
OR I G I N A L R E S E A R C H

Glucoside Derivatives Of Podophyllotoxin: Synthesis,
Physicochemical Properties, And Cytotoxicity

This article was published in the following Dove Press journal:

Drug Design, Development and Therapy

Cheng-Ting Zi1,2,*

Liu Yang2,*

Qing-Hua Kong2

Hong-Mei Li2

Xing-Zhi Yang2

Zhong-Tao Ding3

Zi-Hua Jiang 4

Jiang-Miao Hu 2

Jun Zhou2

1Key Laboratory of Pu-Er Tea Science,
Ministry of Education, College of Science,
Yunnan Agricultural University, Kunming,
650201, People’s Republic of China;
2State Key Laboratory of Phytochemistry
and Plant Resources in West China,
Kunming Institute of Botany, Chinese
Academy of Sciences, Kunming 650201,
People’s Republic of China; 3Key
Laboratory of Medicinal Chemistry for
Nature Resource, Ministry of Education,
School of Chemical Science and
Technology, Yunnan University, Kunming
650091, People’s Republic of China;
4Department of Chemistry, Lakehead
University, Thunder Bay ON P7B 5E1,
Canada

*These authors contributed equally to
this work

Background: Widespread concern of the side effects and the broad-spectrum anticancer

property of podophyllotoxin as an antitumor agent highlight the need for the development of

new podophyllotoxin derivatives. Although some per-butyrylated glucosides of podophyllo-

toxin and 4β-triazolyl-podophyllotoxin glycosides show good anticancer activity, the per-

acetylated/free of podophyllotoxin glucosides and their per-acetylated are not well studied.

Methods: A few glucoside derivatives of PPT were synthesized and evaluated for their in

vitro cytotoxic activities against five human cancer cell lines, HL-60 (leukemia), SMMC-

7721 (hepatoma), A-549 (lung cancer), MCF-7 (breast cancer), and SW480 (colon cancer),

as well as the normal human pulmonary epithelial cell line (BEAS-2B). In addition, we

investigated the structure–activity relationship and the physicochemical property–anticancer

activity relationship of these compounds.

Results: Compound 6b shows the highest cytotoxic potency against all five cancer cell lines

tested, with IC50 values ranging from 3.27±0.21 to 11.37±0.52 μM. We have also found that

6b displays higher selectivity than the etoposide except in the case of HL-60 cell line. The

active compounds possess similar physicochemical properties: MSA > 900, %PSA < 20,

ClogP > 2, MW > 700 Da, and RB > 10.

Conclusion: We synthesized several glucoside derivatives of PPT and tested their cytotoxicity.

Among them, compound 6b showed the highest cytotoxicity. Further studies including selectiv-

ity of active compounds have shown that the selectivity indexes of 6b are much greater than the

etoposide except in the case of HL-60 cell line. The active compounds possessed similar

physicochemical properties. This study indicates that active glucoside analogs of podophyllo-

toxin have potential as lead compounds for developing novel anticancer agents.
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Introduction
Cancer is the second leading cause of death in the worldwide and remains one of

the most difficult diseases to combat.1 Developing new anticancer drugs and more

effective treatment strategies for cancer is of great importance in medicinal chem-

istry. Natural products with diverse structures and unique biological activities are

valuable sources for drug discovery. Close to 60% clinical drugs are either natural

products or structural analogs of natural products with improved pharmacological

activity.2–4 Podophyllotoxin (PPT, 1, Scheme 1), a well-known naturally occurring

aryltetralin lignan, is mainly isolated from the roots of the North American

Podophyllum peltatum Linnaeus, the Tibetan P. emodi Wall, or the Taiwanese

species Podophyllum peltatum.5 It shows strong cytotoxic activity against various

cancer cell lines and acts at the colchicine-binding site on tubulin.6
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Due to its high toxicity and poor water solubility, podo-

phyllotoxin has limited application as an anticancer drug.

