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Abstract. We introduce an analogue to the amalgamation of metric spaces into the setting
of Lorentzian pre-length spaces. This provides a very general process of constructing new
spaces out of old ones. Themain application in this work is an analogue of the gluing theorem
of Reshetnyak for CAT(k) spaces, which roughly states that gluing is compatible with upper
curvature bounds. Due to the absence of a notion of spacelike distance in Lorentzian pre-
length spaces we can only formulate the theorem in terms of (strongly causal) spacetimes
viewed as Lorentzian length spaces.

1. Introduction

The theory of Lorentzian length spaces, introduced in [16], is a new approach
to developing a synthetic description of Lorentzian geometry without relying on
any differential geometric machinery. It is very much inspired by the relationship
between metric geometry and Riemannian geometry, where in particular the theory
of length spaces has led to fundamental contributions and essentially has given rise
to a purely metric and synthetic point of view of Riemannian manifolds.
Lorentzian length spaces appear to be a very promising approach in this direction
and are on the way to becoming an independent field of research, increasingly
attracting many established researchers from Lorentzian geometry and general rel-
ativity. There have been a variety of interesting results concerning the advancement
of Lorentzian length spaces of which we want to mention a few.

• [13] introduces a notion of (in)extendibility for Lorentzian length spaces.
• [3], via generalized cones, introduces an analogue to warped products into the
setting of Lorentzian length spaces.

• [11] introduces optimal transport methods in Lorentzian length spaces, defines
timelike Ricci curvature bounds via suitable entropy conditions and gives appli-
cations to general relativity (synthetic singularity theorems).

• [1] further develops the causal ladder for Lorentzian length spaces.
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• [15] examines the null distance in Lorentzian length spaces (which was first
introduced in [20] formanifolds) and in turn studies Gromov-Hausdorff conver-
gence, establishing first compatibility results with respect to curvature bounds.

• [10] studies (the existence of) time functions on Lorentzian length spaces.
• [17] defines an analogue to Hausdorff measure on Lorentzian length spaces.

1.1. Motivation and summary

Currently, the majority of research in Lorentzian length spaces is concentrated
around direct applications to general relativity and only few works result from a
purely metric motivation. Indeed, it still seems that many fundamental concepts
and constructions frommetric geometry have not yet been fully incorporated or are
outright missing from the Lorentzian theory.
The main goal of this work is to adapt some of these missing concepts from metric
geometry to the Lorentzian setting and in this way contribute tomaking it an equally
applicable and impactful synthetic analogue to the metric theory of length spaces.
Leading experts in the field of metric geometry suggest that an idea similar to the
amalgamation of metric spaces is essential in this process. Indeed, the amalgama-
tion of metric spaces is the fundamental construction for producing new spaces
from old ones and thus showcases a significant advantage of metric spaces com-
pared to (Riemannian) manifolds, where gluing is in general only possible along
isometric/diffeomorphic boundaries, if at all. Instead, one can usually only consider
Cartesian products or submanifolds, both of which offer much less flexibility.
One of the key results concerning gluing in themetric world is the gluing theorem of
Reshetnyak: it states that the amalgamation of metric spaces which satisfy an upper
curvature bound, so-called CAT(k) spaces, also satisfies the same upper curvature
bound. Metric gluing has also found applications in the theory of semi-dispersing
billiards, cf. [4,8,9], as well as in geometric group theory, cf. [6].
A gluing process for Lorentzian pre-length spaces turns out to be a more delicate
matter than the corresponding process for metric spaces since, roughly speaking,
there is much more compatibility one has to respect. In other words, a metric space
only consists of a set with a distance function while a Lorentzian pre-length space
is both a causal space and a metric space and moreover both have to behave well
with respect to the time separation function. Our first task is to translate the metric
amalgamation into the Lorentzian setting. In themetric case, it consists of two steps:
first forming the disjoint union and then considering the quotient semi-metric with
respect to the identifying equivalence relation. The disjoint union can be easily
adapted but a “quotient time separation” needs to be treated a bit more carefully.
We continue with the preparations necessary for a Lorentzian analogue of the
Reshetnyak gluing theorem, which is the central part of this work. Most important
for this goal is to establish a gluing lemma for triangles in the sense of [6, Lemma
II.4.10]. This turns out to be a quite technically demanding task. Even worse,
without a solid concept of spacelike distance in Lorentzian pre-length spaces, there
is no chance to achieve a reasonably general version of the gluing theorem. It does,
however, work out when considering manifolds as Lorentzian pre-length spaces,
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where spacelike distances are well known: this is the content of the last chapter.
This is also where the main result of this paper is formulated, namely:

Theorem 5.2.1. (Reshetnyak’s gluing theorem, Lorentzian version) Let (X1, g1)
and (X2, g2) be two smooth and strongly causal spacetimes with dim(X1) =: n ≥
m := dim(X2). Let A1 and A2 be two closed non-timelike locally isolating subsets
of X1 and X2, respectively. Let f : A1 → A2 be a τ -preserving and ≤-preserving
locally bi-Lipschitz homeomorphism which locally preserves the signed distance.
Suppose A1 and A2 are convex in the sense of Remark 5.1.1(iii). Suppose X1 and
X2 have (sectional) curvature bounded above by K ∈ R in the sense of [2]. Then
the Lorentzian amalgamation X := X1�A X2 is a Lorentzian pre-length space with
timelike curvature bounded above by K . ��

1.2. Outlook

We conclude the introduction by briefly discussing possible applications of gluing
constructions in the (synthetic) Lorentzian setting.

• The “causal inheritance”: Many steps of the causal ladder for spacetimes have
been translated into the synthetic setting, cf. [1]. Given two Lorentzian pre-
length spaces that are both situated somewhere on the causal ladder, can the
same be said about their amalgamation? If not, are there additional properties
that would guarantee the preservation of this property?

