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Abstract The worldwide increase in the number of people
suffering from diabetes has been the driving force for the
development of glucose sensors. The recent past has devised
various approaches to formulate glucose sensors using various
nanostructure materials. This review presents a combined sur-
vey of these various approaches, with emphasis on the current
progress in the use of electrospun nanofibers and their com-
posites. Outstanding characteristics of electrospun nanofibers,
including high surface area, porosity, flexibility, cost effective-
ness, and portable nature, make them a good choice for sensor
applications. Particularly, their nature of possessing a high
surface area makes them the right fit for large immobilization
sites, resulting in increased interaction with analytes. Thus,
these electrospun nanofiber-based glucose sensors present a
number of advantages, including increased life time, which is
greatly needed for practical applications. Taking all these facts
into consideration, we have highlighted the latest significant
developments in the field of glucose sensors across diverse
approaches.
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Introduction

Owing to their vast range of application in the fields of med-
ical diagnosis, diabetes management, bioprocess monitoring,
food industries, and environmental monitoring, more attention
has been given to the development of highly sensitive and
selective glucose sensors [1–4]. Diabetes is considered to be
a globally prevalent metabolic illness, which causes the blood
glucose level to increase to 126 mg/dL or higher (<100 mg/dL
for the normal level according to American Diabetes Associ-
ation) [5]. On a global basis, diabetes is said to affect 382
million people, and is expected to reach half a billion by the
year 2035 [6]. The initiative for biosensors dates back to the
1960s with the revolutionary study of Clark and Lyons,
followed by the work of the first enzyme-based glucose sensor
by Updike and Hicks in 1967 [7, 8]. These studies provided
compelling evidence about the amount of oxygen consumed
in the glucose oxidase (GOx)-catalyzed reaction of glucose
oxidation. Consequently, extensive research has been under-
taken, studying the various types of glucose sensors, including
optical and electrochemical sensors [9–16]. Generally, glu-
cose sensors can be broadly divided as GOx-based sensing
(i.e., enzymatic glucose sensing) and nonenzymatic glucose
sensing.

Enzymatic glucose detection involves the oxidation of glu-
cose in the presence of GOx enzyme, which has been exten-
sively utilized for constructing several sensors for glucose
detection, mainly because of their high sensitivity and selec-
tivity to glucose. For the fabrication of these sensors, immo-
bilization of enzymes on a suitable matrix along with their
stability is critical [17–19]. Nevertheless, these sensors
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involve highly complex procedures of immobilization and
also display lack of long-term stability. In addition, the sensing
abilities of these enzymes are very much prone to differences
in pH and temperature during measurements, because of their
nature. Thus, greater attention has been devoted for the devel-
opment of nonenzymatic glucose sensors, suppressing the dis-
advantages of enzymatic biosensors. Whether enzymatic or
nonenzymatic, the analytical performances can be largely in-
creased by using unique nanostructure materials [20–38].

As a well-known fact, the morphology of nanomaterials in
sensors has a vital part in determining their activity, selectivity,
and stability in a catalytic process. Various studies from the
literature have provided evidence that the exotic variety of
these nanomaterials of different morphologies, including
nanowires, nanospheres, nanosheets, nanofibers, and flower-
like nanostructures, have achieved enhanced performance in
monitoring and detection of glucose [21–32]. Also, the stabil-
ity of these nanoparticles has to be given equal importance and
consideration, apart from controlling their size. In order to
avoid the agglomeration of the nanomaterials, a robust support
system has to be in place for the particles to maintain their
individualistic characteristics. Interestingly, the fabrication of
enzymes requires the immobilization of enzymes on solid in-
terfaces, which can be obtained by various strategies, such as
physical adsorption, covalent attachment, and physical entrap-
ment or encapsulation, etc. Although progress is being made
in the current scenario, some novel host materials, such as
graphene, carbon nanotubes, ordered mesoporous silica-
based materials, etc., are being utilized in glucose biosensors
because of their large surface area and good biocompatibility
[33–40]. Besides, the expenses involved in the reproducible
production of nanomaterials and nanostructures are of high
importance. Also, the unstable nature and loss of enzyme ac-
tivity during immobilization process affects the thermal and
chemical stability, sensitivity, and reproducibility of glucose
sensors. Recent years have seen developing interest on
colorimetry-based detection, which has several advantages,
including high sensitivity, simplicity, and low cost [41–50].
A variety of fluorescent nanoparticles have been used as col-
orimetric probes [51–53]. Among various techniques,
electrospinning is considered to be a facile and inexpensive
technique for large-scale synthesis of nanofibers, character-
ized by exceptional length and uniform diameter ranging from
tens of nanometers to several micrometers. Successful usage
has been recorded for electrospun nanofibers and their com-
posites in the fields of sensors, water purification, etc., be-
cause of their large surface area, flexibility, and porous struc-
ture [54–66]. These features of large surface area-to-
volume ratio, high porosity, and interconnectivity of
nanofibers prove them to be compelling for enzyme
immobilization [67]. This is because the enzyme loading
can be authentically increased, along with a significant
decline in diffusion resistance of substrates.

To the best of our knowledge, not many reviews have re-
ported on electrospun nanofibers-based glucose detection.
Our review is one of the first to highlight the electrospinning
approach and list its applications in various kinds of glucose
sensors. The primary goal of our study is to provide the reader
with a comprehensive understanding of the new advances in
the field of electrospun nanofibers and their composites that
can be used for increasing sensor performance. We are confi-
dent that such advances are vital for developing flexible and
adaptable sensors, which will pave the path for new avenues
and future research.

Overview of glucose sensor development

Including electrochemical, optical, and electromagnetic
spectroscopy biosensors, numerous glucose biosensors
have been studied and reported [68–78]. Considering
the various approaches involved in glucose sensor, the
mechanisms fall into two main categories: (1) enzymatic
and (2) nonenzymatic, both of which have been inten-
sively researched and utilized. The basic principle of
enzymatic glucose detection is the oxidation of glucose
in the presence of air by GOx enzyme, producing
gluconic acid. Rightly described as the ‘ideal enzyme’
for glucose oxidation in the review by Wilson and
Turner in 1992, these possess a relatively high selectivity,
sensitivity, and stability compared with other enzymatic
materials [76]. Starting back in the 1962 with the excellent
work of Clark and Lyons [7], the first enzyme-based glucose
sensor was initiated by Updike and Hicks in 1967 [8]. The
conversion of electroinactive substrates to electroactive
products with the utilization of enzymes is elaborated in the
works of Clark’s original patent of amperometric enzyme
electrode [79].

