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Abstract:

This paper reviews the use of the Generalized Likelihood Uncertainty Estimation (GLUE) methodology in the 20 years since the
paper by Beven and Binley in Hydrological Processes in (1992), which is now one of the most highly cited papers in hydrology.
The original conception, the on-going controversy it has generated, the nature of different sources of uncertainty and the meaning
of the GLUE prediction uncertainty bounds are discussed. The hydrological, rather than statistical, arguments about the nature of
model and data errors and uncertainties that are the basis for GLUE are emphasized. The application of the Institute of Hydrology
distributed model to the Gwy catchment at Plynlimon presented in the original paper is revisited, using a larger sample of
models, a wider range of likelihood evaluations and new visualization techniques. It is concluded that there are good reasons to
reject this model for that data set. This is a positive result in a research environment in that it requires improved models or data to
be made available. In practice, there may be ethical issues of using outputs from models for which there is evidence for model
rejection in decision making. Finally, some suggestions for what is needed in the next 20 years are provided. © 2013 The
Authors. Hydrological Processes published by John Wiley & Sons, Ltd.
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‘Unfortunately practice generally precedes theory, and it
is the usual fate of mankind to get things done in some
boggling way first, and find out afterward how they could
have been done much more easily and perfectly.’

Charles S Peirce, 1882
GLUE: THE ORIGINAL CONCEPTION

It is now 20 years since the original paper on
Generalized Likelihood Uncertainty Estimation
(GLUE†) by Beven and Binley (1992; hereafter
BB92). The paper has now received over 1200 citations
(as of December 2012) and been used in literally
hundreds of applications. An analysis of the citations to
the paper shows that interest was initially low, only
much later did it become a highly cited paper as
interest in uncertainty estimation in hydrological
modelling increased. GLUE has also been the subject
orrespondence to: Keith Beven, Lancaster Environment Centre,
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e acronym GLUE was produced while Keith Beven was still at the
niversity of Virginia (until 1982) but did not appear in print until the
ven and Binley (1992) paper.
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of significant criticism in that time, and some people
remain convinced that it is a misguided framework for
uncertainty estimation. In this paper, we review
the origins of GLUE, the controversy surrounding GLUE,
the range of applications, some recent developments and
the possibility that it might become a respectable
(in addition to being widely used) methodology.
The origins of GLUE lie in Monte Carlo experiments

using Topmodel (Beven and Kirkby, 1979) carried out by
Keith Beven when working at the University of Virginia
starting around 1980. These were instigated by discussions
with George Hornberger, then Chair of the Department of
Environmental Science at University of Virginia, who,
while on sabbatical in Australia and working with Bob
Spear and Peter Young, had been using Monte Carlo
experiments in analysing the sensitivity of models to their
parameters (Hornberger and Spear, 1980, 1981; Spear and
Hornberger, 1980; Spear et al., 1994). This Hornberger–
Spear–Young (HSY) global sensitivity analysis method
depends on making a decision between models that provide
good fits to any observables available (behavioural models)
and those that do not (non-behavioural models).
The first outcome of these early Monte Carlo

experiments with rainfall–runoff models was to find that
there were often very many different models that
ons, Ltd
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5898 K. BEVEN AND A. BINLEY
appeared to be equally behavioural judged by their error
variance or Nash–Sutcliffe efficiency index values,
measures that were commonly used in evaluating model
performance at that time (Duan et al., 1992, also later
came to a similar conclusion, and it was also evident in
the set-theoretic water quality model calibration work of
van Straten and Keesman (1991), Rose et al. (1991) and
Klepper et al. (1991) (see also Spear, 1997). It should be
remembered that hydrological modelling in the 1980s
was still very much in the mode of finding the optimum
model by the most efficient means. There was a rather
common attitude that there should be ‘the’ model of a
catchment, perhaps ultimately based on physical laws
(Abbott et al., 1986a), but the best conceptual storage
model might be useful in the meantime. There was not
much in the way of uncertainty analysis of models; there
was much more work on better optimization methods (as
in Duan et al., 1992).
The Monte Carlo experiments suggested, however, that

there was not a clear optimum but rather what came to be
called an equifinality‡ of model structures and parameter
sets that seemed to give equally acceptable results
(Beven, 1993, 2006, 2009a; Beven and Freer, 2001). In
the context of optimization, the terms non-uniqueness,
non-identifiable or ambiguity were used in the literature
to reflect that this was considered to be a problem. During
this period, also using a Monte Carlo framework, Andrew
Binley examined the role of soil heterogeneity on a model
hillslope response, using a 3D Richards’ equation
solution (Binley et al., 1989a). This study revealed that
a single effective parameter for the hillslope (as assumed
in many catchment models) might not be universally valid
but rather state dependent (Binley et al., 1989b), also
undermining the idea of finding an optimal model.
Another (not unexpected) outcome of these Monte

Carlo experiments was that there was no clear differen-
tiation between behavioural and non-behavioural models.
There was instead generally a gradual transition from
models that gave the best results possible to model that
gave really rather poor results in fitting the available
observations. Applications of the HSY sensitivity analysis
method have consequently sometimes resorted to ranking
models by some performance index (or magnitude of
some output variable) and then taking the top X% as
behavioural.
A further outcome was that the set of behavioural

model predictions did not always match the observations.
There could be many reasons for this: effectively all the
‡Equifinality in this sense first appears in the book on General Systems
Theory by Ludwig von Bertalanffy (1968). It was first used in the context
of hydrological modelling by Beven (1975) and in the paper of Beven
(1993) to indicate that this was a generic problem rather than a problem
of non-uniqueness or non-identifiability in finding the ‘true’ model of a
catchment.
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different sources of uncertainty and error in the modelling
process. Sources of uncertainty include the model
structure, the estimates of effective parameter values,
the input forcing and boundary condition data and the
observations with which the model is being compared.
These are also invoked as reasons why there seems to be
some upper limit of performance for a set of models (even
models with many fitting parameters) and why perfor-
mance in ‘validation’ periods is often poorer than in
calibration (Klemeš, 1986).
From this point, however, it was a relatively simple

conceptual step to weight each of the behavioural models
by some likelihood measure on the basis of calibration
period performance and use the resulting set of pre-
dictions to form a likelihood weighted cumulative density
function (CDF) as an expression of the uncertainty for
any predicted variable of interest (Figure 1). Models
designated as non-behavioural, for whatever reason,
can be given a likelihood of zero and need not
therefore be run in prediction. This is the basis for
GLUE as expressed in the original BB92 paper setting
out the method (see also Binley and Beven, 1991). It
was a very different way of doing uncertainty
estimation from the methods being used at the time
of finding the optimum model on the basis of
maximum likelihood, evaluating the Jacobian of the
log-likelihood surface with respect to parameter
variation around that point and using Gaussian
statistical theory (this is before the Bayesian paradigm
really became dominant in applications of statistical
inference to environmental problems; the maximum
likelihood approach is not nearly so computationally
demanding given the resources available at the time).
That is uncertainty estimation related to a point in the
model space, and to the error characteristics associated
with that maximum likelihood parameter set; in
contrast, the GLUE method is a global method that
(in most applications, but not necessarily) treats the
complex error characteristics associated with each
behavioural parameter set implicitly.
The BB92 paper had its origins in the analysis of

distributed hydrological modelling of Beven (1989),
which had originally been prepared as a comment on
the papers by Abbott et al. (1986a,1986b) but which
was reworked as a paper because the editors of the
Journal of Hydrology at the time suggested it was too
long to publish as a comment. As a paper, however, it
had to do more than comment and made the suggestion
that future work in this area should try to assess the
uncertainty associated with the predictions of distribut-
ed models (refer also to Beven, 2001, 2002a,2002b).
The paper of Binley et al. (1991) was the first attempt
to do this using a distributed rainfall–runoff model.
Recognizing the computational constraints of Monte
ons, Ltd Hydrol. Process. 28, 5897–5918 (2014)