• The compatibility of the amalgamation and Gromov-Hausdorff convergence
of Lorentzian length spaces with respect to the null distance: convergence of
Lorentzian length spaces has been studied in [15]. Given two sequences of
Lorentzian length spaces that converge each to a Lorentzian length space, can
the same be said about the sequence of the respective amalgamations?

• An analogue to the collision theorem: concerning the theory of semi-dispersing
billiards, the collision theorem is a particularly nice application of gluing in
the metric world, cf. [4, Theorem 2.6.1]. In the Lorentzian case, this could be
useful for investigating particle collisions in general relativity.

• Globalization: the metric version of the gluing lemma is used to globalize upper
curvature bounds, see [6, Proposition II.4.9 & Lemma II.4.10]. A Lorentzian
version of such a resultwould certainly be very interesting andmight be possible
with similar methods.

• General relativity: it is expected that gluing constructions can also be directly
applied in various topics from general relativity. Examples include: extending a
spacetime (or Lorentzian length space) by gluing, cosmic censorship and gluing
at singularities, or matching of spacetimes and impulsive gravitational waves.

2. Preliminaries

By a spacetime (M, g) we mean a smooth manifold M with a Lorentzian metric
g and a time orientation. Requiring the spacetime to be Ck means the metric g is
Ck . We denote by η the ordinary Minkowski metric on R

n . We write I (x, z) :=



T. Beran, F. Rott

I+(x) ∩ I−(z) = {y | x 	 y 	 z} for timelike diamonds and J (x, z) for causal
diamonds. By a hinge (α, β) we mean a configuration of two (timelike) geodesics
α and β and the included (hyperbolic) angle, usually denoted by ω. For basic
information regarding Lorentzian pre-length spaces see [16]. For basic information
regarding the amalgamation and its compatibility with curvature conditions in the
metric case see [6,7]. We will anyways present a very short recap of the most
fundamental concepts concerning Lorentzian pre-length spaces and we will briefly
describe the amalgamation in the metric picture.

2.1. A brief introduction to Lorentzian pre-length spaces

Simply put, a Lorentzian pre-length space encodes certain fundamental properties
of a Lorentzian manifold while completely ignoring others. The focus lies on the
causality relations and the time separation function, while the Lorentzian metric
and the general manifold structure are discarded entirely. Compare this to metric
geometry, where length spaces serve as a very useful generalization of Riemannian
manifolds.

Definition 2.1.1. (Lorentzian pre-length space) A tuple (X, d,	,≤, τ ) is called a
Lorentzian pre-length space if it satisfies the following:

(i) (X,	,≤) is a causal space, i.e., ≤ is a reflexive and transitive relation on X
and 	 is a transitive relation on X contained in ≤.

(ii) τ : X × X → [0,∞] is lower semi-continuous with respect to the metric d.
(iii) τ respects the causal structure in the following way: τ satisfies the reverse

triangle inequality for ≤-related points and is compatible with 	 in the sense
that τ(a, b) > 0 ⇐⇒ a 	 b.

Note that due to [16, Example 2.11] any smooth spacetime is a Lorentzian pre-
length space (where the distance metric is induced by some (complete) Riemannian
backgroundmetric).Moreover, any continuous causally plainmetric on a spacetime
yields a Lorentzian pre-length space, cf. [16, Proposition 5.8]

Definition 2.1.2. (Causal/timelike curves)Let (X, d,	,≤, τ ) be aLorentzian pre-
length space.

(i) A locally Lipschitz curve γ : [a, b] → X is called-future directed causal
(respectively timelike), if γ (s) ≤ γ (t) (respectively γ (s) 	 γ (t)) for all s, t ∈
[a, b], s < t . Past-directed curves are defined analogously. Unless explicitly
stated otherwise, we assume all causal curves to be future-directed.

(ii) The τ -length of a causal curve γ is given as

Lτ (γ ) := inf

{
n∑

i=0

τ(γ (ti ), γ (ti+1) | a = t0 < t1 < . . . < tn = b, n ∈ N

}
.

(2.1.1)

If γ (a) = x, γ (b) = y and Lτ (γ ) = τ(x, y) we say that γ is τ -realizing and
we call (the image of) such a curve a geodesic segment.
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Themain difference between a Lorentzian length space and a Lorentzian pre-length
space is in spirit the same as between a length space and a metric space. That is,
the time separation function of a Lorentzian length space is intrinsic in the sense
that it is given by the (supremum of the) lengths of connecting causal curves.
There are also some additional technical assumptions on a Lorentzian length space
resembling the existence of small “convex” neighbourhoods. As we will mainly
work with Lorentzian pre-length spaces, we only refer to the definition, see [16,
Definition 3.22].
The final ingredient we will need is the description of curvature bounds. As in
the metric world, triangle comparison replaces the concept of sectional curvature
bounds. We denote by MK the Lorentzian model space of constant sectional curva-
ture K , cf. [16, Definition 4.5]. That is,MK is either an appropriately scaled version
of de Sitter- or anti de Sitter space or the Minkowski plane. We may denote the
Lorentzianmetric onMK by 〈·, ·〉. Unless explicitly stated otherwise, we assume all
mentioned triangles to satisfy the appropriate size bounds for MK , cf. [2, Lemma
2.1] or [16, Lemma 4.6].

