample (<100 µm). These measurements represent a significant step towards in
vivo glucose sensing since they prove the feasibility of tracking glucose in vitro within lower

epidermal layers despite the limited penetration depth of MIR light into human skin. Epidermal

skin samples as used in our study match in vivo conditions rather well and the measurements

thus demonstrate that possible spectral interferences with other epidermal constituents do not

significantly disturb the glucose detection.

The obtained detection limit of glucose in epidermal skin lies within the physiological range

(30 - 500 mg/dl) but is still too high for in vivo glucose monitoring of diabetes patients. For in
vivo measurements the sensor has to be placed directly on the human skin which then provides

a rigid seal of the PA cell. A lower detection could thus be expected. Earlier measurements with

a similar PA cell yielded a detection limit of 33 mg/dl (SNR=1) yet in aqueous solutions [20]. If

this detection limit of glucose could be reached in vivo the sensitivity would be very close to the

± 20 mg/dl accuracy needed for an FDA approval of the sensor. However, in vivo measurements

bear additional problems caused by blood pulsation, movements of the patient or different skin

types which renders in vivo glucose sensing more challenging. First in vivo measurements with

the presented sensor showed, in addition to the laser-induced PA signal, a periodic signal caused
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by blood pulsation (0.8-1.2 Hz) [45]. This periodic signal is weak and visible only if short lock-

in integration times (∼ 3 ms) are employed. Since lock-in integrations times of typically 1 s are

used for glucose sensing, blood pulsation only minimally affects the measurements.

To improve the current glucose detection limit of the sensor simple measurements using a refer-

ence wavelength (i.e., with no glucose absorption) or an out-of-phase excitation at a reference

wavelength could be envisaged. Both approaches reduce problems caused by long-term drift

whereas the second technique - successfully employed in photothermal radiometry [17] - also

eliminates the large inherent background signal from the sample itself.

Acknowledgments

The authors gratefully acknowledge the financial support from GlucoMetrix NIB & Non Inva-

sive Diagnostic GmbH and ETH Zurich.

#161280 - $15.00 USD Received 11 Jan 2012; revised 16 Feb 2012; accepted 17 Feb 2012; published 1 Mar 2012
(C) 2012 OSA 1 April 2012 / Vol. 3,  No. 4 / BIOMEDICAL OPTICS EXPRESS  680

View publication statsView publication stats

https://www.researchgate.net/publication/224934175