Another enzyme used for glucose sensing is Glucose de-
hydrogenase (GDH), which is used for fabricating commer-
cial test strips for blood glucose, owing to their ability to
operate at lower detection potentials [80–84]. Also,
hexokinase-based sensing is used as a reference system main-
ly for the detection of glucose in blood because of its ultrahigh
specificity. However, hexokinase enzyme has not been in
wide use in the research of glucose sensing as GOx, due to
its high cost, lower stability, and the necessity for ATP in its
enzymatic reaction [80, 85, 86]. Various strategies, including
physical adsorption, covalent attachment, and physical entrap-
ment or encapsulation have been used for the immobilization
of enzymes on solid interfaces [87]. These enzymatic sensors,
based on their glucose oxidation mechanisms, can be broadly
classified into three generations. The summary of the entire
glucose oxidation mechanism is displayed in Fig. 1.

In 1975, Yellow Spring Instrumentation Company devised
the first commercial glucose sensor based on the first genera-
tion glucose biosensor, which is dependent on the presence of
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oxygen as a co-substrate [88]. However, these sensors experi-
enced failure owing to issues regarding the presence of
electroactive interference species in the blood and the depen-
dence on free oxygen as a catalytic mediator. In order to over-
come these defects, the second generation of sensors was ini-
tiated by the usage of synthetic electron accepting-mediators
as alternative co-substrates. This included ferrocene deriva-
tives, ferricyanide quinones, and transition-metal complexes
[89–92]. Yet again, the second generation sensors also posed
challenges because of their size and diffuse molecules. Also, it
was difficult to maintain the mediator near the electrode and
enzyme and the formation of interference species called hy-
drogen peroxide. This was followed by the use of third gen-
eration of sensors without employing any natural and synthet-
ic electron mediators, facilitating the direct electron transfer
between the enzyme and the electrode [88].

Nevertheless, there still remain some disadvantages of
enzyme-based glucose determination. Although enzymatic
sensors are highly selective, sensitive, fast, and reversible,
their chemical and thermal instabilities originating from the
intrinsic nature of enzymes as well as their tedious fabrication
procedures and high cost prove them to be disadvantageous
[88]. This was followed by the presence of complicated en-
zyme immobilization and critical operating conditions [93].
Also, the activity of enzymes is prone to be affected by exter-
nal parameters, such as temperature, pH, humidity, and toxic
chemicals [94, 95]. This has prompted various enzyme-free
sensors to further investigate the electrocatalytic activity and
selectivity towards glucose oxidation to address the issues
associated with enzymatic sensors. It is to be noted here that
the underlying principle of electrocatalysis is the adsorption of
analytes to electrode surface.

In 1909, Walther Loeb reported the direct electro-oxidation
of glucose to gluconic acid in a sulfuric acid solution at a lead
anode [96]. Recent past has also observed the development of
nonenzymat ic glucose sensors by using severa l
electrocatalysts in glucose oxidation. In general, these
enzyme-free sensors are considered to be fourth generation
sensors. However, the challenges posed in this approach in-
clude (1) the restriction in the sensitivity of glucose sensing
because of the relatively low kinetics of glucose electro-
oxidation on conventional electrodes; (2) the impairment of
noble metal electrodes by the irreversibly adsorbed oxidation
intermediates of glucose and the adsorbed chloride ions, and
(3) the poor selectivity of nonenzymatic glucose sensors, giv-
ing the possibility of oxidation of some other sugars and in-
terfering species in the potential range of glucose oxidation
[80, 97, 98]. This also includes the expensive nature of these
sensors, fouling of electrodes and their instability, making
them unfit for practical applications.

Recent years have seen cont inuous reports of
nanomaterials based nonenzymatic glucose sensors, in spite
of various challenges posed by enzymatic glucose sensors
[99]. This also included the introduction of several types of
nanostructured materials, such as metal nanoparticles (plati-
num [100], gold [101], palladium [102], nickel [103], copper
[104]); metal oxides (copper oxide [105], cobalt oxide [106],
nickel oxide [107], manganese oxide [108], zinc oxide [109],
iron oxide [110]); metal complexes (nickel hexacyanoferrate
[111]); alloys (platinum-Lead [112], platinum-ruthenium
[113], platinum-iridium [114], platinum-nickel [115],
platinum-gold [116], gold-silver [117], gold-ruthenium
[118], gold-copper [119]), nickel oxide/carbon [120],
platinum/nickel oxide [121], copper/nickel oxide [122],
copper/zinc oxide [123], copper/copper oxide [124],
palladium/copper oxide [125], titanium dioxide/copper oxide
[126], cadmium oxide/nickel oxide [127]); quantum dots
(cadmium telluride [128], zinc sulfide [129], cadmium sulfide
[130]); polymers (polyaniline [131], N-isopropylacrylamide
[132]); and carbon based materials (fullerene [133], carbon
nanotubes and graphene [134], carbon nanofibers [135]). This
review has concentrated solely on presenting the exclusive
nature of electrospun nanofibers and their composites for the
efficient development of glucose sensors.

Electrospinning approach

Electrospinning has been considered to be an effective method
for the fabrication of nanofibers from a wide range of mate-
rials . Among the prominent ranges of materials ,
electrospinning produces nanofibers of polymers, composites,
ceramics, and supramolecular structures [136–140]. The com-
prehensive understanding on the various parameters and pro-
cesses involved for nanofiber formation permits us to fabricate
the desired fiber assemblies. Technically, the process of

Fig. 1 Summary of enzymatic glucose oxidation mechanisms, presented
as first, second, and third. [Reprinted with permission from [80] © 2013
Royal Society of Chemistry]
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electrospinning is defined as the uniaxial elongation of a jet,
released from the charged polymer solution in the presence of
a strong electric field. The factors affecting the diameter and
morphology of the electrospun nanofibers are generally divid-
ed into two major categories; materials-related parameters
(polymer type, molecular weight, solvent type, viscosity, so-
lution conductivity, surface tension, etc.) and electrospinning
process parameters (applied voltage, distance between elec-
trodes, flow rate, nozzle diameter, collector type, etc.)
[141–151]. The uniform and defect-free (bead-free)
electrospun nanofibers display various features, including
high surface area, coupled with excellent porosity, high struc-
tural and mechanical properties, flexibility, low basis weight,
and cost effectiveness nature. The most compelling benefit in
the entire electrospinning process is their efficiency to
completely lace together a variety of functional molecules/
particles into a nanofibers matrix. Moreover, these functional
molecules/particles either disperse into the polymer solution,
followed by electrospinning them to produce composites in
the form of continuous nanofibers (named in-situ approach) or
attaching on the nanofibrous assemblies (named ex-situ ap-
proach). Both of the resulting products possess enhanced
manufacturing capabilities and use a facile technique and car-
ry remarkable flexibility [151–153]. The eminent feature of
high flexibility aids in their easy handling and maintains their
reproducibility. In order to obtain high sensitivity towards the
analyte, the selection of substrate supporting effective loading
of enzymes is essential. High-surface area, optimum porosity,
and chemical inertness are some of the ideal features essential
to obtain elevated performance for the sensors. Till now, sev-
eral nanostructured materials have been used successfully as
support matrix, including porous silica structures and nano-
particles; and also various approaches can be adopted for the
immobilization of enzyme including physical adsorption,
cross-linking, and self-assembly [154–156]. The nanoparti-
cles usually limit the mass transfer rate and are also difficult
to recycle. Out of different host materials, electrospun fibrous
membrane proves to be efficient for achieving improved sens-
ing performance because of its appealing feature of a large
surface area and porous structure facilitating enhanced
functionalization and high loading capacity, stability, and long
life time of enzymes.