Based on its potent anticancer activity, PPT has served as a

lead compound for the discovery and development of new

anticancer agents. For example, the two semisynthetic gluco-

sidic cyclic acetals of PPT, etoposide (2) and teniposide (3)

(Scheme 1), are in clinical use for the treatment of a variety of

cancers, including small-cell lung cancer, non-Hodgkin’s lym-

phoma, leukemia, Kaposi’s sarcoma, neuroblastoma, and soft-

tissue sarcoma.7–10Themechanism of action for etoposide and

teniposide is different from that of PPT in that both etoposide

and teniposide block the DNA topoisomerase-II by stabilizing

the enzyme–DNA complex.11–14However, the therapeutic use

of etoposide and teniposide is often hindered by problems such

as acquired drug resistance, myelosuppression, and their poor

water solubility. To overcome the problems of etoposide and

teniposide, further structure modifications of PPT have been

carried out, which led to the synthesis of other PPT

derivatives, such as etopophos (4) and NK-611 (5) (Scheme

1), which reached clinical studies.15 The clinically useful

podophyllotoxin-derived glucosides 2–5 possess a 4,6-cyclic

acetal moiety and various other substitutions on the sugar

residue, suggesting the important role of substituents in mod-

ifying the biological activities of these podophyllotoxin

derivatives.

In recent years, we have been working on the structural

modification of podophyllotoxin and focused on glyco-

sides of podophyllotoxin (such as 6, Scheme 1) and 4β-

triazolyl-podophyllotoxin.16–19 Per-butyrylated glucosides

of podophyllotoxin16 as well as the glucosides of 4β-tria-

zolyl-podophyllotoxin and their acylated analogues show

good cytotoxicity.19,20 The glucosides of podophyllotoxin

and their per-acetylated analogs are less well studied.21 In

this article, a few glucoside derivatives of PPT were

synthesized (Table S1) and evaluated for their in vitro

cytotoxic activity against five human cancer cell lines,

Scheme 1 Structure of compounds 1–6: podophyllotoxin (1), etoposide (2), teniposide (3), etopophos (4), NK-611 (5), and podophyllotoxin glucosides (6).
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HL-60 (leukemia), SMMC-7721 (hepatoma), A-549 (lung

cancer), MCF-7 (breast cancer), and SW480 (colon can-

cer). To evaluate the selectivity of these compounds

between tumor cells and normal cells, their growth inhibi-

tory effect was tested on normal human pulmonary epithe-

lial cell lines (BEAS-2B). In addition, the physicochemical

properties of these compounds were calculated and corre-

lated with their anticancer activity.

Results And Discussion

Chemical Synthesis
There have been several reports on constructing the glucosi-

dic linkages of podophyllotoxin according to known

literatures.22–25 The synthesis of glucoside derivatives of

podophyllotoxin 6a – 6d following a similar method is

reported in the literature and is shown in Scheme 2.

1,2,3,4,6-Penta-O-acetyl-α/β-D-glucopyranose (mainly α-

form)26 was treated with ammonia solution (25%) in aceto-

nitrile to give 2,3,4,6-tetra-O-acetyl -α/β-D-glucopyranose

(8) as an anomeric mixture (α/β ratio = 6:1) in 46% yield.27,28

Then, compound 8 was allowed to react with podophyllo-

toxin (1) and 4ʹ-demethylepipodophyllotoxin (9)29 in the

presence of trifluoroboran etherate (BF3•Et2O) at −78°C to

give the per-acetylated glucoside derivatives of podophyllo-

toxin 6a and 6b in 58–62% yield.16 Compounds 6a and 6b

were treated with sodium methoxide in methanol at room

temperature for 2 hrs to yield podophyllotoxin glucosides 6c

and 6d in 78–80% yields.30

All the glucoside derivatives of PPT were character-

ized by 1H and 13C-NMR, electrospray ionization mass

spectrometry (ESI-MS), and high-resolution mass spectro-

metry (HRESI-MS). The characteristic 1H-NMR and 13C-

NMR data of compounds 6a – 6d are shown in Table 1. In

the 1H-NMR spectra, the proton at C-4 of 4β-substituted

compounds appears as a doublet at 4.72–4.96 ppm, usually

with a coupling constant J3-4 < 4.0 Hz, indicating a cis-

relationship between C3-H and C4-H.31 The coupling con-

stant of the anomeric proton of the glucose residue (J1”-2”)

is typically <4.0 Hz, which confirms that the glycosidic

linkage is fan α–linkage.