Figure 1. Example of Generalized Likelihood Uncertainty Estimation
prediction bounds: (a) 5/95% limits for storm 1 in BB92, (b) cumulative
likelihood for peak flow and (c) cumulative likelihood for flow at end of

event. In (b) and (c), Qobs indicates observed flow

§The transputer was a 1980s parallel computer, designed by David May at
the University of Bristol and produced by Inmos, with chips designed to
support pipes to other processors. The first floating point transputer, the
T800, appeared in 1987. It was used here as TRAM daughter boards for
PCs and programmed in a language called Occam.
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Carlo simulations, they examined the method of
Rosenblueth (1975) that requires only 2N + 1 simula-
tions, where N is the number of parameters, in making
an approximate estimate of prediction uncertainty. They
concluded that the Rosenblueth sampling was only
suitable as a first-order estimate. The Monte Carlo
simulations in Binley et al. (1991), however, helped
provide a framework for demonstrating GLUE in
BB92. Binley et al. (1991) (and subsequently BB92)
constrained their Monte Carlo sampling to 500
realizations even though they adopted a relatively
simple distributed model [the Institute of Hydrology
distributed model version 4 (IHDM4) of Beven et al.,
1987]. However, even to perform this level of
computation at this time required the development of
© 2013 The Authors. Hydrological Processes published by John Wiley & S
significant code enhancement in order to exploit a
newly acquired 80 node transputer§ parallel computer.
Although this type of activity may be judged as routine
nowadays, and even something that can be incorporated
automatically by code compilers, in the 1980s, these
studies were employing hardware and software that was
extremely new to hydrological sciences and similar
disciplines (although see also the earlier stochastic
simulations of, for example, Freeze, 1975; Smith and
Freeze, 1979; Smith and Hebbert, 1979).
BB92 set out the objective for GLUE to be

generalized in the sense of using a range of potential
likelihood measures and a range of ways of combining
likelihood measures (not only Bayesian multiplication
but also weighted addition, fuzzy union and fuzzy
intersection). BB92 did include an attempt to make
sampling more efficient (using a nearest neighbour
technique to decide whether it was worth running a
full simulation but with a random component ana-
logous to the type of Metropolis–Hastings sampling
that has become commonly used more recently, see
below). It also included an assessment of the value of
new data in inference using Shannon entropy and U-
uncertainty measures.
Only very recently, our attention was drawn to the

paper by Warwick and Cale (1988). That paper also
drew on the HSY Monte Carlo method of sensitivity
analysis. Model evaluation was based on user-specified
limits of acceptability, similar to the set-theoretic model
calibrations of Klepper et al. (1991) and Van Straten
and Keesman (1991). Warwick and Cale (1988),
however, added a weighting scheme when evaluating
each model realization against observations, as in
GLUE. In their case, however, the observations were
synthetic, taken from the output of a model with the
same structure as that being evaluated, so that there
was a good chance of bracketing the synthetic
observations. In that paper, they did introduce concepts
of reliability and likelihood. Reliability was defined as
the probability that a model would predict a system
state to within the specified limits of acceptability;
likelihood was defined as the probability of finding a
model with a given reliability. They noted that the aim
of a modelling exercise is to have a high likelihood of
obtaining a highly reliable model. This is clearly easier
for the synthetic case (refer also to Mantovan and
Todini, 2006; Stedinger et al., 2008).
ons, Ltd Hydrol. Process. 28, 5897–5918 (2014)
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THE GLUE CONTROVERSY

The range of options for model evaluation within the
BB92 paper makes it clear that, given the multiple
sources of uncertainty in the modelling process that are
not well known, we did not think there was a single
unique solution to the estimation of uncertainty. Any
analysis would then be conditional of the judgments of
the analyst appropriate to a particular problem.¶ With
hindsight, one regret in respect of the BB92 paper is
that we did not also set out the use of a formal
statistical likelihood within GLUE (even though this
was performed not long after in the papers by
Romanowicz et al., 1994; 1996 that were based on
using explicit error models and formal Bayesian
principles within GLUE). That might have avoided a
lot of later misunderstanding and criticism of the
methodology (that continues to this day, refer to Clark
et al., 2011, 2012; Beven, 2012a).
BB92 comment that, ‘We use the term likelihood here

in a very general sense, as a fuzzy, belief, or possibilistic
measure of how well the model conforms to the observed
behaviour of the system, and not in the restricted sense of
maximum likelihood theory which is developed under
specific assumptions of zero mean, normally distributed
errors……. Our experience with physically-based dis-
tributed hydrological models suggests that the errors
associated with even optimal sets are neither zero mean
nor normally distributed’ (p.281).
More recent applications of statistical inference to

hydrological modelling have often been based on the use
of formal likelihood functions but within a Bayesian
framework (e.g. Kuczera et al., 2006; Vrugt et al., 2008,
2009a,2009b; Thyer et al., 2009; Renard et al., 2010;
Schoups and Vrugt, 2010). This requires defining a
formal model of the characteristics of the model residuals
(or more generally, different sources of error) that then
implies a particular form of likelihood function. It is now
common within such an approach to include bias in the
mean (or more complex ‘model discrepancy’ functions
where structure is detected in residual series, Kennedy
and O’Hagan, 2001). Autocorrelation in the residuals of
hydrological models is common. Where this is strong, it
can lead to wide uncertainty bounds when the model is
used in simulation (e.g. Beven and Smith, 2013). The
underlying assumption that the errors are, at base,
essentially random in nature remains. Model predictions,
and their associated error structures, are then weighted by
their likelihood weights in forming a CDF of predicted
variables. It can certainly be argued that this type of
¶Jonty Rougier, a statistician at the University of Bristol, has suggested
that because of this conditionality any assessment of uncertainty should
be labelled with the name of the person or persons who agreed on the
assumptions.

© 2013 The Authors. Hydrological Processes published by John Wiley & S
Bayesian inference is a special case of GLUE when the
rather strong assumptions required in defining a formal
likelihood function are justified (GLUE is indeed
generalized in that sense). The error model then acts as
an additional, non-hydrological, part of the model
structure (as in Romanowicz et al., 1994).
This is, of course, controversial, and there are many

hydrological modellers who have suggested quite the
reverse that GLUE is just a poor approximation to formal
Bayesian methods. In some cases, this view has been
expressed very forcefully (e.g. Mantovan and Todini,
2006; Stedinger et al., 2008; Clark et al., 2011). The
reason for this appears to be primarily that GLUE (in its
use of informal likelihood measures) involves subjective
decisions, and this is contrary to any aim of an objective
hydrological science. This is despite the fact that
Bayesian theory allows for subjectively chosen priors,
and that in his original formulation, Bayes himself would
have been accepting of subjective odds (or likelihoods) in
evaluating hypotheses (e.g. Howson and Urbach, 1993).
But, the priors become less important as more data are
added to the inference, and a degree of objectivity can be
claimed in verifying the assumptions made in formulating
a likelihood by examination of the actual series of
residual errors (although this is usually only performed
for the maximum likelihood model, not the whole set of
models with significant likelihood some of which could
have quite different residual structures). If (but only if) the
assumptions are verified, then the formal approach
provides a means of estimating the (objective) probability
of a future observation conditional on the model and its
calibration data.
So, it may then seem perverse to lose this ideal of

objectivity in GLUE if an informal likelihood measure
is used (although we stress again that formal likeli-
hoods can be used in GLUE if the strong assumptions
can be justified). However, Beven et al. (2008) have
shown how difficult it is to support this objective view,
even for only small departures from the ideal case
presented in Mantovan and Todini (2006). Real
applications are not ideal in this sense (refer also to
the discussions in Beven, 2006, 2010, 2012a; Beven
and Smith, 2013). This makes the ‘GLUE controversy’
as much a matter of philosophical attitude to the
treatment of different sources of uncertainty and error
as it is an argument about whether one method is more
appropriate than another (and a failure of a GLUE
ensemble of models to bracket the observations can
itself be informative, see below). In particular, we
will argue that the hydrological consideration of error
and uncertainty that can be incorporated into GLUE
has some advantages over a purely statistical treat-
ment, despite the apparent rigour and objectivity of
the latter.
ons, Ltd Hydrol. Process. 28, 5897–5918 (2014)



∥We would not, of course, wish to imply that hydrological modellers
might be exclusively masculine, and it was not true then. In the UK, Cath
Allen, Liz Morris, Ann Calver, Hazel Faulkner, Caroline Rogers, Alice
Robson, Sue White and others had already made valuable contributions
to hydrological and hydraulic modelling.
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ALEATORY AND EPISTEMIC ERRORS

One reason for choosing not to use the formal statistical
framework is that real applications may involve signifi-
cant errors that result from a lack of knowledge (epistemic
uncertainties) rather than simple random (aleatory)
variability (for example, Helton and Burmaster, 1996;
Allchin, 2004; Beven, 2009a; McMillan et al., 2010;
Rougier and Beven, 2013; Rougier, 2013; Beven and
Young, 2013). It is therefore somewhat surprising that it is
suggested that modelling errors can be approximated by a
predominantly aleatory structural model when we know
that the input data to a model have non-stationary error
characteristics and that these errors are then being
processed through a complex nonlinear function (the
model) with consequent non-stat ionary bias ,
heteroscedasticity and correlation. This view has been
reinforced by studies of non-stationary data errors within
the GLUE framework (e.g. Beven and Westerberg, 2011;
Beven et al., 2011; Westerberg et al., 2011a,2011b;
Beven and Smith, 2013). Ideally, of course, in any
uncertainty estimation study, we would like to separate
out the impacts of the different sources of error in the
modelling process. This is, however, impossible, without
very strong information about those different sources that,
again for epistemic reasons, will not generally be
available (for example, Beven, 2005, 2009a).
The important consequence of treating errors as