There has been great interest in the fabrication of
electrospun metal oxide nanofibers and noble metal nanofi-
bers for glucose detection, as these tend to form highly porous
three-dimensional networks, possessing high conductivity,
minimized diffusion resistance for analytes, and enhanced
electron transfer. One of the simplest methods of incorporating
glucose oxidase in the nanofibers is by mixing glucose oxi-
dase into the solution, followed by the process of
electrospinning, and subsequent change in the current has
been noted following immersion of electrospun coated elec-
trode into the glucose solution. A serious problem

encountered in enzyme-based sensor is the loss of enzyme
activity attributable to the change in the environmental param-
eters since the enzymes are used to denature under varying the
pH values and temperature. Therefore, protecting the enzymes
is of great importance in designing biosensors to enhance the
performance. As we looked for further details in the literature,
electrospun-based nanofibers and their composites proved to
overcome the disadvantages confronted in previous investiga-
tions, thus enhancing the overall sensing performance of glu-
cose [29, 36, 157]. This technique has elaborated the stability
of the enzymes and their extended application. The following
sections brief the importance of electrospun nanofiber based
glucose sensing performance under several aspects. We ex-
tend our apologies to authors whose works have been unin-
tentionally left out.

Composite fibers

Increasing attention has been devoted for the development of
composite materials owing to their ability to combine the fea-
tures of two components. Current applications have used
unique properties of nanoparticles to be delivered as fillers
of composites or as coating materials. It is the property of this
polymer-nanoparticle composite that has enhanced the flexi-
bility, stability, and the conformational ability for the forma-
tion of complicated structures, while retaining the nanoparticle
traits [158–160]. While the polymer network serves as a tem-
plate medium, it also acts as the stabilizing agent for the nano-
particles on a long-term basis and proves to be a landmark in
protecting their usability and function. One of the key param-
eters that are responsible for enhancing the performance of the
composites includes the uniform distribution of nanoparticles
in the polymer matrix. Selectivity promoted by surface mod-
ification plays a major role for sensor application. However,
due to the large specific surface energy, the nanoparticles have
shown a tendency to aggregate [161, 162], resulting in un-
avoidable circumstances, as the nanoparticles start to distrib-
ute inhomogeneously in the polymer matrix, finally losing
their function. Despite introducing several methods to prepare
composites, challenges have been faced, including random
distribution and aggregation of nanoparticles in polymer
matrix.

Proving to be an attractive metal for the oxidation of glu-
cose, the catalytic activity of gold (Au) toward glucose oxida-
tion is said to be increased by depositing Au nanoparticles on
a supporting matrix [163, 164]. This is evident in the works of
Li, C. et al., in 2012, where an enzymeless glucose biosensor
based on polypyrrole nanofibers-supporting Au nanoparticles
(Au/PPyNFs) is demonstrated [165]. Polypyrrole nanofibers
(PPyNFs) have been considered as one of the leading
conducting polymers and are widely used as a supporting
matrix in electrochemical sensors. Their wide usage is attrib-
uted to good physical and electrical properties, excellent
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environment stability and biocompatibility, and ease of prep-
aration. Considerable effort has been gained for the applica-
tion of conducting polymer to bioelectronic surfaces to resolve
the challenges posed by enzyme-based biosensors [166, 167].
This has been made possible by increasing the signal-to-noise
ratio and thereby serving as a suitable matrix for the immobi-
lization and entrapment of enzymes.

The recent investigation has also supported the functional
retaining of GOx post-entrapment in conducting polymers,
and is found to be more resistant to denaturization towards
changes in pH or temperature [168]. A new and novel ap-
proach was demonstrated by Yang G. et al., for the fabrication
of enzyme entrapped conducting polymer nanofibers, thus
offering higher sensitivity and increased life time compared
with conducting polymer film counterparts [169]. Sufficient
research has been done on the application of poly(3,4-
ethylenedioxythiophene) (PEDOT) in amperometric biosen-
sors because of its higher chemical stability and electrical
conductivity [170]. Figure 2a–e display the fabrication pro-
cess of GOx-incorporated PEDOT on the microelectrode ar-
ray. The process involves the electrodeposition of the GOx
incorporated-PEDOT films (PEDOT F-GOx) onto the surface
o f p l a t i n um ( P t ) m i c r o e l e c t r o d e a r r a y s b y
electropolymerization. Then, the poly(L-lactide) (PLLA)
nanofibers were produced directly on Pt microelectrode arrays
to obtain to obtain GOx incorporated-PEDOT nanofibers
(PEDOT NFs-GOx). To obtain GOx-incorporated PEDOT
nanofibers (PEDOT NFs-GOx), poly(L-lactide) (PLLA)
nanofibers were first directly electrospun on Pt microelectrode
arrays. Subsequently, electrochemical deposition of PEDOT
on the Pt microelectrodes and around PLLA nanofibers was
performed in a similar manner to the PEDOT F-GOx.
Figure 2h–m display the optical and SEM images of Pt micro-
electrode arrays, PEDOT F-GOx, and PEDOT NFs-GOx on
the Pt sites. The authors have highlighted four advantages of
the designed sensor, which are the presence of nanoscale ma-
trix for the entrapment of GOx, reduced impedance, increased
entrapment of GOx within PEDOT, and detection of glucose
at lower potential.