Evaluation Of Biological Activity
The per-butyrylated glucoside derivatives of podophyllo-

toxin 6e and 6f have been previously documented.16 Per-

acetylated glucoside derivatives of podophyllotoxin (6a

and 6b) and podophyllotoxin glucosides (6c and 6d)

were tested for their cytotoxicity against five human can-

cer cell lines, including HL-60 (leukemia), SMMC-7721

(hepatoma), A-549 (lung cancer), MCF-7 (breast cancer),

and SW480 (colon cancer). Etoposide (2) and cisplatin

were taken as control drugs, and their IC50 data are pre-

sented in Figure 1 and Table 2. Compounds 6c and 6d

having a free glucose residue show weak activity (all

having IC50 > 40 μM), while peracetylated glucoside deri-

vatives 6a and 6b show improved activity. Among these

derivatives, compound 6b shows the highest cytotoxicity

against five cancer cells, with their IC50 values ranging

from 3.27±0.21 to 11.37±0.52 μM, which is more potent

than the control drug etoposide against the MCF-7 and

SW480 cell lines. In our previous study, we reported that

the cytotoxic activity of 4β-triazolyl-podophyllotoxin deri-

vatives with a peracetylated glucose residue mostly shows

weak activity.19 Furthermore, compound 6b with a

hydroxy group at the C-4ʹ position in the E ring is more

Scheme 2 Synthesis of glucoside derivatives of PPT 6a – 6d. Reagents and conditions: (A) Ac2O, sodium acetate, 100°C, 20 mins, ~99%; (B) NH3⋅ H2O, CH3CN, rt,

overnight, 46%; (C) BF3⋅ Et2O, CH2Cl2, −78°C to rt, 58–62%; (D) CH3ONa, CH3OH, 2 hrs, rt, 78–80%.
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active than compound 6a which has a methoxyl group at

the C-4ʹ position.

Cancer chemotherapy is often associated with low/non-

selectivity of cancer drugs which attack cancer cells as well

as normal cells, leading to serious side effects. In order to

test their selectivity, compounds 6a and 6b were tested for

their growth inhibitory effects on a normal human bronchial

epithelial cell line (BEAS-2B) (Table 2). The selectivity

index (SI) was expressed as the ratio of the IC50 value of

the compound in normal cell line over that in cancer cell

line. A larger SI value indicates that the drug displays

higher selectivity toward cancer cells over normal cells.32,33

The SI values of compound 6a, 6b and etoposide are pre-

sented in Table 3. Compound 6b shows moderate selectivity

toward cancer cells with SI values in the range of 1.9–6.7 in

all cells tested. Compound 6b displays higher selectivity

than etoposide in four of the five cancer cell lines tested

except an HL-60 cell line. Among these derivatives, 6b

shows the highest potency (IC50 3.27±0.21 μM) and highest

selectivity (SI 6.7) in SW480 cell line, suggesting that 6b

may be a promising therapeutic agent for colon cancer.

Physicochemical Property–Cytotoxicity

Relationship
Values Of Partition Coefficient Of The Compounds

The logarithm of the octanol–water partition coefficient inves-

tigation (logP) is an important pharmaceutical parameter in

evaluating solvency, absorption, and transport of drugs; the

Table 1 The Characteristic 1H-NMR And 13C-NMR Data Of Compounds 6a – 6d

Compound 1H-NMR 13C-NMR 4-Configuration

C4-H (ppm) J3-4 (Hz) C1”-H (ppm) J1”-2” (Hz) C-4 (ppm) C-1” (ppm)

6a 4.76 2.7 5.22 3.2 75.7 95.7 β

6b 4.72 3.8 5.35 3.2 75.7 95.7 β

6c 4.78 3.4 5.01 3.6 75.3 99.4 β

6d 4.77 3.4 4.99 3.6 75.3 99.4 β

PPTa 4.96 7.4 – – 72.6 – α

Note: aData from Hartwell et al.38

Figure 1 Inhibitory effects of podophyllotoxin derivatives on cancer cells. (A–D) The inhibitory effects of compounds 6a – 6d on HL-60 (leukemia), SMMC-7721

(hepatoma), A-549 (lung cancer), MCF-7 (breast cancer), and SW480 (colon cancer) cells, as evaluated by the MTT assay.
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preferred logP value is less than 5.11Compounds etoposide (2)

and themost potent compound 6bweremeasured for values of

logP. Solutes were equilibrated between octanol and water.

The concentration of compounds in octanol was determined

by the HPLC method.12,13 The logP values of compounds 2

and 6bwere determined to be 1.44 and 1.78 at 30°C.As shown

in Table 4 (see supporting information for the details), com-

pound 6b expressed the logP value and was close to the

calculated value of 2.24.

Solubility

Poor water solubility is a common problem in developing

podophyllotoxin derivatives for therapeutic use. Compounds

with glucose residue are slightly soluble in water. The solubi-

lity of podophyllotoxin (1) and compounds 6b in aqueous at

temperature 25°C are reported 1 has a solubility of 2.2 mg/mL

in water, while 6bwith a peracetylated glucoside residue has a

solubility of 1.7 mg/mL in water (see supporting information

for the details). The solubility values obtained for 6b become

unfairly soluble in water.