aleatory when they are significantly epistemic is that the
real information content of the calibration data is
overestimated. This means that an (objective) likelihood
function based on aleatory assumptions will over-
condition the parameter inference (Beven et al., 2008;
Beven and Smith, 2013) or inference about sources of
uncertainty (e.g. Vrugt et al., 2008; Renard et al., 2010).
Effectively, the likelihood surface is stretched too much.
This is seen in the fact that the (objective) likelihoods for
models with very similar error variances can be many
orders of magnitude different if a large number of residual
errors contribute to the likelihood function (as is the case
with hydrological time series, see below). The resulting
estimates of parameter variances will be correspondingly
low. Taking account of autocorrelation in the residuals
(expected for the reasons noted above) reduces this
stretching, but the differences in likelihood between two
similarly acceptable models can still be enormous. This is
demonstrated later where different approaches to assessing
the likelihood of a model are applied to the original
example study of BB92. Stretching of the likelihood
surface is one way of avoiding or greatly reducing
equifinality of models and parameter sets but not because
of any inherent differences in model performance, only
because of the strong error structure assumptions and even
if the best model found is not really fit for purpose.
© 2013 The Authors. Hydrological Processes published by John Wiley & S
It is, however, equally difficult to justify any particular
subjective assumptions in choosing an informal likeli-
hood measure (although refer to the discussion of Beven
and Smith, 2013). Clearly, a simple measure proportional
to the inverse error variance, inverse root-mean-square
error or inverse mean absolute error, as proposed in BB92
will not stretch the surface so much (unless a near to
perfect match to the data is obtained, unlikely in
hydrological modelling) but perhaps is likely to
underestimate the information content in a set of
calibration data. How do we then achieve some (objective
as possible) compromise that has an equally good but
more realistic theoretical basis to formal likelihood
functions? GLUE is already a formal methodology in
that the choice of any likelihood measure must be made
explicit in any application, such that it can be argued over
and the analysis repeated if necessary, but it remains
difficult to define a likelihood measure that properly
reflects the effective information content in applications
subject to epistemic errors. This is, of course, for good
epistemic reasons!
In BB92, this was expressed as follows: ‘The impor-

tance of an explicit definition of the likelihood function is
then readily apparent as the calculated uncertainty limits
will depend on the definition used. The modeller can, in
consequence, manipulate the estimated uncertainty of
his∥ predictions by changing the likelihood function used.
At first sight, this would appear to be unreasonable, but
we would hope that more careful thought would show
that this is not the case, provided that the likelihood
definition used is explicit. After all, if the uncertainty
limits are drawn too narrowly then a comparison with
observations will suggest that the model structure is
invalid. If they are drawn too widely, then it might be
concluded that the model has little predictive ability.
What we are aiming at is an estimate of uncertainty that
is consistent with the limitations of the model(s) and data
used and that allows a direct quantitative comparison
between different model structures’ (p.285).
Our view of this has changed surprisingly little in

20 years (except that we might now reserve the term
likelihood function for formal likelihoods and instead use
likelihood measure in GLUE applications using informal
likelihoods and limits of acceptability). We do now
have a greater appreciation of the potential for model
predictions to exhibit significant departures from the
observations during some periods of a simulation. This
was not apparent in the original event by event
simulations of BB92 but we did say that, ‘If it is accepted
ons, Ltd Hydrol. Process. 28, 5897–5918 (2014)
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that a sufficiently wide range of parameter values (or even
model structures) has been examined, and the deviation of
the observations is greater than would be expected from
measurement error, then this would suggest that the model
structure(s) being used, or the imposed boundary
conditions, should be rejected as inadequate to describe
the system under study’ (p.285). In many applications,
there have been cases where none of the behavioural
simulations provided predictions close to some observa-
tions to be considered as acceptably behavioural so that
all the models tried could be rejected as unacceptable or
non-behavioural (e.g. Page et al., 2007; Dean et al.,
2009), even in some cases where global performance was
actually rather good (Choi and Beven, 2007).
It must also not be forgotten that such failures might

not be because the model structure is problematic but
because the input and evaluation data are inconsistent
during some parts of the record (e.g. Beven, 2005, 2010,
Beven et al., 2011; Beven and Smith, 2013). All too
often, data are provided and used as if error free when
they are subject to significant (aleatory and epistemic)
uncertainties. Discharges, in particular, should gener-
ally be treated as virtual rather than real observables
(Beven et al., 2012b), whereas rainfall estimates over
a catchment area can be poorly estimated for
individual events by either raingauges or radar
methods. Both models and data exhibit forms of
epistemic error, as well as being subject to random
variability (Beven, 2012a; Beven and Young, 2013).
Epistemic error will generally be transitory, non-
stationary and non-systematic. This explains, at least
in part, the overestimation of the information content
by assuming that errors are aleatory with (asympto-
tically) stationary distributions.
BAYES, GLUE AND THE PROBLEM OF INDUCTIVE
INFERENCE

These issues are, in fact, a variant on Hume’s problem of
induction (e.g. Howson, 2003). How far can past
historical data provide belief that we will observe similar
occurrences in the future? Hume’s argument was that past
occurrences should not engender belief in future occur-
rences, surprises might always happen. The most recent
popularization of Hume’s problem is the ‘black swans’
concept of Taleb (2010). The suggestion that models
calibrated to past historical data might be useful in
informing us about the potential future behaviour of a
catchment is a form of induction (Beven and Young,
2013). There are many examples, of course, where
scientific theory has been used to predict future behaviour
successfully. It is intrinsic to Popper’s falsificationist
approach to the scientific method where models that do
© 2013 The Authors. Hydrological Processes published by John Wiley & S
not survive such tests should be rejected. It is difficult,
however, to be strictly falsificationist when epistemic
errors increase the possibility of rejecting a model that
might be useful in simulation or forecasting, just because
it has been evaluated using forcing data with errors
(a Type II error). Epistemic error in the forcing data and
observations could also lead to a model that would not
useful in prediction not being rejected (a Type I error,
Beven, 2009a, 2010). There has never been a successful
philosophical explanation of why Hume’s problem of
induction is not correct. Howson (2003) argues that it is,
in fact, correct, but its impact can be mitigated by
Bayesian reasoning.
The variant to be considered here in hydrological

reasoning about uncertainty is how far we should expect
(high impact) surprises in future observations when we
have epistemic (that is non-random but not necessarily
systematic) errors in inputs, models, parameter values and
observations. In hydrological systems, constrained by
water and energy balances, we should expect some
surprises, but we do not expect very great surprises if both
inputs and outputs are estimated well. The constraints
mean that catchment systems are not expected to respond
in grossly chaotic ways (although such cases are known
under extreme conditions; the volcanically induced
jøkulhaups of Iceland; the catastrophic channel changes
of the Yellow River in China; river network capture as a
result of erosion in an extreme event; the sudden drops in
river discharge after prolonged drought resulting from
breakdowns in subsurface connectivity, none of which
would normally be considered in a hydrological simula-
tion model used in predicting hydrological impacts of
future change). Such changes, and more general failure to
estimate future boundary conditions, always provide a
post hoc justification for model failure (refer to the
groundwater modelling examples in Konikow and
Bredehoeft, 1992), but their acknowledgement as deep
uncertainties might also be important to the decision
making process (Faulkner et al., 2007; Beven, 2011,
2012a; Ben-Haim, 2012).
Although we might not expect many great surprises in

catchment behaviour under some normal conditions, we
do expect deviations that may limit predictability (such as
the timing error in predicting snowmelt 1 year out of four
in Freer et al., 1996, or the event runoff coefficients of
greater than 1 inferred from the observational data in
Beven et al., 2011) in ways sufficient to suggest that the
type of errors seen in calibration might be arbitrarily
different to those that appear in future simulations
(Kumar, 2011; Montanari and Koutsoyiannis, 2012;
Beven and Young, 2013). Thus, can treating errors as if
they are asymptotically convergent on some underlying
distribution (as required in the use of a formal Bayesian
likelihood) ever be an adequate assumption (refer to the
ons, Ltd Hydrol. Process. 28, 5897–5918 (2014)



5903GLUE: 20YEARS ON
extended discussion in Beven, 2012a)? This is why such
an assumption should be expected to overestimate the
information content of a set of calibration data and
consequently overstretch the likelihood surface.
It does not, however, resolve the question of how far

should the likelihood surface be stretched, and how far
prediction limits should allow for epistemic error. BB92
allowed some flexibility in this respect by defining
likelihood measures with shaping factors ‘to be chosen
by the user’ (see also Beven and Freer, 2001) but without
guidance as to what values those factors might take. This
is clearly a matter of the relative importance of epistemic
and aleatory uncertainties expected in the data for
calibration and prediction periods, but this then first
requires a means of separating such errors which is not
possible without independent information about different
sources of uncertainty (e.g. Beven, 2005, 2006, 2012b).
Howson (2003) suggests that a Bayesian approach can

be useful in such problems involving induction by
providing a deductive logic in changing modellers’
beliefs that is consistent with the probability axioms.
The criticisms of the overconditioning using statistical
likelihood functions are not a criticism of a Bayesian
approach to conditioning (see also the discussion of
outliers in Kuczera et al., 2010). GLUE includes the
possibility of using Bayes multiplication in conditioning
(but is only one of the options for combining likelihoods in
a more general learning process suggested in BB92). What
we are suggesting is that the definition of appropriate
likelihood measures needs to be revisited to more properly
represent the information content of calibration data sets in
the face of epistemic uncertainties, essentially as a form of
engineering heuristic (Koen, 2003). We will return later to
the question of how this might be achieved in considering
future work in this area.
SO WHAT DO GLUE PREDICTION LIMITS
REALLY MEAN?