In the recent past, carbon-based nanoscale materials such
as graphene [171], carbon nanofibers (CNFs) [172], carbon
nanotubes (CNTs) [173], and carbon foam [174] to be used as
immobilization matrix because of their strong electrocatalytic
activity and minimization of surface fouling onto electro-
chemical devices has been explored. The immobilization of
biomolecules onto the surface of electrospun carbon structures
has seen the emergence of a new class of glucose sensors with
improved performance characteristics. Liu Y. et al. demon-
strated the nickel (Ni) nanoparticle-loaded carbon nanofiber
paste (NiCFP) based nonenzymatic glucose sensor [175]. In
this approach, the polyacrylonitrile (PAN)/Ni acetylacetonate
(NiAA) composite fibers were prepared by using
electrospinning method. Then, electrospun PAN/NiAA

composite fibers were subjected to carbonization at highest
temperature to obtain Ni loaded carbon nanofiber (diameter
200–400 nm) nanocomposite. The SEM image of NiCF nano-
composite clearly confirmed the good distribution of Ni nano-
particles on the surface of the carbon nanofibers as demon-
strated in Fig. 3A. It can be demonstrated from the TEM
image that the nanoparticles, having a diameter of about 50
nm, are embedded in the CF matrix, emphasizing the fact that
they are not easily detachable from the NiCF nanocomposite
(Fig. 3B). Thus, the NiCFP electrodes were prepared by
mixing themwith mineral oil. The prepared renewable NiCFP
electrodes exhibited strong and quick amperometric response
with detection limit of 1 μM, without being poisoned by chlo-
ride ions. The resulting response of the proposed glucose sen-
sor was found to be highly sensitive and stable, which can be
attributed to the electrocatalytic performance of the strongly
embedded Ni nanoparticles on carbon fibers and their charac-
teristics of chemical inertness.

Among the diverse advantages of electrospun nanofibers,
their capacity to adapt to the variety of nanoparticles on their
surface is noteworthy [176, 177]. Recent studies by Li M.
et al. demonstrated the nonenzymatic glucose detection based
on series of bimetallic MCo (M = Cu, Fe, Ni, and Mn) nano-
particles anchored/embedded electrospun carbon nanofibers
(CFs) [178]. The schematic representation of the preparation
procedure for CuCo–CFs and the comparison of their catalytic
effect to other MCo–CFs are shown in Fig. 4. The various
composites such as Co–CFs, FeCo–CFs, NiCo–CFs, and
MnCo–CFs were also prepared by following the same proto-
col. The observed results show the structural advantages of the
3-D network films and the synergistic effect of the Co(III)/
Co(IV) and Cu(II)/Cu(III) redox couples, with the CuCo–CFs
displaying the best detection efficiency (sensitivity of 507 μA
cm−2 mM−1, with a response time within 2 s, a linear range
from 0.02 to 11 mM), good reproducibility, and long-term
stability. The outcome has shown that the catalytic abilities
follow the order of CuCo–CFs > FeCo–CFs > NiCo–CFs >
Co–CFs > MnCo–CFs. It is notable that the high surface-to-
volume ratio, complex pore structure, and extremely long
length of electrospun CuCo–CFs render the direct electro-
catalytic oxidation and amperometric detection of glucose.

Uzun, S. D. et al. have successfully displayed an efficient
surface design based on functional composite fibers for effec-
tive encapsulation of biomolecules [179]. The graphite rod
electrode surfaces was first modified by coating with nylon
6,6 nanofibers and 4% (w/w) multiwalled carbon nanotubes
(MWCNTs), incorporating nylon 6,6 nanofibers (nylon 6,6/
4MWCNT). Then, conductive polymer PBIBA (poly-4-(4,7-
di(thiophen-2-yl)-1H-benzo[d]imidazol-2-yl)benzaldehyde)
was uniformly coated on nylon 6,6 and nylon 6,6/4MWCNT
fibers to obtain a high electroactive surface as illustrated in
Fig. 5a, b. The observed results confirmed the uniform coating
of PBIBA all over the nanofiber surface, which might be the
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result of the porous morphology. The proposed surface design
is expected to increase the surface area of the coated
conducting polymer. The presence of aldehyde groups in
polymeric structures facilitates the effective immobilization
of glucose oxidase (GOx), considered to be a model enzyme
by covalent binding. Owing to the rough structure of the sur-
face, these enzyme molecules can easily penetrate into the
polymeric layer. Thus, the most efficient, stable platform has
been prepared by combining the PBIBA and nanofibers. This
was due to the strong covalent bonds between GOx and
nanofibrous composite coated surfaces. The produced glucose
biosensors reveal good stability, promising Imax values (10.03
and 16.67 μA for nylon 6,6/PBIBA and nylon 6,6/4MWCNT/

PBIBA modified biosensors, respectively) and longer shelf
life (32 and 44 d for nylon 6,6/PBIBA and nylon 6,6/
4MWCNT/PBIBA modified biosensors, respectively).

Particular detailing has been provided to the direct electron
transfer (DET)-based detection towards the advancement of
mediator less biosensors (i.e., devices that do not want any
extra reagents in a sample to detect the enzyme’s substrate).
This method, called the DET, occurs between the active redox
enzymes and conductive nanomaterials, playing a critical role
in developing electrochemical devices [180, 181]. As can be
seen, if an enzyme that is immobilized on an electrode surface
is found to be capable of DET and retain its bioactivity, it is
utilized in sensors without adding mediators or promoters

Fig. 2 Schematic of fabrication
process of GOx-incorporated
PEDOT on the microelectrode
array: (a) Pt microelectrode array.
(b), (c) Electrodeposition of GOx-
incorporated PEDOT film
(PEDOT F-GOx). (c)
Electrospinning of PLLA
nanofibers on the microelectrode
array. (d), (f) Electrodeposition of
PEDOT around the PLLA
nanofibers to form GOx-
incorporated PEDOT nanofibers
(PEDOT NF-GOx). (g)
Schematic of entrapment of GOx
within PEDOT structure. (h)
Optical micrograph of entire
microelectrode array. (i) Optical
micrograph of microfabricated
electrodes showing two uncoated
Pt sites and four GOx-
incorporated PEDOT sites. (j)
Scanning electron micrograph of
PEDOT F-GOx. (k) Higher
magnification SEM of PEDOT F-
GOx. (l) Scanning electron
micrograph of PEDOTNFs-GOx.
(m) Higher magnification SEM of
PEDOT NFs-GOx. [Reprinted
with permission from [169] ©
2014 WILEY-VCH Verlag
GmbH & Co. KGaA, Weinheim]
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onto the electrode surface or into the solution. However, it is
quite difficult for an enzyme to achieve a direct electrochem-
ical reaction because of several factors. One would include
denaturation of enzymes when they are adsorbed on the elec-
trode surface, resulting in loss of their electrochemical activi-
ties and bioactivities. Secondly, the large 3-D structure of en-
zymes and the resulting inaccessibility of the redox centers
prove them to be complex to get the desired DET between
enzymes and electrode surfaces. Interestingly, much effort has
been applied to devise solutions for the issues discussed
above, resulting in varied degrees of success.