Physicochemical Property
The physicochemical properties of a drug can largely affect

the pharmacokinetics and efficacy of a drug. The physico-

chemical properties of glucoside derivatives of podophyllo-

toxin 6a – 6d and 6e – 6f
19 were calculated and compared

with etoposide 2, which include molecular weight (MW),

molecular surface area (MSA), polar surface area (PSA),

relative polar surface area (%PSA), calculated partition

coefficient (ClogP), calculated distribution coefficient at

pH 7.4 (ClogD7.4), hydrogen bond donor (HD), hydrogen

bond acceptor (HA), and rotatable bond (RB) (Table 4).

Noteworthy is that almost all active compounds (having

IC50 < 40 μM) are relatively lipophilic (MSA > 900, %

PSA < 20, ClogP > 2), and since they have a higher

molecular weight (MW > 700 Da) and a larger number of

rotatable bonds (RB > 10), with the exception of compound

6e, they are placed at an advantage for further optimization.

By contrast, inactive compounds 6c and 6d (having a free

glucose residue) have %PSA values >22, ClogD7.4 <0, and

a smaller number of rotatable bonds (RB < 10). It is

obvious that derivatives with free glucose residues (6c and

6d) are relatively more polar, and this might account for the

general lack of activity for these compounds. This result

suggests that the peracetylated/perbutyrylated derivatives of

podophyllotoxin glucosides may, therefore, be more

suitable for further optimization.

Table 2 Cytotoxicity Of Podophyllotoxin Derivatives 6a – 6f In Vitroa

Compound IC50 (μM)

HL-60 SMMC-7721 A-549 MCF-7 SW480 BEAS-2B

6a 21.36±0.38 14.50±0.56 >40 36.55±0.78 >40 30.60±0.54

6b 11.37±0.52 8.41±0.48 10.74±0.37 9.18±0.49 3.27±0.21 21.78±0.36

6c >40 >40 >40 >40 >40 NT

6d >40 >40 >40 >40 >40 NT

6eb >40 >40 >40 >40 >40 NT

6fb 16.87±0.32 16.82±0.12 16.04±0.73 39.13±0.52 38.72±0.92 NT

2 0.31±0.24 8.12±0.72 11.92±0.12 32.82±0.44 17.11±0.67 11.17±0.56

Cisplatin 1.17±0.34 6.43±0.57 9.24±0.36 15.56±0.52 13.42±0.44 NT

Note: aValues are means of three independent experiments; bExperimental data of compounds 6e and 16f from ref.16

Abbreviation: NT, not tested.

Table 3 Selectivity Of The Cytotoxicity Of Compounds 6a, 6b, And Etoposide To Cancer Cells As Compared With BEAS-2B

Normal Cells

Compound Selectivity Index (SIa)

HL-60 SMMC-7721 A-549 MCF-7 SW480

6a 1.4 2.1 – 0.8 –

6b 1.9 2.6 2.0 2.4 6.7

2 36.0 1.4 0.9 0.3 0.7

Note: aSelectivity index (SI) = IC50 of the compound in BEAS-2B cell line/IC50 of the compound in cancer cell line.
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Chemical Stability Investigation
The most potent compound 6b was selected for inves-

tigations of chemical stability in aqueous phase with

comparison of podophyllotoxin (1). The results indi-

cate that compound 6b exhibits better chemical stabi-

lity under the specific conditions (37°C, pH = 7.0,

Figure 2) (see supporting information for the details).

Obviously, 6b showed considerable stability with

podophyllotoxin.

Experimental
General

All cancer cells (HL-60, SMMC-7721, A-549, MCF-7, and

SW480) were obtained from a Shanghai cell bank in China.