The result of a GLUE analysis is an ensemble of
behavioural models, each associated with a likelihood
value. The likelihood values should be a reflection of the
belief of the modeller in a particular model as a useful
predictor for the future. This might include both prior
beliefs and a modification of prior belief on the basis of
performance in calibration as appropriate. Where calibra-
tion data are available, then each model is also associated
with a series of residual errors. As noted in the previous
texts, these residuals might have complex structure as a
result of epistemic error. In the GLUE methodology, it is
(nearly always) assumed that these residuals can be
treated implicitly in prediction, although the empirical
distributions of such errors can also be used (e.g. Beven
© 2013 The Authors. Hydrological Processes published by John Wiley & S
and Smith, 2013). It is then assumed that the nature of the
residuals is expected to be similar in prediction as in
calibration (this is similar to the assumption in a statistical
methodology that the hyperparameters of an error model
determined in calibration will also hold in prediction).
Thus, if a model is consistently underpredicting under
certain circumstances in calibration, it is assumed that it
will similarly underpredict under similar circumstances in
prediction. If a model is consistently overpredicting under
certain circumstances in calibration, it is expected that it
will similarly overpredict under similar circumstances in
prediction. This allows that the residual errors might have
an arbitrarily complex structure but cannot allow for new
forms of epistemic error in prediction (but neither can any
statistical model). Alternatively, the errors can be
represented explicitly, either by a parametric error model
(as in Romanowicz et al., 1994, 1996) or non-
parametrically given the distributions of errors deter-
mined in calibration (as in Beven and Smith, 2013).
Prediction limits are then determined in GLUE by

forming the CDF of the likelihood weighted ensemble of
simulations (including model errors if an explicit error
structure model is used). Any required quantiles can then
be taken from the CDF (for example, Figure 1). These
will be quantiles of the simulated values and do not imply
any expectation that future observations will be covered
by the CDF, except implicitly to some similar level to that
found in calibration. Past experience suggests that this
can give useful coverage of predicted observations for
cases where the ensemble of models is able to span
most observations in calibration. One advantage of this
approach is that because no model will predict negative
discharges, the prediction limits never fall below zero
(as is sometimes the case under Gausssian assumptions
of symmetric error distributions with large error
variances, albeit that error transformations can be used
to mitigate this problem, e.g. Montanari and Brath,
2004; Montanari and Koutsoyiannis, 2012). A second
advantage is that it can allow for non-stationarity in the
distribution of simulated values under different
hydrological conditions, including changes in both
variance and form of the distribution (as shown in
Figure 1b and c, see also Figure 2 of BB92 and Freer
et al., 1996).
There are, however, applications where it is clear that

the range of models tried cannot match particular
observations in either calibration or validation. This
could be because of model structural error, or, as noted
earlier, it could be because of epistemic errors in the
inputs (Beven and Westerberg, 2011; Beven et al., 2011;
Beven and Smith, 2013). In either case, it is informative
because it means that errors in the modelling process
are not being hidden within a statistical error variance
(or non-parametric distribution of errors). It suggests that
ons, Ltd Hydrol. Process. 28, 5897–5918 (2014)



Figure 2. Example uncertainty limits for different likelihood measures. Limits are for storm 4 in BB92. Shaded area shows 5/95% limits; symbols show
observed discharges. Left column shows limits on the basis of likelihoods derived from knowledge of storms 1–3; right column shows limits on the basis
of knowledge of storms 1–4. (a) and (b) Residual variance-based measure, as in BB92. (c) and (d) Formal likelihood function (combined parameter and
statistical error weighted by likelihood).. (e) and (f) Weighted least squares function assuming constant measurement error equal to 20% observed flow.

(refer to Table III for likelihood function definitions)
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either the model might be improved or that some of the
observations might need further investigation as to
whether they are disinformative for model inference.
The prediction bounds are, however, always condition-

al on the assumptions on which they are based:
particularly the prior distribution of models run and the
choice of likelihood measure (including any decision
about differentiating behavioural and non-behavioural
models). Given the possibility for epistemic error in the
modelling process, these assumptions might be more or
less ‘objective’ but must be made explicit. They are thus
open to discussion, review and change if deemed
inappropriate in a similar way to statistical error
assumptions. Such review should be an important part
of the modelling process but is often neglected, even
where statistical assumptions are clearly not met. Feyen
et al. (2007) is one example where such an evaluation
revealed inappropriate error assumptions in a statistical
likelihood, but this did not then lead to revision of the
uncertainty estimation (see also the comment of Beven
and Young, 2003).
© 2013 The Authors. Hydrological Processes published by John Wiley & S
RANGE OF APPLICATIONS AND EFFICIENCY OF
SAMPLING

Over the last 20 years, the computing power available to
hydrological scientists has increased dramatically. This
has allowed the type of simple Monte Carlo sampling that
GLUE requires to be applied to an ever wider range of
models, even if it is still not possible to run sufficient
samples for some more computationally demanding
models. Analysis of the full range of GLUE applications
(refer to the listings of the Electronic Appendix for this
paper) reveals that the majority of the applications to date
have been in rainfall–runoff modelling (as was the case
study of BB92). There have also been significant numbers
of applications in hydraulic modelling, water quality
modelling, flood frequency estimation, urban and
stormwater hydrology, soil and groundwater modelling,
geophysics and ecology.
There have been only a small number of studies within

the GLUE framework that have used an explicit error
model (Romanowicz et al., 1994, 1996; Xiong and
ons, Ltd Hydrol. Process. 28, 5897–5918 (2014)
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O’Connor, 2008; Beven and Smith, 2013). Most studies
have used an informal likelihood of some type, and most
commonly, the efficiency measure of Nash and Sutcliffe
(1970) has been used, with a threshold value to define the
set of behavioural models. The efficiency measure has
some important limitations as measure of performance for
cases where the residuals can be assumed aleatory (Beran,
1999; Schaefli and Gupta, 2007; Smith et al., 2008; Gupta
et al., 2009) but remains a widely used performance
measure. It is important to remember, however, that
GLUE is more general than using an efficiency measure
and threshold with uniform prior parameter distributions.
Other priors and other measures can be used. Some recent
applications have returned to set membership evaluation
of models, on the basis of limits of acceptability and
fuzzy measures to define possibilities as a way of trying to
allow for the complex characteristics of sources of
epistemic error.
Although computer constraints on the application of

GLUE have been relaxed (in comparison to the late
1980s), it remains an issue, either because of a model that
is particularly slow to run so that it is still not possible to
sample sufficient realizations or because of a high number
of parameter dimensions. The most runs used in a GLUE
application that we know of are the two billion runs in
Iorgulescu et al. (2005, 2007), of which 216 were
accepted as behavioural using a limits of acceptability
approach. This was for a model that was just a few lines
of code but which had 17 parameters. Two billion runs is
then still a small sample compared with a discrete
sampling strategy with ten values for each parameter. As
stated earlier, in BB92, we were constrained to 500
realizations for each (relatively short) event and that was
only possible in a reasonable time because we utilized an
80 node transputer system. More recently, GLUE
calculations have been speeded up for certain models
using highly parallel graphics processor cards (for
example, Beven et al., 2012c)
It is possible to use adaptive sampling strategies to seek

out areas of higher likelihood or possibility in the
parameter space. It has already been noted that BB92
already used a strategy on the basis of nearest neighbour
interpolation. Early on, Spear et al. (1994) suggested a
space partitioning system as a way of improving the
density of sampling behavioural models. Khu and Werner
(2003) have proposed a method on the basis of genetic
algorithm and artificial neural network techniques to map
out the areas of high likelihood in the model space,
whereas Blasone et al. (2008a,2008b) and McMillan and
Clark (2009) have suggested combining GLUE and
Markov chain Monte Carlo (MCMC) strategies to
increase the efficiency of finding behavioural models.
The DREAM algorithm could also be used in this context
(e.g. Vrugt et al., 2009a; Laloy and Vrugt, 2012). Where
© 2013 The Authors. Hydrological Processes published by John Wiley & S
strong information about prior parameter distributions is
available, sampling strategies such as Latin hypercube or
antithetic sampling can be used to reduce the number of
runs required to represent that prior information (e.g.
Avramidis and Wilson, 1996; Looms et al., 2008). With
some of these techniques, it is not always clear just what
density of sampling results and therefore whether the
likelihood associated with a model should be modified to
reflect sampling density (this is one advantage of either
uniform sampling or methods that successfully achieve
likelihood dependent sampling densities).
Efficiency, however, is not only a matter of the