Definition 2.1.3. (Timelike curvature bounds) A Lorentzian pre-length space
(X, d,	,≤, τ ) has timelike curvature bounded below (respectively above) by
K ∈ R if every point in X has a neighbourhoodU , called a comparison neighbour-
hood, which satisfies the following:

(i) τ |U×U is finite and continuous.
(ii) For all x, y ∈ U with x 	 y there exists a τ -realizing curve entirely contained

in U .
(iii) Let �(x, y, z) be a timelike triangle in U , i.e., x 	 y 	 z and we have

τ -realizing curves connecting these points pairwise. Let �(x̄, ȳ, z̄) be its com-
parison triangle in MK . Then for all p, q ∈ �(x, y, z) and corresponding
comparison points p̄, q̄ in the comparison triangle we have τ(p, q) ≤ τ̄ ( p̄, q̄)

(respectively τ(p, q) ≥ τ̄ ( p̄, q̄)).

2.2. A brief introduction to metric amalgamation and the gluing theorem

Here, we collect all metric prerequisites needed for a Lorentzian gluing construc-
tion, following [6,7].

Definition 2.2.1. (Disjoint union metric) Let (Xi , di )i∈I be a family of metric
spaces. Let X := �i∈I Xi be the disjoint union. Then

d(x, y) :=
{
di (x, y) x, y ∈ Xi

∞ else.
(2.2.1)

defines a metric on X , called the disjoint union metric.

Definition 2.2.2. (Quotient semi-metric) Let (X, d) be a metric space and let ∼ be
an equivalence relation on X . The quotient semi-metric with respect to∼ is defined
as

d̃([x], [y]) := inf

{
n∑

i=1

d(xi , yi ) | x ∼ x1, xi+1 ∼ yi , yn ∼ y, n ∈ N

}
.(2.2.2)
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Definition 2.2.3. (Amalgamation) Let (Xi , di )i∈I be a family of metric spaces. Let
(Ai )i∈I be a family of closed subspaces each of which is isometric to some metric
space A via the isometry fi : A → Ai . Equip the disjoint union X := �i∈I Xi with
the metric d from above. On X let ∼ be the equivalence relation generated by the
condition fi (a) ∼ f j (a) for all i, j ∈ I, a ∈ A. Then the quotient of X equipped
with the quotient semi-metric with respect to ∼ is called the amalgamation of the
family (Xi )i∈I with respect to A and is denoted by �AXi , i.e., �AXi = (X/ ∼, d̃).

Finally,wemention the gluing theoremofReshetnyak. In the following formulation,
it is in fact possible to omit the assumption of each Xi being proper, but the proof
then gets significantly more difficult. For a proof, see e.g. [6, Theorem II.11.1 &
Theorem II.11.3].

Theorem 2.2.4. (Reshetnyak) Let (Xi , di )i∈I be a family of proper CAT(k) spaces.
Let (Ai )i∈I be a family of closed convex and complete subspaces each of which
is isometric to some metric space A. Then the amalgamation �AXi is a CAT(k)
space. ��

3. Lorentzian structure on a quotient

In this section, we introduce the amalgamation construction for Lorentzian pre-
length spaces. To this end we first have to discuss more elementary aspects of
gluing.

3.1. Basic gluing preparations

We begin introducing a Lorentzian structure on the quotient of a Lorentzian pre-
length space by adapting the definition of the quotient semi-metric with additional
causality assumptions.

Remark 3.1.1. (On notation and conventions I) As any distance metric and time
separation function takes values only in [0,∞], we set sup∅ = 0 and inf ∅ = ∞ for
the sake of convenience. We will sometimes apply shortcuts commonly used in the
theory of metric spaces and just write X for a Lorentzian pre-length space (X, d,	
,≤, τ ). By a subspace A ⊆ X we mean a subset viewed as a Lorentzian pre-length
space equipped with the restriction of the original metric, causality relations and
time separation. Moreover, we will write [x, y] for a geodesic segment between x
and y. Either the context or a more detailed description will prevent any ambiguity.
We will usually write X̃ := X/ ∼ for the (topological) quotient of X with respect
to an equivalence relation ∼. We will denote the natural projection x �→ [x] by
π : X → X̃ .

Definition 3.1.2. (Quotient time separation) Let (X, d,	,≤, τ ) be a Lorentzian
pre-length space and let ∼ be an equivalence relation on X . The quotient time-
separation function is defined as τ̃ : X̃ × X̃ → [0,∞],

τ̃ ([x], [y]) := sup

{
n∑

i=1

τ(xi , yi ) | x ∼ x1
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≤ y1 ∼ x2 ≤ y2 ∼ . . . ∼ xn ≤ yn ∼ y, n ∈ N} . (3.1.1)

We call a sequence (x1, y1, . . . , xn, yn) as above an n-chain from [x] to [y].
Remark 3.1.3. (Restricting the set of chains) Note that we can always assumewith-
out loss of generality that x1 = x and yn = y. Indeed, suppose (x1, y1, . . . , xn, yn)
is an n-chain from [x] to [y], then (x, x, x1, y1, . . . , xn, yn, y, y) is an (n+2)-chain
with at least the same length.
Furthermore, we can always assume that yi �= xi+1. Otherwise by the reverse
triangle inequality for τ we could replace

τ(xi , yi ) + τ(xi+1, yi+1) = τ(xi , yi ) + τ(yi , yi+1) ≤ τ(xi , yi+1) (3.1.2)

to obtain a longer chain. We say that the relation between yi and xi+1 is nontrivial
if yi �= xi+1 and yi ∼ xi+1.

We define both causality relations on X̃ via the quotient time separation.