Zhang, X. et al. developed a DET-based glucose biosensor
based on nitrogen-doped carbon nanospheres@carbon nano-
fiber (NCNSs@CNFs) composite [182]. The electrospun
polypyrrole nanospheres doped polyacrylonitrile nanofibers
(PPyNSs@PAN NFs) is subjected to thermal treatment to ob-
tain NCNSs@CNFs. Thus, the as-prepared material can serve
as an ideal substrate for the immobilization of GOx and realize
the efficiency of DETof GOx without any pretreatment. Also,
the mass diffusion of the matrices can be improved by the
highly porous open structure of NCNSs@CNFs facilitating

the DET between the active centers of GOx and the modified
electrode. In the recent past, studies have determined that the
change in the GOx structure was the underlying reason for the
denaturation of GOx upon its absorption on the nanostruc-
tured surface and the subsequent loss of enzyme function.
Interestingly, the observed results have highlighted the prom-
inence of electrospun NCNSs@CNFs composite film to serve
as a convincing platform for the construction of the DET
based sensors.

Metal oxide nanofibers

As the properties of the substrate material prove to have a
direct influence on the faradaic current of glucose oxidation,
the selection of substrate electrode plays a critical role. Hence,
nanostructured one-dimensional metal oxides such as zinc ox-
ide, cobalt oxide, copper oxide, nickel oxide, manganese ox-
ide etc. based glucose sensors have gained increased attention,
owing to their large specific surface area, high electron mobil-
ity, chemical stability, electrochemical activity, and biocom-
patibility [43–48]. Several efforts have been successfully

Fig. 4 Synthesis of CuCo–CFs
hierarchical networks and their
glucose detection performance.
[Reprinted with permission from
[178] © 2014 Elsevier B.V.]

Fig. 3 SEM image (A), TEM
image (B), and EDX spectra (C)
of the NiCF nanocomposite.
[Reprinted with permission from
[175] © 2009 Elsevier B.V.]
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forwarded by various research groups for the efficient prepa-
ration of metal oxide nanofibers using electrospinning meth-
od. The resulting outcome emphasized the emergence of the
electrospinning method to be a compelling technique for the
construction of composite and inorganic nanofibers that has
various applications including glucose sensor [183–197].
Metal oxide nanofibers are prepared in a two-step procedure
(i.e., first the organic phase in composite nanofibers is re-
moved via calcinations at high temperature). The key factors
playing an important role in determining the morphology and
properties of the metal oxide nanofiber include calcination
temperature, heating rate, time, and environment. Recent stud-
ies and analyses have proven that the metal oxide nanofibers
exhibit solid performance for the detection of glucose in the
absence of enzymes.

Following this, the electrochemical properties of metal ox-
ide nanofibers have been improved by incorporating several
metals and nanoparticles [28, 198–200]. Reported to be one of
the most prominent materials, zinc oxide (ZnO) nanofibers
possess significant characteristics of biocompatibility,
nontoxicity, stability, and electrochemical activities. A three-
dimensional network was devised by Zhou, C. et al. [201]
consisting of 1D ZnO–CuO hierarchical nanocomposites
(HNCs) and studied their enzymeless sensing properties by
varying the thickness of three-dimensional network towards
glucose. For a comparison study, pure CuO NWs and mixed
ZnO/CuO NWs were also prepared by electrospinning. The
resulting response of the nonenzymatic process towards glu-
cose is as shown in Fig. 6. High demand has been observed for
reducing the sensor to a single probe level due to it lower

financial profit, high sensitivity with lower detection limit
and faster response time.

Ahmad, M. et al. have successfully demonstrated a single
ZnO nanofiber (ZnO-NF)-based highly sensitive amperomet-
ric glucose sensor [190]. In the study, the ZnO-NF was pre-
pared by calcination of electrospun poly(vinyl pyrrolidone)
(PVP)/zinc acetate composite fiber. The fabrication of single
NF-based glucose sensor and its mechanism is illustrated in
Fig. 7. First, using a high resolution microscope, the ZnO-NF
is transferred to a conventional gold electrode (with 3 mm
diameter). This is followed by wetting the as-prepared ZnO-
NF/gold electrode by phosphate buffer (PB) solution and sub-
sequent air drying for 2 h. Since the ZnO-NF is known to have
poor adhesion towards the supporting materials, it is strongly
expected to decrease sensitivity and selectivity over time.
Thus, poly(vinyl alcohol) (PVA) solution is dropped onto
the ZnO-NF/gold electrode, followed by drying to form a film
on the individual NF, after which GOx/L-Cys is added on the
surface of the ZnO-NF/gold electrode. Here, the washing step
is adopted to remove the excess amount of adsorbed GOx on
the surface of electrode. Thus, the altered electrode for glucose
sensor is finally fabricated and obtained.

The sensing mechanism involves the oxidation of glucose
by GOx(OX) to gluconolactone, while reduction of GOx(OX)
takes place to form GOx(R). By reacting with the oxygen
present in the solution, the consumed GOx(OX) could be re-
generated from GOx(R). Consequently, hydrogen peroxide
(H2O2) production occurs in this process, which can be quan-
titatively detected on the modified electrode (please refer to
equation in Fig. 7a.

Fig. 5 Representative SEM
images of (a) nylon 6,6/PBIBA
and (b) nylon 6,6/4MWCNT/
PBIBA surfaces before GOx
immobilization; (c) nylon 6,6/
PBIBA and (d) nylon 6,6/
4MWCNT/PBIBA surfaces after
GOx immobilization under
optimized conditions. [Reprinted
with permission from [179] ©
2014 American Chemical
Society]
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The cyclic voltammetric (CV) sweep curves of the bare
(black line) and ZnO-NF-modified gold electrode without glu-
cose (dotted line) and with 100 μM glucose (red line) at the
scan rate of 100 mVs–1 in the range –0.4 to 0.8 V is clearly
displayed in Fig. 7b. In contrast to the bare and modified
electrode without glucose, there is significant increase in the
oxidation current, relating to the oxidation of glucose by GOx
catalysis. Additional attention is required for the stability of
the nanofibers morphology because of the damaging property
of the metal oxide nanofiber when being transferred on the
electrode. Also, critical factors such as calcination, tempera-
ture, heating rate, and environment play vital roles in proving

the properties of the nanofibers. Interestingly, two major
events were observed during the calcination of composite
nanofibers; the escapist attitude of polymers after decomposi-
tion and the crystallization of the metal oxide nanoparticles
[202].

In general, the process of electrode preparation involves the
dispersion of metal oxide nanofibers in suitable solvents by
using the process of ultrasonication, followed by casting the
suspension to the electrode surface to immobilize metal oxide
nanofibers. In addition to the challenge of being time-consum-
ing, this process also was found to affect the morphology
[203]. An efficient method was demonstrated by Liu, G.