effectiveness of a search technique but also of the
complexity of the response or likelihood surface. Model
structures with thresholds, numerical artefacts (e.g.
Kavetski and Clark, 2010), complex interactions between
parameters, interactions between particular data errors
and model performance and other factors can results in
surfaces that are complex in shape. Sensitivity and
covariation between parameters and the likelihood
measure will also be complex and will not always be
represented well by a simple covariance function. That
means that the success and efficiency of a search
technique might well depend on the initial sampling that
is the basis for refining the search in successive iterations.
If localized areas of high likelihood are not sampled in
that initial (limited) sampling, then there is a possibility
that they will never be sampled. That is why many
sampling methodologies, including Markov chain Monte
Carlo methods, and the BB92 nearest neighbour method
include a probabilistic choice of making a model run,
even if the parameter set is not necessarily predicted as
being behavioural. This maintains a possibility of
identifying areas of high likelihood that have not yet
been sampled.
There remain many models that simply take too long to

run or have too many parameter dimensions to allow
adequate sampling of the model space. In some cases, the
use of MCMC or other efficient sampling strategies
within GLUE might help, especially when it is expected
that the likelihood surface being sampled is smooth.
However, it also seems likely that computer power
available to the modeller will continue to increase faster
than either modelling concepts or data quality. This will
allow the application of GLUE type methods to a wider
range of problems in the future.
ATTAINING RESPECTABILITY?

Despite the wide range of past applications of GLUE
(refer to the Electronic Appendix to this paper), it seems
that it is still not considered fully respectable. Criticism
has focussed on the subjective assumptions required,
ons, Ltd Hydrol. Process. 28, 5897–5918 (2014)



Table I. Storm characteristics for the Gwy catchment simulations

Storm Date
Total rainfall

(mm)
Peak flow
(m3 s�1)

1 17–19 November 1981 80.5 8.0
2 27–29 January 1983 111.4 6.1
3 11–13 February 1976 107.3 8.5
4 5–7 August 1973 121.8 16.8*

*Estimated
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particularly in choosing a likelihood or way of combining
likelihoods, which means that the resulting uncertainty
estimation is conditional on those assumptions. There is
no way of objectively verifying the probability of
predicting a future observation (as in the case of
evaluating a formal likelihood) because, as noted earlier,
the GLUE prediction bounds do not generally have this
meaning unless a valid explicit error model is used. But if
formal likelihoods do overestimate the information
content of the calibration data in real, non-ideal,
examples, we would wish the choice of likelihood
measure in GLUE to reflect the real information content
in some way.
We note at this point that the choice of a Gaussian (L2

norm) likelihood in statistical inference is, in itself, a
subjective choice. Independently, Laplace (1774) had
developed a form of analysis of errors, analogous to
Bayes, but based on the absolute error (L1 norm). There
are equally other possibilities (Tarantola, 2006). In the
19th century, analytically tractability was all important,
and the L2 norm had many advantages in this respect but
any of these norms can very easily be applied on modern
computers. So, there is a choice that clearly should reflect
belief in the information provided by a single residual, but
what is not yet clear is what type of likelihood measure is
most appropriate given the epistemic errors in the typical
data sets used for inference in hydrological applications,
and how that might be checked in simulation. The GLUE
methodology is, however, general to all these different
choices, from the most formal to the most informal when,
if epistemic error is important, there will be no right
answer (again, for good epistemic reasons).
Other disciplines have had to struggle with similar

problems of information content and identifiability.
Diggle and Gratton (1984) provide an early example of
statistical inference for intractable error models. Later, the
name approximate Bayesian computation (ABC) was
given to a technique (actually somewhat analogous to a
form of GLUE) developed for evaluating models in
genetics for cases where a suitable formal Bayes
likelihood function is difficult to define or evaluate (e.g.
Tavaré et al., 1997; Beaumont et al., 2002). As in some
GLUE applications, MCMC methods have been used to
increase the efficiency of sampling a complex model
space (Marjoram et al., 2003). It can be shown that, at
least for certain problems, ABC can provide an
asymptotic approximation to a formal Bayesian likeli-
hood analysis (though that might be misleading for
hydrologists where, as argued earlier in this paper, a
classical formal Bayesian analysis might not be what is
required). Toni et al. (2009) and Marin et al. (2011)
provide reviews of ABC methods while interpretations of
GLUE as a form of ABC have been presented by Nott
et al. (2012) and Sadegh and Vrugt (2013).
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But, there might be another way of gaining respect-
ability and being more objective in applications of GLUE
and that is to change the strategy of model evaluation to
an approach that does not depend directly on model
residuals but is the result of hydrological reasoning. This
has been the subject of some recent developments in
GLUE (see below).
REVISITING THE GWY: A COMPARISON OF
LIKELIHOOD MEASURES WITHIN GLUE

To illustrate some of the topics that have been discussed
in the previous texts, we have returned to the example
application in BB92 where a number of storms were
modelled for the small Gwy catchment in mid-Wales
using the IHDM4 (Beven et al., 1987). IHDM4 is based
on a 2D finite element solution of the Darcy-Richards
equation for variably saturated flow in the subsurface. It
does not explicitly represent macropores or other
preferential flow processes but in BB92 was shown to
produce reasonable catchment scale simulations. It may
seem strange now that the study was limited to single
storm simulations, but in the 1970s and 1980s, this was
quite common, particularly in applications of distributed
models (again in part for computational reasons). We can
now reinterpret the exercise as a form of model fitting for
an ungauged catchment where field campaigns are
mounted to obtain rainfall and stream discharge data for
a small number of events. This is one strategy to address
the prediction of ungauged basins problem (Juston et al.,
2009; Seibert and Beven, 2009; Blöschl et al., 2013). The
characteristics of the storms used are given in Table I. The
calibration parameters used were the same as in BB92
(Table II).
In this example, we have used the same storms as

before, using GLUE to update the likelihood weights for
different parameter sets as each new storm is added to the
measurement set. As in BB92, we do not use the storms
as they occurred but instead according to their number
(e.g. storm 1 before storm 2). The reason for doing this
was that in the original BB92 paper, we were interested to
see how a model, calibrated on a series of similar sized
ons, Ltd Hydrol. Process. 28, 5897–5918 (2014)



Table II. Institute of Hydrology distributed model version 4 parameters and their ranges for the Gwy catchment simulations

Parameter Description Minimum Maximum

Ks Saturated hydraulic conductivity (m h�1) 0.02 2.00
θs Saturated moisture content (m3m�3) 0.15 0.60
φin Initial soil moisture potential (m) �0.40 �0.05
f Overland flow roughness coefficient (m0.5 h�1) 50.00 10 000.00
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events, would perform for an event of different magnitude
(storm 4 in this case, Table I). Each storm can also be
used as a validation event before being incorporated into
the calibration data set (e.g. left column in Figure 2). This
time, we have incorporated a range of likelihood
measures, including a statistical likelihood function
(Table III). Note that for the formal likelihood, no model
will be rejected as non-behavioural but where Nt is large
all the model likelihoods will be very small and
potentially subject to rounding error. Thus, as is usual
practice, the calculations are made using the log
likelihood. All models with likelihood values smaller
than the maximum likelihood by 100 log units are
neglected. The remaining likelihoods were back-
transformed and rescaled to a cumulative of unity. A
formal likelihood that includes a lag 1 autocorrelation
component was also tried but made little difference to the
results. In both cases, only a small number of models
contribute significantly to the cumulative likelihood
because of the stretching of the likelihood surface induced
by the formal likelihood function.
As each storm is added into the conditioning process,

the likelihoods are combined multiplicatively using Bayes
equation in the following form:

Lp
�
Mjy� ¼ Lo M½ �Ly

�
Mjy�

C
(1)

where M indicates a model structure – parameter set
combination, y is a set of observations with which the
model outputs are compared, Lo[M] is the prior likelihood
for that model, Ly[M|y] is the likelihood value arising
from the evaluation, Lp[M|y] is the posterior likelihood
and C is a scaling constant such that the sum of the
Table III. Example li

Likelihood measure Equation

Sum of squares of residuals L∝ σ2
ϵ

� ��N

Formal likelihood L∝ 2πσ2
ϵ

� ��Nt=2exp � 1
2πσ2

ϵ

�h

Weighted least squares L∝∑Nt
t¼1 ϵt=εtð Þ2
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posterior likelihoods over all behavioural models is unity.
We note again that GLUE can be Bayesian in this way but
that it is not limited to Bayes equation in combining
likelihoods. In BB92, we also suggested that weighted
addition, fuzzy intersection and fuzzy union might also be
used as ways of combining different likelihood measures
that might come from evaluations on different periods of
observations or quite different types of observations. One
feature of this multiplicative combination is that if a
model is non-behavioural on any evaluation (Ly[M|y] = 0),
then the posterior likelihood for that model will be
zero regardless of how well it has performed on
earlier evaluations.
Figure 2 shows how the different likelihood measures

have contrasting characteristics in their uncertainty limits,
and their evolution as new data becomes available. As
stated earlier, for our original analysis (in BB92), we were
constrained by the number of model runs that could be
performed. In revisiting this case study, we examined
whether the 500 realizations originally used was an
appropriate number. In terms of capturing the uncertainty
limits (e.g. Figures 1 and 2), increasing the number of
model runs using the BB92 efficiency based likelihood
measure has little effect. However, if one is to consider
resampling the parameter space, as demonstrated in BB92
using a relatively simple interpolation scheme, then such
a small number of realizations (even for a four parameter
study) could be inadequate.
Figure 3 shows dotty plots for two parameters for the