Definition 3.1.4. (Quotient causality) Let (X, d,	,≤, τ ) be a Lorentzian pre-
length space and let ∼ be an equivalence relation on X . On X̃ , we define
[x] 	̃ [y] : ⇐⇒ τ̃ ([x], [y]) > 0 and [x] ≤̃ [y] : ⇐⇒ {∑n

i=1 τ(xi , yi ) |
x ∼ x1 ≤ y1 ∼ x2 ≤ y2 ∼ . . . ∼ xn ≤ yn ∼ y, n ∈ N} �= ∅. Especially the causal
relation might be better described in words: we have [x] ≤̃ [y] if and only if there
exists a chain from [x] to [y]. Regarding the timelike relation, we have [x] 	̃ [y]
if and only if there exists a chain of positive length from [x] to [y].
Note that without additional assumptions (on e.g. ∼) this construction is badly
behaved or does not yield a Lorentzian pre-length space at all. This is not very
surprising, and in some sense parallels the metric world, where the quotient semi-
metric might not be positive definite. There are, however, some properties of a
Lorentzian pre-length space that any quotient satisfies.

Proposition 3.1.5. (Quotient causal space) Let (X, d,	,≤, τ ) be a Lorentzian
pre-length space and let ∼ be an equivalence relation on X. Then (X̃ , 	̃, ≤̃) is a
causal space.

Proof. The inclusion of 	̃ in ≤̃ is clear from the definition. Suppose [x] 	̃ [y] 	̃
[z]. The concatenation of chains with positive length from [x] to [y] and from [y]
to [z], respectively, results in a chain with positive length from [x] to [z]. Hence
τ̃ ([x], [z]) > 0 and so [x] 	̃ [z]. By the same argument we have that if there exists
a chain from [x] to [y] and a chain from [y] to [z] then there exists a chain from [x]
to [z]. Thus, [x] ≤̃ [y] ≤̃ [z] implies [x] ≤̃ [z]. The reflexivity of ≤̃ follows from
the reflexivity of ≤: (x, x) is a valid 1-chain for any [x] ∈ X̃ and so [x] ≤̃ [x]. ��
Proposition 3.1.6. (Reverse triangle inequality)Let (X, d,	,≤, τ )beaLorentzian
pre-length space and let ∼ be an equivalence relation on X. Then τ̃ satisfies the
reverse triangle inequality for causally related points, i.e., if [x] ≤̃ [y] ≤̃ [z], then
τ̃ ([x], [z]) ≥ τ̃ ([x], [y]) + τ̃ ([y], [z]).
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Proof. This follows immediately from the definition: for any chain from [x]
to [y] and any chain from [y] to [z], their concatenation results in a chain
from [x] to [z]. Since there might be chains from [x] to [z] without going
through [y], τ̃ ([x], [z]) can only get larger. More precisely, given ε > 0, let
(x1, y1, . . . , xn, yn) and (y′

1, z1, . . . , y
′
m, zm) be chains from [x] to [y] and from

[y] to [z] with lengths at least τ̃ ([x], [y]) − ε
2 and τ̃ ([y], [z]) − ε

2 , respectively.
Then (x1, y1, . . . , xn, yn, y′

1, z1, . . . , y
′
m, zm) is a chain from [x] to [z] with length

at least τ̃ ([x], [y]) + τ̃ (y, z) − ε and the claim follows. ��
In summary,weobtain the following intuitive properties on anyLorentzian quotient.
This can be thought of as the analogue to “gluing can only shrink distances” in the
metric case.

Corollary 3.1.7. (Elementary properties of Lorentzian quotients) Let (X, d,	
,≤, τ ) be a Lorentzian pre-length space and ∼ an equivalence relation on X.
The quotient Lorentzian structure always satisfies the following properties for all
[x], [y] ∈ X.

(i) τ̃ ([x], [y]) ≥ τ(x, y).
(ii) x 	 y ⇒ [x] 	̃ [y] and x ≤ y ⇒ [x] ≤̃ [y].

��
Finally, we observe that the only property that might prevent the quotient of a
Lorentzian pre-length space from being a Lorentzian pre-length space itself is that
τ̃ need not be lower semi-continuous. The following examples show how the lower
semi-continuity of τ̃ may fail and how this can be prevented.

Example 3.1.8. (Showcasing gluing in theMinkowski plane) Consider the ordinary
Minkowski planeR2

1. Identify two spacelike related points x and y as in Fig. 1. Then
the resulting space is not a Lorentzian pre-length space since τ̃ is not lower semi-
continuous. To see this, let p ∈ ∂ J−(x)\J−(y) and q ∈ I+(y)\J+(x). Then
τ̃ (p, q) > 0 (red line). But if we choose a sequence (pn)n∈N such that pn → p
and pn /∈ J−(x) ∪ I−(q) for all n ∈ N, then τ̃ (pn, q) = 0.
Identifying a closed vertical strip, say (1, t) ∼ (2, t) for all t ∈ [0, 1] has exactly the
same problem.Doing the identification along an open strip, say (1, t) ∼ (2, t) for all
t ∈ (0, 1) at first glance seems to eliminate this obstacle. In this case, however, the
quotient semi-metric will not be positive definite since for example we would have
d̃((1, 0), (2, 0)) = 0. Intuitively, we need the identified sets to be (topologically)
closed and at the same time always have timelike related points nearby. Identifying
(1, t) ∼ (2, t) for all t ∈ R covers both conditions. This actually turns out to be a
Lorentzian pre-length space. The lower semi-continuity immediately follows from
the more general proof of below.

3.2. Amalgamation prerequisites

In the spirit of metric amalgamation, we first introduce a very easy construction of
formally viewing two Lorentzian pre-length spaces as one.
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x
y

q

p
pn

Fig. 1. τ̃ is not lower semi-continuous

Definition 3.2.1. (Lorentziandisjoint union)Let (X1, d1,	1,≤1, τ1) and (X2, d2,	2
,≤2, τ2) be two Lorentzian pre-length spaces and set X := X1 � X2. Define ≤ :=
≤1 � ≤2, i.e., “≤ ⊆ X × X” and x ≤ y : ⇐⇒ ∃i ∈ {1, 2} : x, y ∈ Xi ∧ x ≤i y.
Similarly, define 	 := 	1 � 	2. Let d be the disjoint union metric on X , cf.
(2.2.1). Define τ : X × X → [0,∞] by

τ(x, y) :=
{

τi (x, y) x, y ∈ Xi

0 else.
(3.2.1)

We call (X, d,	,≤, τ ) the Lorentzian disjoint union of X1 and X2.