D-glucose was purchased from Aladdin Chemical Co., Ltd

(Guangzhou, China); podophyllotoxin was obtained from

Chengdu Proifa Technology Development Co., Ltd

(Chengdu, China); boron trifluoride etherate was obtained

from J&KChemical Technology Co., Ltd (Beijing China); 3-

(4,5-dimethyl- thiazol-2-yl)-2,5-diphenyltetrazolium bro-

mide (MTT) was purchased from Sigma-Aldrich (St. Louis,

MO, USA). Dichloromethane and acetonitrile were distilled

over calcium hydride. All reagents were commercially avail-

able and used without further purification unless indicated

otherwise. The melting points were measured by an X-4

melting point apparatus and were uncorrected. Optical rota-

tions were obtained with a Jasco P-1020 Automatic Digital

Polariscope MS data were obtained in the ESI mode on API

Qstar Pulsar instrument; HRMS data were obtained in the

ESI mode on LCMS-IT-TOF (Shimadzu, Kyoto, Japan); 1H-

NMR and 13C-NMR spectra were recorded on Bruker

AVANCE III 400 MHz, or 600 MHz (Bruker BioSpin

GmbH, Rheinstetten, Germany) instruments, using tetra-

methylsilane (TMS) as an internal standard: chemical shifts

(δ) are given in ppm, coupling constants (J) in Hz, and the

solvent signals were used as references (CDCl3: δC= 77.2

ppm; residual CHCl3 in CDCl3: δH= 7.26 ppm; CD3OD: δC=

49.0 ppm; residual CH3OH in CD3OD: δH= 4.78 ppm).

Column chromatography (CC): silica gel (200–300 mesh;

Qingdao Makall Group CO., LTD; Qingdao; China). All

reactions were monitored using thin-layer chromatography

(TLC) on silica gel plates.

Chemistry
Synthesis Of 2,3,4,6-Tetra-O-Acetyl-α/β-D-
Glucopyranose (8)

D-glucose (1.8 g, 10 mmol) was suspended in acetic

anhydride (9.5 mL, 100 mmol) and anhydrous sodium

acetate (0.9 g, 11 mmol) was added, and the resulting

mixture was heated at 100°C for 20 mins. The reaction

was quenched (saturated aqueous sodium bicarbonate,

20 mL) and diluted with dichloromethane (30 mL); the

organic layer was washed with brine (3 × 30 mL) and

dried with sodium sulfate. The solvent was evaporated,

and the residue dried in vacuo to give the crude 1,2,3,4,6-

penta-O-acetyl-D-glucopyranose.

Table 4 Physicochemical Properties Of Glucoside Derivatives Of Podophyllotoxin

Compound Physicochemical Properties

MW MSA PSA %PSAa ClogPb ClogD7.4c H-Dd/H-Ae RBf logPg

6a 745 1006 196.1 19.5 2.57 1.62 0/12 15 logPg

6b 731 968 207.0 21.4 2.24 1.47 1/12 14 NT

6c 576 755 171.8 22.8 0.43 −0.15 4/12 7 2.14

6d 562 716 182.8 25.5 0.29 −0.30 5/12 6 NT

6e 857 1257 196.1 15.6 6.80 6.20 0/12 23 NT

6f 843 1218 207.1 17.0 6.47 6.05 1/12 22 NT

2 588 758 160.8 21.2 0.03 1.16 3/12 5 NT

Note: a%PSA: relative polar surface area = (PSA/MSA) × 100; bClogP: calculated partition coefficient; cClogD7.4: calculated distribution coefficient at pH 7.4; dHD: hydrogen

bond donor count; eHA: hydrogen bond acceptor count; fRB: rotatable bond count; glogP: value for log octanol-water partition coefficients.

Abbreviations: MW, molecular weight; MSA, molecular surface area; PSA, polar surface area; NT, Not tested.

Figure 2 Chemical stability investigation of compounds 1 and 6b.
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The crude 1,2,3,4,6-penta-O-acetyl-D-glucopyranose

was dissolved in acetonitrile (20 mL), and 25% ammonia

solution (0.4 mL, 20 mmol) was added dropwise slowly.

The mixture was stirred at room temperature for 6 hrs. The

solvent was evaporated, and the brown oily residue was

passed a short pad of silica column (petroleum ether/ethyl

acetate 4:1, v/v) to afford the product 8 (1.6 g, 46% yield for

two steps). α/β ratio = 6:1. 1H-NMR (CDCl3, 400 MHz) δ

6.20 (d, 1/7H, J = 8.0 Hz, C1-Hβ), 5.54 (t, 1H, J = 9.6 Hz,

C3-H), 5.47 (d, 6/7H, J = 3.2 Hz, C1-Hα), 5.08 (t, 1H, J =

9.6 Hz, C4-H), 4.91 (dd, 1H, J = 3.2 Hz, 10.0 Hz, C2-H),

4.27–4.23 (m, 2H, C6-CH2), 4.14–4.12 (m, 1H, C5-H),

2.10–2.00 (m, 12H, 4 × OCH3);
13C-NMR (CD3Cl, 400

MHz) δ 170.8 (C=O), 170.2 (C=O), 170.1 (C=O), 169.7

(C=O), 95.5 (C-1β), 90.1 (C-1α), 73.2 (C-5β), 72.1 (C-4β),

72.0 (C-2β), 71.9 (C-5α), 69.8 (C-4α), 68.4 (C-2α), 68.3 (C-

3β), 67.2 (C-3α), 61.9 (C-6), 20.7 (OCH3), 20.7 (OCH3),

20.6 (OCH3), 20.5 (OCH3); ESIMS: m/z 371 [M + Na]+.