BB92 efficiency based likelihood measured after adding
the data from storm 1 to storm 4 into the inference process
(c.f. Figure 7 in BB92). For 500 realizations (Figure 3a), a
pattern is not evident when collapsed into 2D space. One
may interpret this as an indication of multiple local
kelihood measures

Notes

σ2
ϵ ¼ variance of residuals. As in

BB92, N= 1 is used.
∑Nt

t¼1ϵ
2
t

�i
Nt= number of observations. ϵt is the
residual at observation t.
εt is the measurement error of observation,
fixed at 20% of flow at time t.
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Figure 3. Dotty plots showing likelihood measures in 2D parameter space: (a) 500 realizations (as in BB92) and (b) 500 000 realizations. Likelihood
measure computed as in BB92. Example shown is for storm 4, computed using observations from storms 1 to 4. Symbol colour indicates magnitude of

likelihood measure (white, low; black, high)
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optima. However, if we perform the same exercise for
500 000 model runs (Figure 3b), a clearer pattern
emerges. Resampling based on only 500 realizations
(for this four parameter case) may, therefore, be
inefficient or may misguide the parameter search. Note,
however, that in this case, there is little difference in the
uncertainty limits estimated for the two sets of samples.
As the IHDM4 model study involves only four

parameters, we can explore, visually, the parameter space
further. Figure 4 reveals the variation in likelihood
measure within the 4D space, shown as an isosurface in
two 3D parameter plots. Figures 4a and b show the
isosurface of a given likelihood measure given data from
storms 1 to 3. Figure 4c and d, in contrast, show how the
isosurface changes as data from storm 4 is incorporated.
Another way of examining the effect of likelihood

measure on parameter conditioning is in terms of
parameter distributions as new information is added after
each storm. Figure 5 shows, for each of the parameters,
the modification of the prior uniform distribution after
adding only storm 1 and then after adding storms 1–4.
Figure 5a shows the posterior cumulative distributions for
each parameter using the BB92 efficiency-based likeli-
hood measure; Figure 5b shows the equivalent distribu-
tions for the formal likelihood function. The difference in
the degree of conditioning is immediately obvious. Even
after only storm 1 is added, the formal likelihood surface
has been stretched to focus in on a highly constrained
range for each parameter, to the extent that the area of
higher likelihoods is not that well defined even with a
sample of 500 000 runs (adaptive density dependent
sampling might help in that respect but would be unlikely
to greatly expand the range of the posterior distributions).
This range also changes from storm 1 to storm 4 for the
φin and f parameters. This might be expected for φin
because this defines the initial condition for each event,
© 2013 The Authors. Hydrological Processes published by John Wiley & S
but f is intended to be a characteristic of the catchment
soils. Such jumps are possible within the formal Bayesian
framework, because models are never given zero
likelihood, only very low values. That means that, as
new information is added, a model might reflect the
changing nature of the errors by recovering to a higher
likelihood (and vice versa). It can also, however, be
interpreted as an indication of severe overconditioning
because of the formal likelihood assuming that the
information in the series of residuals is the result of an
aleatory process.

A limit of acceptability approach to model evaluation

In the Manifesto for the Equifinality Thesis, Beven
(2006) suggested that a more hydrologically rigorous
approach to model evaluation that takes proper account of
observational data errors and is not based only on model
residual errors, might be based on specifying limits of
acceptability for individual observations with which
model outputs would be compared (refer also to Beven,
2012a,2012b). This approach has since been used, for
example, by Dean et al. (2009), Blazkova and Beven
(2009), Liu et al. (2009), Krueger et al. (2009), McMillan
et al., 2010, and Westerberg et al. (2011b). There had also
been earlier forms of this approach within GLUE based
on fuzzy measures (for example, in Blazkova and Beven,
2004; Freer et al., 2004; Page et al., 2003, 2004, 2007;
Pappenberger et al., 2005, 2007).
Within this framework, behavioural models are those

that satisfy the limits of acceptability for each observa-
tion. Ideally, the limits of acceptability should reflect the
observational error of the variable being compared,
together with the effects of input error and commensu-
rability errors resulting from time or space scale
differences between observed and predicted values. They
might also reflect what is needed for a model to be fit-for-
ons, Ltd Hydrol. Process. 28, 5897–5918 (2014)



Figure 4. Isosurface of interpolated likelihood function for 500 000 realizations of two storm runs. Isosurface shown for central likelihood values
[>5 × 10�6, equivalent to a residual variance of 1.38 (m3 s�1)2]. Likelihood measure computed as in BB92. (a) and (b) show variation isosurfaces
computed on the basis of storm 1. (c) and (d) show isosurfaces computed on the basis of storm 1–4. The parameter values are normalized to the

respective range for plotting purposes using the sampling ranges shown in Figure 5
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purpose for a particular decision making process. Ideally,
the limits should be set independently of any model
structure and prior to making any model runs, although
this is clearly difficult in allowing for the effects of input
error. In extreme cases, hydrological inconsistencies
between input and output data for specific events might
mean that certain events are disinformative in respect of
model evaluation (Beven et al., 2011; Beven and Smith,
2013). Setting limits of acceptability before running the
model on the basis of best available hydrological
knowledge might be considered more objective than the
analogous use of a maximum absolute residual, which
was also one of the measures proposed in BB92.
This approach has also been used here with the original

Gwy application from BB92. Hudson and Gilman (1993)
suggest that errors in stream gauging might be of the
order of 3% for flows contained within the gauging
structures, and errors in estimating catchment average
rainfalls might be of the order of 4%. The latter estimate,
however, makes use of an extensive network of ground
level monthly storage gauges so that the uncertainty
associated with individual storms might be significantly
higher. An Institute of Hydrology report of Newson
(1976) suggests that catchment average rainfalls for the
© 2013 The Authors. Hydrological Processes published by John Wiley & S
site might be estimated to within 5%. An earlier report
from Clarke et al. (1973) suggests that the coefficient of
variation for hourly rainfalls on the basis of the recording
gauges (albeit estimated only for wet spells in 1month)
was greater, of the order of 50%. The estimate for
discharge uncertainties could increase dramatically when
the structures were overtopped or by-passed during
extreme events, but all the events considered here were
within the capacity of the Gwy structure. Marc and
Robinson (2007) also suggest that changes in the
accuracy of flow gaugings for the nearby Tanllwyth
subcatchment might have been sufficient to have had an
effect on longer-term water balance estimates.
Here, lacking adequate knowledge of the input errors

associated with each event, we have not made any attempt
to account explicitly for input errors. Instead, we have
specified limits of acceptability on the basis of ±10% and
±20% for the observed discharges, to make allowance for
the potential effects of input error. These limits might be
seen as generous, but in contrast to the earlier global
evaluations of the IHDM model in this application, all
500 000 simulations fail to meet the limits of acceptability
in storm 1 and all the other storms as well. Figure 6 shows
the results for the best 100 runs in the form of a cumulative
ons, Ltd Hydrol. Process. 28, 5897–5918 (2014)



Figure 5. (a) Change in efficiency-based likelihood function with event for the four parameters. (b) Change in formal likelihood function with event for
the four parameters. Dashed lines show prior likelihood; grey lines show likelihood after storm 1; solid black lines show likelihood after storm 4
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distribution of model residuals normalized for the limits of
acceptability. The very best model achieves only 82%
compliance with the limits of acceptability (normalized
misfit <1) over all the observed discharges in storm 1.
Clearly, despite the rather relaxed limits, the limits of

acceptability evaluation is more demanding than the
earlier global evaluations in this case. This could be in
part because of the approximate initial conditions
affecting the low flow simulation of each storm, or an
underestimate of the effect of input error, or IHDM model
© 2013 The Authors. Hydrological Processes published by John Wiley & S
structural error, based as it is on a purely Darcy-Richards
subsurface flow process representation. There is also an
issue about whether the use of a percentage error is
appropriate to define whether a model is fit for purpose.
This makes some allowance for the potential
heteroscedasticity of discharge observation errors at
higher flows, but even 20% limits of acceptability at
low flows might be a very small error.
Thus, the analysis was revisited using the same 20%

limits but with restricted to a minimum misfit from the
ons, Ltd Hydrol. Process. 28, 5897–5918 (2014)