Proposition 3.2.2. (Disjoint union Lorentzian pre-length space) Let (X1, d1,≤1
,	1, τ1) and (X2, d2,	2,≤2, τ2) be two Lorentzian pre-length spaces. Then the
Lorentzian disjoint union (X, d,	,≤, τ ) is a Lorentzian pre-length space.

Proof. Clearly, (X,	,≤) is a causal space. The reverse triangle inequality is
directly inherited from the respective inequalities in X1 and X2, since causal rela-
tion can only occur between points coming from the same spaces. Similarly, the
lower semi-continuity of τ is inherited in this way, since for xn → x , say x ∈ X1,
for large enough n0 we have xn ∈ X1 for all n ≥ n0. Finally, the compatibility of
the causal relations with τ also follows directly from their counterparts in X1 and
X2. ��
Analogous to the metric case, we define the Lorentzian amalgamation as a quotient
of the Lorentzian disjoint union where we identify certain subsets. To ensure that
this construction actually results in a Lorentzian pre-length space (i.e., that τ̃ is
lower semi-continuous) we require the following property of the identified subsets.

Definition 3.2.3. (Local timelike isolation) A subset A of a Lorentzian pre-length
space (X, d,

	,≤, τ ) is said to be non-future locally isolating if for all a ∈ A with I+(a) �= ∅
and for all neighbourhoods Ua ⊆ A of a there exists b+ ∈ Ua such that a 	 b+.
Similarly, we define a non-past locally isolating set. We say A is non-timelike
locally isolating if it satisfies both properties.

Remark 3.2.4. (Examples and comments on local timelike isolation) Clearly, the
open image of a timelike curve is non-timelike locally isolating. Furthermore, for
any Lorentzian length space X , the set X is non-timelike locally isolating by
the sequence lemma, cf. [1, Lemma 2.18]. But note that of course a subset of
a Lorentzian length space is not a Lorentzian length space in general (with the
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restricted structure). We make the additional assumption of I±(a) �= ∅ to also
allow gluing of spaces with “future/past boundary”. For example, consider a closed
rectangle in theMinkowski plane as a Lorentzian pre-length space and identify two
vertical line segments (which are not causally related at all). Then the boundary
points of these segments would fail to have the non-isolating property introduced
above, but only because there is nothing in the future (respectively in the past) of
these points to begin with. In this case also the counterexample of Example 3.1.8
fails: the quotient time separation of a sequence approaching the past of the future
boundary point of one segment cannot have a positive value in the limit since on
the other segment this is also a future boundary point with empty future.

In the metric case, amalgamation usually occurs along maps which at least locally
“preserve structure”, i.e., local isometries. This turns out to be not necessary to
define our gluing process. So fore the sake of generality, we will formulate the
Lorentzian amalgamation with as few assumptions as possible. Not surprisingly,
this may be badly behaved, which is why we will almost exclusively work with
additional assumptions. Next, we introduce the (for our purposes) correct notion of
structure preservingmaps in Lorentzian pre-length spaces. The following definition
is closely related to corresponding notions in [1,13].

Definition 3.2.5. (Structure preserving maps) Let X1 and X2 be two Lorentzian
pre-length spaces.

(i) A map f : X1 → X2 is called τ -preserving if τ1(x, y) = τ2( f (x), f (y)) for
all x, y ∈ X1.

(ii) A map f : X1 → X2 is called 	-preserving if x 	1 y ⇐⇒ f (x) 	2 f (y)
for all x, y ∈ X1. It is called ≤-preserving if x ≤1 y ⇐⇒ f (x) ≤2 f (y) for
all x, y ∈ X1. If f is both 	-preserving and ≤-preserving it is called causality
preserving.

(iii) A map f : X1 → X2 is called locally τ,	 or ≤-preserving if for all x ∈
X1 there exists a neighbourhood U ⊆ X1 of x such that f |U is τ,	 or ≤-
preserving.

Remark 3.2.6. (Implication and counterexample) One the one hand, it is clear that
any τ -preservingmap is	-preserving. On the other hand, a τ -preservingmap need
not be ≤-preserving in general. Indeed, consider in the Minkowski plane a null
segment and a spacelike segment, say {(s, s) | s ∈ [0, 1]} and {(0, s) | s ∈ [0, 1]}.
Then the map (s, s) �→ (0, s) is τ -preserving (it vanishes identically in both cases).
But (s, s) ≤ (t, t) ⇐⇒ s ≤ t while (0, s) and (0, t) are never causally related.

The following is immediate from the definition.

Corollary 3.2.7. (Inverse is also preserving) If a bijective map f : X1 → X2
between two Lorentzian pre-length spaces is (locally) τ -preserving (respectively
	 or ≤-preserving), then so is its inverse. In particular, the neighbourhoods in the
local case are compatible in the sense that f |U is preserving if and only if f −1| f (U )

is. ��
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As afinal prerequisite,wediscuss the underlyingquotient semi-metric. Inmetric
amalgamation, gluing happens along isometric subsets. In the Lorentzian setting the
focus lies on the time separation and the causality relations where as the distance
metric plays only a background role as a topological tool. Since we decided to
not require any preservation of Lorentzian structure of the identified sets, it is too
restrictive to insist on usingmetric (local) isometries. That is whywe decided to use
locally bi-Lipschitz homeomorphisms1 instead. The bi-Lipschitz condition ensures
that the quotient semi-metric is positive definite and, when assuming additionally
some causality preservation, that a causal curve in one of the identified sets is also
a causal curve in the other. Note that in this case, however, there is in general no
chance of obtaining a nice representation of the quotient semi-metric á la [6, Lemma
I.5.24].