Synthesis Of 4ʹ-Demethylepipodophyllotoxin (9)

4ʹ-Demethylepipodophyllotoxin (9) was prepared accord-

ing to the literature.29

General Procedure For The Synthesis Of

Compounds 6a – 6b
To a mixture of 2,3,4,6-tetra-O-acetyl-α/β-D-glucopyra-

nose (0.2 mmol) and podophyllotoxin/4ʹ-demethylepipo-

dophyllotoxin (0.2 mmol) in dry CH2Cl2 (3 mL) was

added of BF3⋅ H2O (25 μL, 0.02 mmol) at −78 oC, and

the resulting mixture was stirred for 1 hr. Then, triethyla-

mine (0.1 mL) was added to the mixture, and acetic acid

(0.1 mL) was added. The solvent was evaporated, and the

residue was purified by flash chromatography on silica gel

(petroleum ether/ethyl acetate 2:1, v/v) to afford the major

product 6a or 6b as white powder.

4-O-(2ʹ’,3ʹ’,4ʹ’,6ʹ’-Tetra-O-Acetyl-α-D-
Glucopyranosyl)-Epipodophyllotoxin (6a)

White powder; yield 58%; mp 167–168 oC; 1H-NMR

(CDCl3, 400 MHz) δ 6.99 (s, 1H, C6-H), 6.55 (s, 1H, C8-

H), 6.23 (s, 2H, C2′, C6′-H), 6.00–5.98 (m, 2H, OCH2O),

5.33 (t, 1H, J = 8.0 Hz), 5.22 (d, 1H, J = 3.2 Hz, C1”-H),

5.08–5.02 (m, 2H), 4.76 (d, 1H, J = 2.7 Hz, C4-H), 4.66–

4.65 (m, 1H), 4.30 (d, 1H, J = 2.1 Hz, C1-H), 4.28–4.18 (m,

2H), 4.14–4.03 (m, 1H), 3.79 (s, 3H, C4ʹ-OCH3), 3.76 (s,

6H, C3ʹ, C5ʹ-OCH3), 3.45–3.42 (m, 1H, C3-H), 3.01–2.98

(m, 1H, C2-H), 2.14–2.04 (m, 12H, 4 × OCH3);
13C-NMR

(CDCl3, 100 MHz) δ 177.8 (C-12), 170.6 (C=O), 170.0

(C=O), 169.3 (C=O), 169.2 (C=O), 153.4 (C-3ʹ, C-5ʹ),

147.9 (C-6), 146.7 (C-7), 137.5 (C-4ʹ), 136.9 (C-1ʹ), 131.5

(C-9), 128.4 (C-10), 109.7 (C-8), 106.8 (C-5), 105.4 (C-2ʹ,

C-6ʹ), 101.3 (OCH2O), 95.7 (C-1ʹ’), 75.7 (C-4), 72.3, 71.0,

69.4, 68.2, 67.7 (C-11), 60.8 (4ʹ-OCH3), 60.7, 56.2 (3ʹ, 5ʹ-

OCH3), 44.9 (C-2), 44.2 (C-1), 38.1 (C-3), 20.7 (OCH3),

20.6 (OCH3), 20.6 (OCH3), 20.5 (OCH3); ESIMS: m/z 767

[M + Na]+, HRESIMS: calcd for C36H40O17Na [M + Na]+

767.2285, found 767.2286.

4-O-(2ʹ’,3ʹ’,4ʹ’,6ʹ’-Tetra-O-Acetyl-α-D-
Glucopyranosyl)-4ʹ-Demethylepipodophyllotoxin
(6b)