Figure 6. Results of limits of acceptability analysis for the best 100 (out of
500 000) runs of Institute of Hydrology distributed model version 4 for
storm 1. Best here is defined by the number of time steps for which the
model satisfies the limits of acceptability. Misfit is specified as a
normalized absolute scale where unity represents the upper or lower 20%
limit around each observation. The vertical bars indicate the range of
misfit for the best 100 realizations, for a given limit of acceptability

(expressed as a percentage)
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observed discharge. Even allowing for minimum limits of
acceptability of up to 2m3 s�1 did not result in any
behavioural simulations for any storm. This is an
indication that, although the global likelihood measures
used earlier result in relatively constrained uncertainty
bounds, they have the effect of averaging over the
detailed time step error characteristics of the individual
models, which do not satisfy the relaxed limits of
acceptability. So, this raises the question of whether the
limits of acceptability is still too demanding or whether
the IHDM4 model and the data used to drive it are not fit-
for-purpose in this case, relying on error and model
realization averaging to achieve the relative success of the
global likelihood measures. That is a decision that might
depend on the aim of a particular application of the model
but can be considered to be an objective reason for
rejection of the model and/or the data being used in this
application. Such a rejection is perhaps not unexpected
(with the IHDM4 model assumptions that the Richards
equation applies in a soil profile of uniform depth and
conductivity and idealized initial conditions prior to each
storm) and can be a good thing in the learning process of
doing better hydrology. The global likelihood measures,
however, do not result in such a rejection. Indeed, it is
worth noting that the formal Bayes likelihood will never
reject a model, only produce low likelihoods, that might
then be rescaled to appear significant because of the role
of the scaling constant C in [1]. As a result in Figure 5,
only a small number of models have a significant impact
on the posterior parameter distributions
RESPONDING TO MODEL REJECTION

Rejection of all the models tried is a positive result in that
it shows that some improvement is required to either the
model structure being used or the data that force the
© 2013 The Authors. Hydrological Processes published by John Wiley & S
model or are used in evaluation. An analysis of the
failures can then suggest where improvements might be
required (e.g. Choi and Beven, 2006) or when the data
are hydrologically inconsistent (Beven et al., 2011).
Within the limits of acceptability framework, an analysis
can also provide information about the most critical
observations in inducing model failure (e.g. Blazkova
and Beven, 2009). In the research sphere therefore,
model rejection should not be the end point of a study
but should lead to further development and improvement
in knowledge.
Rejection of all the models tried is not, however, a very

useful result in a practical application when some decision
needs to be made on the basis of risk measures dependent
on model simulations. The practicing hydrologist may not
then have either time or resources to effect some model
revision or re-evaluate the available observations. This
has not been an issue in the past when there has been more
emphasis on finding the best model (or set of behavioural
models) with (or without!) some estimate of uncertainty.
But, if there is reason to reject all the models tried, then it
raises an ethical issue about how far a model is fit for
purpose in the decision making process. We could, of
course, relax the criteria of rejection (which will also
generally increase the range of uncertainty, given more
chance of simulating future surprises), but unless there are
good hydrological arguments for doing so, we should
surely still be wary of using predictions that may not be fit
for purpose.
RECENT DEVELOPMENTS AND ISSUES FOR
FUTURE RESEARCH

If epistemic uncertainties are important in hydrological
modelling (as we believe that they are), then how can we
try to account for such errors in model evaluations? We
should not, after all, expect a model to make predictions
of better quality than the data that has been used in its
calibration or the data with which it will be compared in
evaluation, but we should expect that epistemic
uncertainties will, as the result of a lack of knowledge,
be difficult to quantify. This then suggests making some
assessment of the quality of the data before running the
model, including the elimination of any data that appear
to be inconsistent. This includes, for example, storms
with apparent runoff coefficients greater than 1
(for whatever epistemic reason). No model would be
able to reproduce such an output if it imposes a closed
water balance (as most hydrological models do). Analysis
of rainfall–runoff data, however, has shown that such
cases are not uncommon, even for some quite large
rainfall volumes (e.g. the case study of Beven et al., 2011;
Beven and Smith, 2013).
ons, Ltd Hydrol. Process. 28, 5897–5918 (2014)
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So, data quality should be checked carefully, but even
after such checking, there will be some uncertainties
about both input and evaluation data. Assessing the
measurement uncertainties associated with both input and
evaluation data independently of any simulation model
structure should, in principle, be possible. In practice, two
difficulties arise, both associated with epistemic issues.
The first is that we may not have the knowledge with

which to assess the uncertainties of either inputs or
evaluation data. This may be because of the limitations of
the available measurement techniques or number of
measurements in providing what the model needs or an
evaluation variable that is commensurable with a model
predicted variable (Beven, 2006, 2009a). Examples are
the uncertainties associated with rainfall over a catch-
ment, as they vary from event to event. Interpolation of
raingauge observations requires a model (both of factors,
such as wind speed, affecting the raingauge catch that are
commonly ignored and of interpolation in space for which
there are numerous different techniques available, e.g.
Shaw et al., 2010). Estimation of rainfall intensities from
radar reflectivity requires a model. Both of these
interpretative models might require different parameters
for different events (or even sub-event time steps), which
may themselves be subject to epistemic uncertainties,
especially when limited data are available to estimate the
interpolation characteristics (McMillan et al., 2012).
The use of an observed water level to infer discharge in

a channel requires a model of the rating curve, which
might involve epistemic uncertainty in extrapolating to
flood levels beyond the range of the rating curve
measurements. There are also commensurability issues
about relating point measurements of soil water or water
table levels in observation wells to model predicted
variables at catchment or discretization element scales.
Hydrological modellers appreciate these issues much
more now than 20 years ago, but we cannot say that we
have really made too much progress in understanding
how they influence the real information content of
calibration data.
The second difficulty is that even when we could make

some sort of assessment of input errors, the impact of
those errors on prediction uncertainties depends on
processing through a particular model structure and
parameter set. The inverse of this problem is seen in
some recent studies that try to identify input errors as part
of a Bayesian identification methodology (e.g. the
BATEA studies of Thyer et al., 2009 and the DREAM
studies of Vrugt et al., 2009b but see also Beven, 2009b,
in respect of the latter). These attempt to identify rainfall
multipliers for individual events that give good pre-
dictions conditional on a chosen model structure. But,
there is clearly potential for interaction between these
identified rainfall multipliers and any model structural
© 2013 The Authors. Hydrological Processes published by John Wiley & S
errors. These effects cannot be separated (Beven, 2005,
2006). The result is that the parameters of the model are
apparently very well estimated – equifinality has been
effectively eliminated but only by transferring uncertainty
to the inputs in a way that compensates for model
structural error and which cannot be easily extrapolated to
prediction events.
The concept of not expecting a model to perform better

than the input and evaluation data should, however, hold.
Given an independent estimate of input error, we can then
use a forward propagation of that error through any given
combination of model structure and parameter set for
comparison with any evaluation data. The fact that we are
not used to estimating such errors independently of a
model run should not preclude the development of
objective techniques to do so. It is worth noting that
these techniques might not be simply statistical. A
hydraulic extrapolation of a discharge rating curve that
takes account of the changing cross-section and rough-
ness in overbank flow might have greater value than a
statistical regression extrapolation. Similarly, simple
geostatistical interpolation of rainfall fields (e.g. McMil-
lan and Clark, 2009) might not be informative if the field
is not second order stationary and if variograms are non-
stationary and poorly estimated from small numbers of
gauges. It might still be a step in the right direction, but
this is not just a statistical problem.
Consider for the moment a situation within which it is

required to test one or more rainfall–runoff model
structures. The same steps are required in the analysis
as in the original BB92 case.

1. An estimation of the prior likelihoods (as probabilities,
possibilities or measures of belief) for model structures
and parameters.

2. A method of sampling the model space to find
behavioural models and reject non-behavioural models.

3. A method of defining a likelihood weight for each
behavioural model that can then be used in predicting
the CDF of output variables (including for an explicit
error model if used).