Proposition 3.2.8. (Metric amalgamation with locally bi-Lipschitz maps) Let X1
and X2 be two metric spaces and let A1 ⊆ X2 and A2 ⊆ X2 be closed subspaces.
Let A be a metric space and let f1 : A → A1 and f2 : A → A2 be locally
bi-Lipschitz homeomorphisms. Let d be the disjoint union metric on X1 � X2 and
consider the equivalence relation generated by f1(a) ∼ f2(a) for all a ∈ A. Then
the quotient semi-metric d̃ on X := (X1 � X2)/ ∼ with respect to ∼ is a metric.

Proof. d̃([x], [x]) = 0 for all [x] ∈ X and the symmetry of d̃ are immediate
from the definition. Concerning the triangle inequality, let (x1, y1, . . . , xn, yn) be
an n-chain from [x] to [y] such that

∑n
i=1 d(xi , yi ) < d̃([x], [y]) + ε and let

(y′
1, z1, . . . , y

′
m, zm) be an m-chain from [y] to [z] such that

∑m
i=1 d(y′

i , zi ) <

d̃([y], [z]) + ε. Then the concatenation (x1, y1, . . . , xn, yn, y′
1, z1, . . . , y

′
m, zm) is

a chain from [x] to [z] of length less than d̃([x], [y]) + d̃([y], [z]) + 2ε. Hence
d̃([x], [z]) ≤ d̃([x], [y])+ d̃([y], [z])+ 2ε and the claim follows. It is left to show
that d̃ is positive definite. Let [x], [y] ∈ X . Note that if, say [x] ∈ X1 \ A1, i.e.,
[x] = {x1}, then any chain that is not (x1, y1) has to go through A1 by similar
arguments as in Remark 3.1.3. In both cases we end up with a positive distance:
d(x1, y1) > 0 since d is a metric and d(x1, A1) > 0 since A is closed. So the only
case left to consider is when both points lie in A. To this end, note that since f1
and f2 are locally bi-Lipschitz homeomorphisms, it follows that f := f2 ◦ f −1

1 :
A1 → A2 and f −1 : A2 → A1 are locally bi-Lipschitz homeomorphisms as well.
Let [x] �= [y], [x], [y] ∈ A. Then x1, y1 ∈ A1 and x2, y2 ∈ A2. Let r > 0 be
such that y1 /∈ BA1

r (x1) and y2 /∈ BA2
r (x2), where BAi

r (xi ) is the r -ball of xi in
the metric subspace Ai . By choosing r smaller if necessary, we can assume that
BA1
r (x1) and BA2

r (x2) are bi-Lipschitz neighbourhoods for f and f −1 of x1 and
x2 in A1 and A2, respectively. We can furthermore suppose that this is with respect
to the same Lipschitz constant L ≥ 1. That is, we have

1

L
d2( f1(a), f1(b)) ≤ d1(a, b) ≤ Ld2( f (a), f1(b)) (3.2.2)

1 We call a bijective map f : X → Y between metric spaces locally bi-Lipschitz if every
x ∈ X has a neighbourhood U such that f |U : U → f (U ) and its inverse are Lipschitz.
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for all a, b ∈ BA1
r (x1) and

1

L
d1( f

−1(a′), f −1(b′)) ≤ d2(a
′, b′) ≤ Ld1( f

−1(a′), f −1(b′)) (3.2.3)

for all a′, b′ ∈ BA2
r (x2). By the above arguments we can assume that any chain is of

the form (x1, f (a1), f −1(a1), f −1(a2), f (a2), f (a2), . . . , f (an−1), y1) (it does
not matter whether we start in x1 or x2 since we could add (x2, x2) at the beginning
of the chain without increasing its length, and similar for ending in y1). Given such
a chain, by setting a0 = x1 and an = y1, there exists a minimal j ∈ {1, . . . , n}
such that ai /∈ BA1

r (x1). Similarly, there exists a minimal k ∈ {1, . . . , n} such that
f (ak) /∈ BA2

r (x2). Without loss of generality assume j ≤ k. Then we compute

d1(x
1, a1) + d2( f (a1), f (a2)) + d1(a2, a3) + . . . + d1(an−1, y

1) ≥
d1(x

1, a1) + 1

L
d1(a1, a2) + d1(a2, a3) + . . . + d1(an−1, y

1) ≥
1

L
d1(x

1, a1) + 1

L
d1(a1, a2) + 1

L
d1(a2, a3) + . . . + d1(an−1, y

1) ≥
1

L
d1(x

1, a3) + . . . + d1(an−1, y
1) ≥ . . . ≥

1

L
d1(x

1, a j−1) + d1(a j−1, a j ) + . . . + d1(an−1, y
1) ≥

1

L
d1(x

1, a j−1) + 1

L
d1(a j−1, a j ) + . . . + d1(an−1, y

1) ≥
1

L
d1(x

1, a j ) + . . . + d1(an−1, y
1) ≥

1

L
r + . . . + d1(an−1, y

1) >
1

L
r > 0.

Thus, we found a uniform lower bound for any chain from [x] to [y] and so d̃ is
positive definite. ��

3.3. Lorentzian amalgamation

We now introduce the central object of this paper, which allows us to create a new
Lorentzian pre-length space out of old ones by gluing them together, a process sim-
ilar to the amalgamation of metric spaces. To avoid pathological counterexamples,
we have to make minor additional assumptions on the identified subsets.