White powder; yield 62%; mp 172–174 oC; 1H-NMR

(CDCl3, 400 MHz) δ 6.94 (s, 1H, C6-H), 6.55 (s, 1H,

C8-H), 6.45 (s, 2H, C2′, C6′-H), 5.97–5.95 (m, 2H,

OCH2O), 5.40 (t, 1H, J = 8.0 Hz), 5.35 (d, 1H, J = 3.2

Hz, C1”-H), 5.10–5.07 (m, 1H), 4.83–4.80 (m, 1H), 4.72

(d, 1H, J = 3.8 Hz, C4-H), 4.41 (d, 1H, J = 2.1 Hz, C1-H),

4.32–4.31 (m, 1H), 4.22–4.21 (m, 1H), 4.09–4.07 (m, 1H),

3.75 (s, 6H, C3ʹ, C5ʹ-OCH3), 3.67–3.64 (m, 1H), 3.45–3.42

(m, 1H, C3-H), 3.00–2.97 (m, 1H, C2-H), 2.15–2.09 (m,

12H, 4 × OCH3);
13C-NMR (CDCl3, 100 MHz) δ 177.7

(C-12), 170.5 (C=O), 170.0 (C=O), 169.3 (C=O), 169.2

(C=O), 152.3 (C-3ʹ, C-5ʹ), 148.0 (C-6), 146.8 (C-7), 140.4

(C-4ʹ), 140.4 (C-1ʹ), 131.1 (C-9), 128.4 (C-10), 109.8 (C-

8), 106.8 (C-5), 104.9 (C-2ʹ, C-6ʹ), 101.3 (OCH2O), 95.7

(C-1ʹ’), 75.7 (C-4), 71.0, 69.5, 68.2, 67.8, 67.5 (C-11),

60.7, 56.2 (3ʹ, 5ʹ-OCH3), 45.0 (C-2), 44.3 (C-1), 38.0 (C-

3), 20.7 (OCH3), 20.6 (OCH3), 20.6 (OCH3), 20.5

(OCH3); ESIMS: m/z 756 [M + Na]+, HRESIMS: calcd

for C35H38O17Na [M + Na]+ 756.2123, found 756.2126.

General Procedure For The Synthesis Of

Compounds 6c – 6d
To a solution of 6a/6b (0.1 mmol) in methanol (1.5 mL)

was added sodium methoxide (0.03 mmol) at 0 oC, and the

resulting mixture was stirred for 2 hrs. The reaction was

slowly quenched (anhydrous Amberlite ion-exchange resin

IRA-400), and the resin was removed by filtration. The

filtrate was concentrated under vacuum, and the residue

was purified by flash chromatography on silica gel (chloro-

form/methanol 9:1, v/v) to afford compound 6c or 6d as

white powder.

4-O-(α-D-Glucopyranosyl)-Epipodophyllotoxin (6c)

White powder; yield 80%; mp 190–191 oC; 1H-NMR

(CDCl3, 600 MHz) δ 7.07 (s, 1H, C6-H), 6.51 (s, 2H,
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C2′, C6′-H), 6.48 (s, 1H, C8-H), 5.94–5.93 (m, 2H,

OCH2O), 5.01 (d, 1H, J = 3.6 Hz, C1”-H), 4.78 (d, 1H, J

= 3.4 Hz, C4-H), 4.47–4.45 (m, 1H), 4.42 (t, 1H, J = 9.6

Hz), 4.36 (d, 1H, J = 2.2 Hz, C1-H), 3.77 (s, 6H, C3ʹ, C5ʹ-

OCH3), 3.76 (s, 3H, C4ʹ-OCH3), 3.69–3.63 (m, 2H), 3.55–

3.53 (m, 1H), 3.41–3.38 (m, 2H), 3.36–3.33 (m, 1H),

3.24–3.21 (m, 1H, C3-H), 3.16–3.13 (m, 1H, C2-H); 13C-

NMR (CDCl3, 150 MHz) δ 178.7 (C-12), 154.7 (C-3ʹ, C-

5ʹ), 149.0 (C-6), 148.2 (C-7), 139.5 (C-4ʹ), 137.9 (C-1ʹ),

132.6 (C-9), 131.2 (C-10), 110.1 (C-8), 108.2 (C-5), 106.9

(C-2ʹ, C-6ʹ), 102.5 (OCH2O), 99.4 (C-1ʹ’), 75.3 (C-4),

75.0, 74.3, 73.8, 71.1, 70.0 (C-11), 61.7, 61.1 (4ʹ-OCH3),

56.6 (3ʹ, 5ʹ-OCH3), 46.6 (C-2), 45.4 (C-1), 38.7 (C-3);

ESIMS: m/z 575 [M - H]−, HRESIMS: calcd for

C28H32O13 [M - H]− 576.1843, found 576.1846.