Steps 2 and 3 now require some modification,
however, because step 2 now no longer requires the
assessment of performance of a deterministic run of a
model structure and parameter set combination, but the
assessment of a model run subject to some input errors
and comparison with uncertain evaluation variables
(resulting from measurement, interpretation model and
commensurability errors as described above). Effectively
this requires an assessment of the consistency of two
uncertain variables at multiple time steps. It has some
similarities with the method of phi-shadowing of Smith
(2001), although he looks primarily at the problem of
ons, Ltd Hydrol. Process. 28, 5897–5918 (2014)
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getting the initial conditions for a forecast to shadow the
evolution of the system within observational uncer-
tainties, and not the problem of continuously uncertain
forcing data.
And therein lies another dimensionality problem,

because whether a model parameter set can be expected
to provide good predictions given a sequence of uncertain
inputs depends on the particular realization of those
inputs. This also arises where the inputs for a model are
themselves generated by a model with uncertain param-
eters. This was the case in the GLUE flood frequency
application of Blazkova and Beven (2009). In their study,
a small number of models from a sample of 600 000 runs
were found that were consistently within specified limits
of acceptability for criteria on the basis of uncertain
discharges (as expressed in flood frequency and flow
duration curves) and snow accumulation quantiles.
Checking those models for different realizations of the
inputs, however, suggested that there was a low
probability of that parameter set being behavioural across
all input realizations. Likelihood of a particular parameter
set depended heavily on input realization; a parameter set
could change from being behavioural to non-behavioural
(there is also a lesson there for model applications that
consider the inputs to be known perfectly). This also has
implications for making Type I and Type II errors in
testing models as hypotheses when, in fact, Type III
errors are important in the modelling process (refer to the
discussion in Beven, 2010, 2012a).
However, even assuming that input uncertainties can be

defined before running any of the models (hopefully in an
objective way from the evidence available), a full
evaluation of the effects will then require many
realizations to be run with each model parameter set
greatly increasing the computational burden. How
important this is will depend on how sensitive are the
results to input uncertainty relative to other uncertainties.
The range of multipliers identified by application of the
Bayesian BATEA and DREAM methods (even allowing
for the fact that model structure and parameter un-
certainties are being compensated by rainfall multiplier
uncertainties) suggests that input uncertainties cannot be
considered negligible.
But, this is a problem of epistemic uncertainty. The

reason why little research has been performed about the
uncertainties in rainfall input fields in hydrological
modelling is not that we do not understand that it is a
problem but that there is not generally adequate
knowledge on which to base a quantification of the
uncertainty. There are then three possible responses, all of
which are questions for future research. The first is to
collect more detailed data, and there are projects currently
addressing this at least in rainfall dominated regimes
(Anagnostou et al., 2004; McMillan et al., 2011). The
© 2013 The Authors. Hydrological Processes published by John Wiley & S
second would be to speculate about the likely uncertainties
(at least for catchment average rainfalls) on the basis of
experience of detailed studies elsewhere. The third is to
treat the input uncertainties implicitly, as is currently the
case in nearly all hydrological modelling studies. The third
option will often be attractive for reasons of resources and
proportionality to the problem under study.
There remains the question of defining an appropriate

likelihood measure (although experience with some of the
studies that have used the limits of acceptability form of
evaluation within GLUE suggests that this does not make
a great difference to prediction uncertainties once the set
of behavioural models has been selected). Beven (2006)
outlines different functional forms that might be used to
define likelihood weights for each available residual;
more recent studies have shown how residuals can be
normalized to be comparable across measurement types
and changing limits (e.g. Liu et al., 2009; Blazkova and
Beven, 2009; and the normalized misfit used in Figure 6
in the previous texts).
This leaves a final question of how to combine the

likelihood values for different observations. Should
they be combined multiplicatively, as in Bayes
equation, or in some other way? This is actually an
interesting question because it really depends on what
the underlying value of different observations might be
in conditioning the model inference and again this may
involve differences of philosophy and choice of
technique. Beven et al. (2008), for example, raise the
issue of whether a new period of similar calibration
data should be used to provide strong conditioning
(as happens in the stretching of the likelihood surface
in Bayes) or whether the new period really adds a
significant amount of information to the inference
(for example, in reducing the possibility of a Type I
error of accepting a model that is not ultimately a good
simulator of the catchment). A new period that was
quite different to a previous calibration period might
provide much more information in constraining Type I
and Type II errors provided that we can be equally
confident in the quality of that data.
So, a further interesting research question is the

evaluation of the information content in different types
and periods of calibration data, independent of the model
(s) being used. This clearly involves issues of data
quality, of the range of behaviours in a period and of the
commensurability of observations with expected model
predicted variables. Although there are definitions of
information criteria available (Akaike, Bayes, Deviance,
Young, etc.), they all apply post hoc to a model
application, dependent on the residual series and resulting
parameter covariances and conditional on an assumption
that the model is correct. Evaluation of information
content prior to a model run should affect the type of
ons, Ltd Hydrol. Process. 28, 5897–5918 (2014)
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relative likelihood measure used in a model application
but requires a different approach to the traditional criteria
(Beven and Smith, 2013, for one approach).
WHAT SHOULD DEFINE SUCCESS IN
UNCERTAINTY ESTIMATION?

This would appear to be a simple question. In the
traditional statistical approach to uncertainty estimation,
success would be defined by correctly characterizing the
probability of predicting a new observation in a posterior
analysis of a conditional validation period (as in a split-
record evaluation test in hydrology). Thus, the 95%
prediction bounds should contain 95% of observations,
and a quantile–quantile plot should show no strong
deviations from normality (or some other distributional
assumption). Such a test implies, of course, that the
statistical model is aleatory and homogeneous between
calibration and prediction periods.
It is clear, however, that in real applications, the

importance of epistemic errors makes it difficult to meet
such criteria. It is rather common in hydrological
modelling to find that model performance in prediction
is not as good as in calibration. This implies that the
residual characteristics are not homogeneous between
calibration and validation periods but are non-stationary
(at least in the short term, even if they have long-term
stationarity when integrated over a sufficiently long
sample of epistemic errors, e.g. Montanari and
Koutsoyiannis, 2012). It also implies that there may be
elements of surprise in conditional validation and future
simulation periods, when the epistemic errors might be
quite different to those seen in calibration.
As noted earlier, within the GLUE framework most

past applications that treat the residual characteristics
implicitly do not guarantee that the ensemble predictions
will match the probabilities of new observations, so there
is no equivalent quantitative measure of success.
Simulations by the set of behavioural models can only
span the observations if those models will both
overpredict and underpredict all observations and expe-
rience shows that this is not always the case. Where it is
the case, success is often of a similar level to statistical
inference (and without the possibility of prediction limits
crossing zero that will happen using a simple additive
error model with large error variances in statistical
inference). A failure to encapsulate future observations
can, however, occur for good epistemic reasons so that
such failures might contain valuable information about
errors in the model or forcing data. Thus, applying GLUE
without a statistical error model is more likely to fail in
the sense of bracketing new observations but in doing so
will concentrate attention on whether the model and data
© 2013 The Authors. Hydrological Processes published by John Wiley & S
are fit-for-purpose or need to be improved (as in the limits
of acceptability evaluation of the application of IHDM4
to the Gwy catchment above).
THE NEXT 20YEARS

There is no doubt that the original BB92 paper has had
the effect of stimulating a great deal of discussion about
the sources of uncertainty in hydrological modelling and
how best to deal with them (this is surely one reason why
it has been cited so often). The debate between GLUE and
formal statistical approaches is still on-going (Clark et al.,
2011, 2012; Beven et al., 2012a), with no sign of real
resolution because there is no right answer to the problem
of epistemic uncertainties. If we could know enough
about the nature of the sources of uncertainties, we could
devise ways of dealing with them. Without that
knowledge, every approach will be an approximation.
Reviewing progress over the last 20 years, we would

finish by suggesting some critical issues that need to be
addressed by the community in future. We take it as read
that the future will see both better model structures and
better observational data (at least in research applications)
that will reduce the epistemic uncertainty in both process
representations and model evaluations, but there remain
some critical issues that require further research.
Of these, perhaps the most critical is evaluating the real

information content of hydrological data series and the
related issue of reducing the epistemic errors in input and
output data. This requires as much hydrological reasoning
about evaluating data as statistical theory. We see this as
one of the advantages of using the GLUE framework,
which can focus attention down to the hydrological
significance of single events and observations (see the
discussion in Beven and Smith, 2013).
A second related issue is the design of model

evaluation strategies (and likelihood measures) that allow
for the epistemic error generic to hydrological data series
and that allow for model rejection when not fit-for-purpose,
rather than compensation by an error model under the
assumption that sources of uncertainty can be treated as if
only aleatory in nature. This is crucial in shaping the
likelihood surface in any model application and therefore the
potential for improving the efficiency of defining the shape of
that surface using advanced sampling strategies. We note
again the essential difference between GLUE and formal
statistical approaches in this respect as the implicit handling
of errors in GLUE and the explicit error model of the
statistical approach (although remember that there is no
reason why an explicit error model cannot be included in
GLUE, including empirical nonparametric distributions of
errors; it simply becomes an additional non-hydrological
model component).
ons, Ltd Hydrol. Process. 28, 5897–5918 (2014)
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The advantage of using an explicit error model is that
the variance can expand to make it more likely to bracket
a future observation in prediction (with a probabilistic
interpretation in the ideal case of purely aleatory error).
The advantage of the implicit treatment of error in the
GLUE approach is that it is clearer when a model fails,
either for model structural or data error reasons. This is
important for the future of hydrological modelling,
because we only really learn by rejecting models or
theories (while making sure that we are not making
the error of rejecting a model only because of error in the
observational data of course!). It is also important for the
ethics of hydrological modelling in practical applications.
If there is evidence that a model should be rejected, we
should be wary of using predictions from such a model in
decision making, even if those predictions are associated
with an estimate of uncertainty.
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