Definition 3.3.1. (Lorentzian amalgamation) Let (X1, d1,≤1,	1, τ1) and
(X2, d2,≤2,	2, τ2) be two Lorentzian pre-length spaces. Let (A, dA,	A,≤A

, τA) be a Lorentzian pre-length space and let A1 and A2 be closed non-timelike
locally isolating subspaces of X1 and X2, respectively. Let f1 : A → A1 and
f2 : A → A2 be locally bi-Lipschitz homeomorphisms. Suppose that the causal-
ity of A1 and A2 are compatible in the following sense: for all a ∈ A we have
I±
1 ( f1(a)) �= ∅ ⇐⇒ I±

2 ( f2(a)) �= ∅. Let (X1�X2, d,	,≤, τ )be theLorentzian
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disjoint union of X1 and X2 and consider the equivalence relation ∼ on X1 � X2
generated by f1(a) ∼ f2(a) for all a ∈ A. Then ((X1 � X2)/ ∼, d̃, 	̃, ≤̃, τ̃ ) is
called the Lorentzian amalgamation (with respect to A) of X1 and X2 and is denoted
by X1 �A X2.

Remark 3.3.2. (On notation and conventions II) As in the metric case, the space A
is usually introduced for easier notation, especially when dealing with an amalga-
mation of more than two spaces. One can think of A as being any of the identified
spaces Ai . For just two spaces, it might be more convenient to only consider a
map f : A1 → A2 (and its inverse). In fact, we will formulate the gluing theorem
for two spaces only. Since most of the results in the current chapter can easily be
generalized to several spaces, we will work with an extra space A.
We will use slightly sloppy notation and refer to A as a subset of the amalgamation
X := X1 �A X2 and we will view X1 and X2 as subsets of X via the identifications
with π(X1) and π(X2), respectively. For example, by [a] ∈ A we mean [a] =
{ f1(a), f2(a)}. If a point is originally not in one of the identified sets, say x ∈
X1 \ A1, then it is from its on equivalence class, i.e., [x] = {x}. If we do not care
which space such a singleton is from, we may write [x] ∈ X\A. Occasionally,
it will be more convenient to omit the identifying maps fi . We then denote the
origin of a point by a superscript. That is, if [a] ∈ A we have [a] = {a1, a2} and if
[x] ∈ X1\A1 ⊆ X\A then [x] = {x1}.
Dealing with pasts and futures in the amalgamation can also be a bit tricky notation-
wise, even if we require that the identifying maps preserve structure. To this end
we denote by a subscript with respect to which causality the set is constructed.
For example, we write J+

1 (x1) = {y1 ∈ X1 | x1 ≤1 y1} or IX ([x], [y]) =
I+
X ([x]) ∩ I−

X ([y]) = {[p] ∈ X | [x] 	̃ [p] 	̃ [y]}.
Next, we formulate a lemma that is important to show the last remaining property
of semi-continuity of τ̃ .

Lemma 3.3.3. (Restricting to timelike chains) Let X := X1 �A X2 be the
Lorentzian amalgamation of two Lorentzian pre-length spaces X1 and X2. If
τ̃ ([x], [y]) > 0 then there is a timelike chain, i.e., xi 	 yi for all i , from [x]
to [y] whose length is arbitrarily close to τ̃ ([x], [y]).
Proof. Let [x], [y] ∈ X with τ̃ ([x], [y]) > 0. Given small enough ε > 0 we
find a chain (x1, y1, . . . , xn, yn) such that

∑n
i=1 τ(xi , yi ) > τ̃ ([x], [y]) − ε >

0. By Remark 3.1.3, we can assume that it is of the form τ1(x1, f1(a1)) +
τ2( f2(a1), f2(a2))+. . .+τ2( f2(an), y2). Note that the assumption of x1 ∈ [x] does
not lose any generality: if this were not the case the chain simply would start out in
X2. Similarly for y2 ∈ [y]. Since the length of this chain is positive, we have that
at least one entry is positive, say τ1( f1(a j ), f1(a j+1)) > 0. Then I+

1 ( f1(a j )) �= ∅
and hence also I+

2 ( f2(a j )) �= ∅. Suppose τ2( f2(a j−1), f2(a j )) = 0. Consider the
neighbourhood S1 := {a ∈ A1 | τ(a, f1(a j+1)) > τ( f1(a j ), f1(a j+1) − ε

n } of
f1(a1) in A1, which is open by the lower semi-continuity of τ1. Since f1 and f2 are
homeomorphisms it follows that S2 := f2( f

−1
1 (S1)) is an open neighbourhood of

f2(a j ) in A2. Since A2 is non-timelike locally isolating and I+
2 ( f2(a j )) �= ∅, we
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A1 A2

x1

y2

f2(a)f1(a)

f2(b+)f1(b+)

Fig. 2. Moving a to make the null piece connecting x1 and f1(a) timelike

a1 a2

Fig. 3.This amalgamation leads to a τ̃ that is not lower semi-continuous. Note that the arrows
denote the time orientation and not the gluing identifications

find f2(b+) ∈ S2 such that f2(a j ) 	 f2(b+). Then by the push-up property of τ1
we have f2(a j−1) 	 f2(b+). Also, f1(b+) ∈ S1. Then

τ2( f2(a j−1), f2(b+)) + τ1( f1(b+), f1(a j+1)) > τ2( f2(a j−1), f2(a j ))

+τ1( f1(a j ), f1(a j+1)) − ε

n
. (3.3.1)

We can do this for all other entries of this chain to end up with a timelike chain
whose length is at most ε less than the chain we started with. Figure2 illustrates
this process. ��

Example 3.3.4. (On minimal assumptions and bad behaviour) In Definition 3.3.1
the compatibility of the causality in A1 and A2 via I±

1 ( f1(a)) �= ∅ ⇐⇒
I±
2 ( f2(a)) �= ∅ for all a ∈ A, which is weaker than f1 and f2 being locally 	-
preserving, is truly a necessary condition. Let X1 and X2 be a closed unit square
in the Minkowski plane equipped with the restricted Lorentzian structure. Identify
them along a vertical line segment and reverse the time orientation in one of the
squares, as is indicated by the arrows in Fig. 3. Then I+

1 (a1) = ∅ but I+
2 (a2) �= ∅.