Fig. 6 Reaction mechanism of
3D porous ZnO–CuO HNCs
electrodes. [Reprinted with
permission from [201] © 2014
Nature Publishing Group]

Fig. 7 (a) Schematic
presentation of the modified gold
electrode and the mechanism of
the glucose sensing on the
modified electrode. (b) Cyclic
voltammograms of the bare and
modified gold electrode without
and with 100 μM glucose in pH
7.0 PB solution. (c) Cyclic
voltammograms of the biosensor
in PB solution (pH 7.0)
containing 100 μM glucose at a
scan rate of (a) 100mV, (b) 80, (c)
50, and (d) 20 mVs−1. [Reprinted
with permission from [190]. ©
2010 American Chemical
Society]
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et al. for enhancing the stability and sensing performances of
CuO NFs–ITO nonenzymatic glucose sensors, based on in
situ electrospun fiber [204].

First, the precursor solution with Cu(NO3)2 dissolved in
poly(vinyl pyrrolidone) (PVP) was subjected to direct
electrospinning on an indium tinoxide (ITO) surface. Then,
calcination was performed in air to remove the matrix polymer
of PVP and subsequently convert the precursor fibers into
CuO nanofibers. Electrode preparation by this technique was
found to be simple, convenient, and, most importantly, en-
sured fast electron transfer between the CuO nanofibers and
the ITO electrode, which improved the overall sensitivity of
the sensor towards glucose. Since the CuO nanofibers on the
ITO surface possess high stability and faster response towards
glucose, it is convenient to directly use them as a working
electrode for detection of glucose.

Furthermore, research has been directed towards the en-
hancement of sensing performance by using synergistic ef-
fects of two components. It has been observed that the immo-
bilization of metal nanoparticles onto the metal oxide nanofi-
bers increases the sensitivity of the sensor. The fabrication of
silver nanoparticles modified cupric oxide nanofibers (Ag/
CuO NFs) for nonenzymatic glucose sensors has been per-
formed by Zheng, B. et al. [189]. Figure 8 schematically de-
scribes the preparation process for Ag/CuO NFs on ITO elec-
trodes. Interestingly, it has been found that the response time is
faster than the enzyme-based glucose sensor because of its
direct deposition of electrospun NFs on the ITO electrode
surface. Although there exists a narrow linear working range
as seen in Fig. 9D, the sensitivity of the Ag/CuO NFs–ITO
towards glucose at 0.50 V is about 2.4-fold higher than the
CuO NFs–ITO. The resulting outcomes stress the

enhancement of sensor sensitivity by the incorporation of
AgNPs into CuO NFs. The underlying reason behind the
mechanism is that AgNPs not only improve the electron trans-
fer between the Ag/CuO hybrid NFs and the ITO electrode but
also between the Ag/CuO NFs and the glucose molecules
present in the solution.

Recent reports have shown that the well-defined porous
nanostructures are proven to be ideal electrode materials to-
wards glucose oxidation as they possess larger surface area,
high porosity, and open geometry, reinforcing the mass and
electron transport of electrolytes at the electrode–electrolyte
interface. Three different kinds of electrospin-based nanofi-
bers (NiO–Ag nanofibers, NiO nanofibers, and porous Ag)
have been prepared by Ding, Y. et al. [198]. The preparation
method is a two-step procedure that involves the
electrospinning of Ni(NO3)2-AgNO3-PVP, Ni(NO3)2-PVP,
and AgNO3-PVP precursor nanofibers and a subsequent cal-
cination process as described earlier.

In order to investigate the potential application of the pre-
pared nanofibers in nonenzymatic glucose sensing, a compar-
ative study has been performed. Subsequent results highlight
the improved electrocatalytic property towards glucose
electro-oxidation for NiO–Ag hybrid nanofibers, compared
with pure NiO nanofibers or porous Ag. For successful appli-
cation in sensors, selectivity is as challenging as important to
nonenzymatic glucose sensors because of the coexistence of
the oxidative species such as ascorbic acid (AA) and uric acid
(UA) with glucose in human blood, and the lack of such se-
lectivity is a major drawback in nonenzymatic glucose sen-
sors. The response of the porous Ag/GCE to 0.125 mM AA
and 0.33mMUA is shown in Fig 10A, which clearly indicates
the porous Ag/GCE exhibited 17-fold and 55-fold higher

Fig. 8 The preparation process of
Ag/CuO NFs–ITO electrode.
[Reprinted with permission from
[189] © 2014 Elsevier B.V.]
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response than that of 4 mM glucose at 0.1 V. Better explana-
tion can be offered by the catalytic activity of porous Ag
towards AA and UA oxidation.

Colorimetric detection

Over the past few decades, remarkable advancement has been
achieved in the development of glucose sensors by taking the
benefits of huge number of several nanostructured materials.
Most of the efficient analytical tests are time-consuming, re-
quire complicated data-collection and processing procedures,
and involve sophisticated scientific instruments and profes-
sional operators. These procedures turn out to be expensive
and thereby limit their extensive application. Among these
methods, the colorimetric approach proves to be promising
in addressing all these issues with ease, attributed to its low
cost, simplicity, and practicality. This method proves to be
advantageous such that the color change occurring in the pres-
ence of analytes can be read out by the naked eye without the
need for any sophisticated instrument. The resulting features
of the colorimetric sensor provide more comfort for field anal-
ysis and point-of-care diagnosis [205–209]. Recent past has
observed the study of several fluorescent probes and their
colorimetric sensing performance in various analytes such as
toxic metal pollutant and explosives [210–212].

Furthermore, other varieties of solid matrices have also
been successfully adopted to integrate the fluorescent probes,

thereby improving the overall sensor performance for field
applications [213–216]. The resulting solid support proves
to be an ideal platform to retain their stability against varied
atmosphere conditions and also provide easy accessibility to
probe analytes. Nevertheless, many of the selected supports
do not meet the demands, and persistently affect the reactivity
and sensitivity of the sensor performance. Although sufficient
selectivity and high sensitivity are obtained with these enzy-
matic sensors, the disadvantages, including chemical and ther-
mal instabilities originating from the intrinsic nature of en-
zymes and complicated fabrication procedures, limit their an-
alytical applications. Interestingly, electrospun nanofibers
prove to dismiss all these detriments owing to their large sur-
face area and excellent flexibility. This section focuses on the
various developments in the field of colorimetric sensing
using electrospun nanofibers.