4-O-(α-D-Glucopyranosyl)-4ʹ-
Demethylepipodophyllotoxin (6d)

White powder; yield 78%; mp 201–203 oC; 1H-NMR

(CDCl3, 600 MHz) δ 7.07 (s, 1H, C6-H), 6.49 (s, 1H,

C8-H), 6.47 (s, 2H, C2′, C6′-H), 5.93–5.92 (m, 2H,

OCH2O), 4.99 (d, 1H, J = 3.6 Hz, C1”-H), 4.82–4.81 (m,

1H), 4.77 (d, 1H, J = 4.4 Hz, C4-H), 4.46–4.39 (m, 2H),

4.33 (d, 1H, J = 2.2 Hz, C1-H), 3.78 (s, 6H, C3ʹ, C5ʹ-

OCH3), 3.70–3.62 (m, 2H), 3.56–3.53 (m, 1H), 3.41–

3.34 (m, 3H), 3.36–3.33 (m, 1H), 3.26–3.23 (m, 1H, C3-

H), 3.20–3.18 (m, 1H, C2-H); 13C-NMR (CDCl3, 150

MHz) δ 178.8 (C-12), 149.5 (C-3ʹ, C-5ʹ), 148.9 (C-6),

148.2 (C-7), 135.5 (C-4ʹ), 133.9 (C-1ʹ), 132.9 (C-9),

131.2 (C-10), 110.2 (C-8), 108.1 (C-5), 106.4 (C-2ʹ, C-

6ʹ), 102.5 (OCH2O), 99.4 (C-1ʹ’), 75.3 (C-4), 75.0, 74.3,

73.8, 71.1, 69.9 (C-11), 61.7, 56.8 (3ʹ, 5ʹ-OCH3), 46.5 (C-

2), 45.6 (C-1), 38.7 (C-3); ESIMS: m/z 561 [M - H]−,

HRESIMS: calcd for C27H30O13 [M - H]− 561.1686,

found 561.1684.

Cytotoxicity Assay
The following five human cancer lines were used in the

cytotoxicity assay: human myeloid leukemia (HL-60),

hepatocellular carcinoma (SMMC-7721), lung cancer (A-

549), breast cancer (MCF-7), and colon cancer (SW480).

All the cells were cultured in RMPI-1640 or DMEM

medium (Hyclone, Logan, UT, USA), supplemented with

10% FBS (Hyclone, USA) in 5% CO2 at 37°C. The

cytotoxicity assay was performed according to the MTT

[3-(4,5-dimethyl- thiazol-2-yl)-2,5-diphenyltetrazolium

bromide] method in 96-well microplates.34 Briefly, adher-

ent cells (100 μL) were seeded into each well of a 96-well

cell culture plate and allowed to adhere for 12 hrs before

drug addition, while suspended cells were seeded just

before drug addition, both with an initial density of 1 ×

105 cells/mL in 100 μL of the medium. Each tumor cell

line was exposed to the test compound at various concen-

trations in triplicate for 48 hrs. After the incubation, MTT

(100 μg) was added to each well, and the incubation

continued for 4 hrs at 37°C. The cells were lysed with

SDS (200 μL) after removal of 100 μL of the medium. The

optical density of lysate was measured at 595 nm in a 96-

well microtiter plate reader (Bio-Rad 680). IC50 values

were calculated by Reed and Muench’s method.35,36

Calculated Molecular Physicochemical

Properties
All structures of podophyllotoxin derivatives were built

and energy minimized by the Tripos force field with 0.05

kcal/(mol Å). The Gasteiger–Huchel method was used to

calculate charges. Energy minimization was performed by

the Powell method with 2000 iterations. Molecular surface

area (MSA), polar surface area (PSA), calculated partition

coefficient (ClogP), calculated solubility (ClogS), hydro-

gen bond donor (HD), hydrogen bond acceptor (HA) and

rotatable bond (RB) were obtained from MarvinSketch

version 5.3.8. (www.chemaxon.org).37

Conclusion
In conclusion, we synthesized a few glucoside derivatives of

podophyllotoxin and screened for cytotoxicity against a

panel of five human cancer cell lines including HL-60 (leu-

kemia), SMMC-7721 (hepatoma), A-549 (lung cancer),

MCF-7 (breast cancer), and SW480 (colon cancer).

Derivatives having a free glucose residue show weak activity

(IC50 > 40 μM), while the peracetylated derivative 6b shows

the highest cytotoxic potency against all five cancer cell lines

tested, with IC50 values ranging from 3.27±0.21 to 11.37

±0.52 μM. Compound 6b also displays moderate selectivity

toward cancer cells over normal human pulmonary epithelial

cells (BEAS-2B). The calculated physicochemical properties

of these PPT derivatives indicated that more lipophilic com-

pounds are generally more cytotoxic to cancer cells. Our

results suggest that some of these compounds have potential

as lead compounds for developing novel anticancer agents.
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