Ji, X. et al. have demonstrated a novel Bready-to-use^ glu-
cose test strip based on a polyurethane hollow nanofiber mem-
brane by utilizing two commonly used chromogenic agents, 2,
2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate) and o-
dianisidine as probes [217]. A coaxial electrospinning proce-
dure has been set up to prepare the hollow nanofiber
membrane-based testing strips for glucose measurement. A
schematic illustration of the set-up for coaxial electrospinning
and the reaction mechanism of the bi-enzyme system for glu-
cose detection are shown in Fig. 11. For colorimetric detec-
tion, glucose oxidase (GOD), horseradish peroxidase (HRP),

Fig. 9 (A) Effect of applied
potential on the sensitivity of Ag/
CuO NFs–ITO and CuO NFs–
ITO electrodes to glucose. (B)
Nyquist plots of Ag/CuO NFs–
ITO and CuO NFs–ITO
electrodes in 0.10 MKCl solution
containing 5.0 mM [Fe(CN)6]3−/
4− redox couple. (C) Ampero-
metric response of Ag/CuO NFs–
ITO and CuO NFs–ITO to suc-
cessive additions of glucose at an
applied potential of 0.50 V. (D)
Calibration curves obtained from
(C). Red and black lines are Ag/
CuO NFs–ITO and CuO NFs–
ITO electrode, respectively. (The
preparation process of Ag/CuO
NFs–ITO electrode. [Reprinted
with permission from [189] ©
2014 Elsevier B.V.)]

Glucose sensors based on electrospun nanofibers: a review 1295



and chromogenic agent (ABTS or o-dianisidine) co-
immobilized as a spun hollow nanofiber membrane was im-
mersed in different concentrations of glucose solution (1 mL)
prepared using PBS buffer (pH 7.0, 50 mM). Similarly, a
control test was performed with blank hollow nanofibers that
have no enzymes and chromogenic agent. At first, small
round-shaped sensor strips in the diameter of 10 mm were
prepared by cutting hollow nanofiber membranes
immobilized with GOD, HRP, and o-dianisidine, and then
10 μL of glucose solutions at varied concentrations were
added onto the sensor strips. The prepared test strips can be
operated in Bdip-and-read^ mode as an optical biosensor be-
cause of their unique Ball-in-one^ feature.

The visual colorimetric detection of test strips upon the
addition of 10 μL glucose samples of different concentrations
is shown in Fig. 12. A quick formation of rufous color spot
was noticed on the surface of the o-dianisidine-test strip fol-
lowing addition and the maximum intensity of the color
reached at about 30 s, and further it was stable for 10 min.
Notably, the increases in color intensity correspond to the

increase in glucose concentration. As can be seen from
Fig. 12B, an excellent correlation between the DR and glucose
concentration was obtained in the range of 0.1–50 mM with a
regression correlation coefficient of 0.999. The developed test
strips also demonstrated excellent long-term storage stability.
The prepared test strips are suitable for practical clinic appli-
cations because of their broad detection range and excellent
stability. Furthermore, the simplicity in hollow nanofiber
membrane preparation and also the advantages in simulta-
neous in situ co-immobilization of multiple substances pave
a way for the development of a great variety of biosensors
possessing multienzymes and coenzymes or chromogenic
agents for measurement.

Due to large stokes shift, strong photostability, high quan-
tum efficiency, and high oxygen quenching efficiency, lumi-
nescent transition-metal complexes have been widely used for
fabricating optical oxygen biosensors and glucose biosensors.
Zhou, C. et al. developed a fast and sensitive glucose sensor
using iridium complex-doped polystyrene electrospun optical
fibrous membrane (EOF) [218]. Iridium(III) bis(2-
phenylbenzothiozolatoN,C2′) acetylacetonate [(bt)2Ir(acac)]
was used as luminescence probe. The fibrous membrane was
fabricated using a one-step electrospinning technique and fur-
ther functionalized with glucose oxidases (GOD/EOF). The
SEM image in Fig. 14A shows that the obtained EOF exhibits
a porous fibrous membrane and its fibers are evenly and ran-
domly distributed. The average diameter of the fiber was ∼1.4
μm, which was calculated from 65 diameter values of ran-
domly selected fibers. Due to the presence of doped iridium
complex, the fibrous membrane emitted yellow luminescence
(562 nm) when excited at 405 nm (Fig. 14B).

Solvent compatibility is an important criterion for making
composite luminescent probe for sensing. DMF (N,N′-
dimethylformamide) was selected owing to its remarkable
disperse capability for (bt)2Ir(acac). Thus, to avoid the self-
quenching and leaching effects during the luminescent mea-
surements, the (bt)2Ir(acac) molecules can be uniformly and
stably doped within the PS matrix. Glucose oxidase (GOD)/
EOF was prepared by covalently immobilizing GOD on the
surface of EOF by using UV irradiation and glutaraldehyde
cross-linking, which was further used for detection of glucose.
Owing to the large surface area of the GOD/EOF, a large
amount of immobilized GOD, efficient GOD biocatalyst re-
action, and efficient oxygen quenching, high sensitivity and
specificity and a quick response time in glucose detection can
be attained. The schematic illustration of the GOD/EOF
quickly detecting glucose is depicted in Fig. 13. The GOD/
EOF’s luminescence intensity was greatly increased following
addition of glucose and reached a stable value within 1 s as
illustrated in Fig. 14C.

The underlying reason for the fibrous membrane with a
high surface-to-volume ratio and a porous structure, diffuse
efficiency of both the glucose and oxygen molecules into the

Fig. 10 (A) The response of the porous Ag/GCE and the NiO–Ag NFs/
GCE to the addition of 4 mM glucose, 0.125 mMAA, and 0.33 mM UA
in 0.1 M NaOH at an applied potential of 0.1 V; (B) the response of the
NiO NFs/GCE and the NiO–Ag NFs/GCE to the addition of 4 mM
glucose, 4 mM glucose with 0.125 mM AA, and 4 mM glucose with
0.33 mM UA in 0.1 M NaOH at an applied potential of 0.6 V.
[Reprinted with permission from [198] © 2010 Royal Society of
Chemistry)]
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EOF interior could be enhanced, as well as a fast electron or
energy transfer between the fibers and dissolved oxygen could
be realized. As shown in Fig. 14D, at the same level of glucose
concentrations, the GOD/EOF by irradiation has higher lumi-
nescence intensity compared with that without irradiation. It
was demonstrated that these irradiated PS fibers can be used as
an effective biosensor support matrix for fabricating
biosensors.

The detection limit was of 1.0 × 10−10 M (S/N = 3), supe-
rior to that of reported glucose biosensor with 1.2 × 10−10M. It
has been found that in diabetic patients, in vivo glucose

monitoring permits continuous glucose monitoring and facil-
itates intensive control of blood glucose concentrations
[219–221]. One of the first applications for such a device
was demonstrated by Shichiri et al. in 1982 [222]. For the
current scenario, challenges posed by these systems include
long-term stability, inflammatory, biofouling, calibration, and
selectivity. Also, it has been found that the stability of the
implantable sensors reduce the frequency of implantation
and replacement, thus resulting in long-term in vivo glucose
monitoring with less effort by patients and less tissue damage.
This designs the ideal sensor, supporting minimum

Fig. 11 Schematic illustrations of the bi-enzyme reaction for glucose
measurement and the setup for coaxial electrospinning to prepare
hollow nanofiber membrane-based glucose testing strips. During coaxial
electrospinning, GOD, HRP, and chromogenic agent (ABTS or

odianisidine) were simultaneously immobilized in situ in the hollow
nanofiber membrane. [Reprinted with permission from [217] © 2014
Royal Society of Chemistry]

Fig. 12 Optimal detection of glucose by measuring the color intensity
changes on the testing strip with o-dianisidine as chromogenic agent. (A)
Differential reflectance spectra of the membrane test strips upon reaction
with glucose solutions of different concentrations for 30 s. (B) Correlation
between the ΔR of test strips and the log of glucose concentration. The

inset picture demonstrates the visual color change in response to the
change in glucose concentration of the o-dianisidine test strip. The
diameter of the membrane is 1 cm. [Reprinted with permission from
[217] © 2014 Royal Society of Chemistry]
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replacement, thereby bringing in vivo sensor closer to practi-
cal implementation. However, the complete potentiality of
long-term in vivo glucose monitoring is yet to be fully ex-
plored and realized as current fluorescence-based sensors can-
not be maintained at an implantation site and their response to
blood glucose concentrations over an extended period.

Although several nanosensors have been devised for
in vivo glucose monitoring, their limited residence time at
the site of injection proves to be challenging. Still, it has been
found that the in vivo experiments show the ability of the
fluorescent glucose-responsive sensors to track changes in
glucose levels for up to 1 h. These issues have been addressed
by immobilizing sensors within gels, microworms, etc. The
microworm-based fluorescent sodium sensor was developed
by Ozaydin-Ince, G. et al., and has been used for monitoring

the sodium concentration in vivo after subcutaneous injection
[223].

Interestingly, it was evaluated that gel immobilization en-
hanced sensor residence time at the injection site over the
course of 1 h [224–226]. However, it does not sustain its long
life for sensor migration because of the small size of
nanosensors to diffuse out of the gels. Yet, the functionality
of a sensor to efficiently sustain for a longer time under phys-
iological conditions is highly desirable. Literature shows evi-
dence about the ability of boronic acids to irreversibly bind to
glucose under physiological conditions. The first scientific
study on this was reported by Yoon and Czarnik using
anthracenyl boronic acid, which produced a measurable
change in fluorescent intensity upon binding to glucose
in solution [227].

Fig. 13 Schematic illustration of
the GOD/EOF quickly detecting
glucose [Reprinted with
permission from [218] © 2013,
American Chemical Society]

Fig. 14 SEM image (A) and
luminescence microscopy image
(B) of the EOF. The inset shows
the diameter distribution of the
EOF. The fast response (C) of the
EOF when the concentration of
the added glucose increases from
1.7 × 10–9 M to 4.4 × 10–9 M.
Effects of UV irradiation and
GOD amount (D) in a 1.0 mM
glucose solution. Each data was
obtained from an average value of
three replicate measurements. All
relative standard derivation was
less than 3.0% (n = 3). pH 7.0
PBS buffers. [Reprinted with
permission from [218] © 2013,
American Chemical Society]
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Also, recent studies by Balaconis, M. K. et al. showed
the development of a stable glucose-sensitive nanofiber
for in vivo monitoring of glucose [228]. A competitive
binding interaction between boronic acids and diols on
either alizarin or glucose is the reason for the sensors’
response to glucose. The boronic acid binds to the diol
on alizarin and statically quenches the fluorescence in the
absence of glucose. If the concentration of glucose in-
creases, these molecules displace the alizarin and result
in fluorescence. The spherical or nanofiber nanosensors
are implanted subdermally (Fig. 15) to demonstrate that
the nanofiber nanosensors enhance resident time at the

implantation site and their loss in signal is directly com-
pared with in vitro signal loss.

As a result, the loss of radiant efficiency at the injection site
is significantly higher than the signal loss observed in vitro for
spherical nanosensors. The reason for in vitro signal loss is
attributable to leaching of boronic acid from the hydrophobic
core, and the difference in signal loss between in vivo and
in vitro is ascribed to nanosensor diffusion away from the
implantation site. Conversely, a very closely matched signal
loss between the in vivo and in vitro experiments was noticed
after 1 h, and they were further comparable after 3 h, as illus-
trated in Fig. 16.

Fig. 16 Fluorescence measurements of glucose-sensitive nanoparticles
and nanofiber scaffolds over time in vivo. (A) The average normalized
total radiant efficiency of glucose-sensitive nanoparticle scaffolds
both in vivo(○) and in vitro control (■) were plotted over time. (B) The
average normalized total radiant efficiency of nanofiber scaffolds
both in vivo(○) and in vitro control (■) were plotted over time. The

normalized in vivo average for nanoparticles and nanofiber scaffolds
was calculated across three different mice withnnanoparticles= 8 and
n n a n o f i b e r s c a f f o l d s = 6 i n j e c t i o n s p o t s . S im i l a r l y, t h e
normalized in vitro average was calculated fromnnanoparticles= 8 and
nnanofiber scaffolds= 7. Error bars represent standard deviations. [Reprinted
with permission from [228] © 2015 Royal Society of Chemistry]

Fig. 15 In vivo comparison of
glucose-sensitive nanoparticles
and nanofiber scaffolds. Mice
were injected with glucose-
sensitive nanoparticles and
nanofiber scaffolds along their
backs and then imaged with a
fluorescent small animal imager
for 1 h and then at 3 h post-
injection. Shown here are the
fluorescent images from one
mouse over this time frame.
[Reprinted with permission from
[228] © 2015 Royal Society of
Chemistry]
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Concluding remarks

This review addresses all recent notable developments in the
field of electrospun nanofiber-based glucose sensors using
various mechanisms. An excellent opportunity for effective
immobilization of enzymes on their surface, along with en-
hanced interaction with analytes, improved oxidation process,
and prolonged stability has been provided with the introduc-
tion of electrospun nanofibers in glucose sensing. Our in-
depth analysis has implied greater performance by the
electrospun nanofiber-based sensors than the existing
nanomaterial-based sensors even though they are very active.
Remarkable results have proven that the combination of
electrospun nanofibers and incorporated functional
nanomaterials provide an efficient platform for developing a
potential glucose sensor. The splendid features of electrospun
nanofibers, with a special emphasis on their versatility and
simplicity, are considered to be advancement in glucose sens-
ing research. Nevertheless, a major challenge in developing a
sensor is its leaching effect of functional nanomaterials, bio-
compatibility, and toxicity. As there is limited evidence to
support the toxic nature of electrospun nanofibers and their
composites, the safety and risks involved are an area of con-
cern for future use and further research. Therefore, much effort
is required to further explore the integration of newer materials
with nanofibers for the emergence of an ultrasensitive, bio-
compatible, stable, and reliable sensor device for real-world
applications.
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