Choosing endpoints and a sequence as in Example 3.1.8 leads to a similar failure
of the lower semi-continuity of τ̃ .
However, this does not mean that every Lorentzian pre-length space resulting from
the amalgamation process is well behaved. Indeed, similar to the above example let
X1 and X2 be the whole Minkowski plane and identify them along a vertical line
with reversed time orientation in one space. Then although X1 and X2 are (much
more than) chronological, the amalgamation fails to be chronological andmoreover
we have τ̃ ([x], [y]) = ∞ for all [x], [y].
Remark 3.3.5. (Convergence in the amalgamation) Suppose [xn] → [x]. Clearly,
if [x] = {x1} then [xn] = {x1n} for large enough n. If [x] ∈ A, then at least in one
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of X1 or X2, say X1, there exists a subsequence x1nk → x1. Indeed, if this were
not the case then there would exist neighbourhoods of x1 and x2 in X1 and X2,
respectively, that do not contain any points of the sequence. This is in contradiction
to how the quotient topology is defined.

Proposition 3.3.6. (Amalgamation is Lorentzian pre-length space) Let X be the
Lorentzian amalgamation of two Lorentzian pre-length spaces X1 and X2. Then X
is a Lorentzian pre-length space.

Proof. We only need to prove that τ̃ is lower semi-continuous. Let [x], [y] ∈ X and
let [xn] → [x], [yn] → [y]. Then we need to show τ̃ ([xn], [yn]) ≥ τ̃ ([x], [y]) − ε

for all ε > 0. Note that if τ̃ ([x], [y]) = 0 there is nothing to show, so suppose
τ̃ ([x], [y]) > 0. Given a small enough ε > 0, by Remark 3.1.3 and Lemma 3.3.3
we find a timelike chain such that

τ1(x
1, f1(a1)) + τ2( f2(a1), f2(a2)) + . . . + τ2( f2(am), y2) > τ̃ ([x], [y]) − ε > 0.

(3.3.2)

Assume ε is so small that even τ̃ ([x], [y]) − 3ε > 0. Then the claim follows from
the lower semi-continuity of the original time separation functions: by Remark
3.3.5 and since we assumed x1 ∈ [x], y2 ∈ [y], we can further assume x1n → x1

and y2n → y2 (otherwise [x], [y] ∈ A and we find subsequences in the other space).
Let

δ := 1

2
min{τ1(x1, f1(a1)), τ2( f2(am), y2), ε} > 0. (3.3.3)

Then since τ1 and τ2 are lower semi-continuous there exists n0 ∈ N such that
τ1(x1n , f1(a1)) > τ1(x1, f1(a1)) − δ and τ2( f2(am), y2n ) > τ2( f2(am), y2) − δ for
all n ≥ n0. Then

τ̃ ([xn], [yn]) ≥ τ1(x
1
n , f1(a1)) + τ2( f2(a1), f2(a2)) + . . . + τ2( f2(am), y2n )

> τ1(x
1, f1(a1)) + τ2( f2(a1), f2(a2)) + . . . + τ2( f2(am), y2) − 2δ

> τ̃ ([x], [y]) − ε − 2δ > τ̃ ([x], [y]) − 3ε > 0

and we are done. ��
Finally, we note that if we assume global preservation of the Lorentzian structure,
the quotient time separation has the following form, which is familiar from the
metric case.

Proposition 3.3.7. (Short form of quotient time separation) Let X := X1 �A X2
be the Lorentzian amalgamation of two Lorentzian pre-length spaces X1 and X2
and assume that f1 and f2 are τ -preserving and causality preserving. Then the
quotient time separation has the following form:

τ̃ ([x], [y])

=
⎧⎨
⎩

τi (x
i , yi ) xi , yi ∈ Xi ,

sup
[a]∈JX ([x],[y])∩A

{τi (xi , fi (a)) + τ j ( f j (a), y j )} xi ∈ Xi , y
j ∈ X j , i, j ∈ {1, 2}, i �= j.(3.3.4)
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Proof. Let, say, x1 ∈ [x], y1 ∈ [y] and let (x1, y1, . . . , xn, yn) be an n-chain from
[x] to [y]. By Remark 3.1.3 we can assume this chain to have nontrivial relations
everywhere and x1 = x1 as well as yn = y1. Intuitively, the chain starts out at x1

in X1, moves to A1, jumps around between A1 and A2 and ends up at y1 in X1
again. Since f1 and f2 are τ -preserving and causality preserving, we can replace
all distances from points in A2 with corresponding equal distances in A1. But then
by several applications of the reverse triangle inequality for τ1 we can replace all
these distances in A1 by a single distance to obtain a longer chain. Finally, we can
omit the detour through A1 altogether by replacing it with the direct distance from
x1 to y1 in X1.
The second case is symmetric, so suppose x1 ∈ [x] and y2 ∈ [y]. If we have an
n-chain (x1, y1, . . . , xn, yn)with nontrivial relations, then as above the chain starts
out at x1 in X1, moves to A1, jumps around between A1 and A2, but this time ends
up at y2 in X2. Since f1 and f2 are τ and causality preserving we can replace, say,
all distances in A1 with equal distances in A2 and then apply the reverse triangle
inequality multiple times to end up with a 2-chain with at least the same length as
in the claim. More precisely, we estimate the length of the n-chain

n∑
i=1

τ(xi , yi ) =

τ1(x
1, f1(a1)) + τ2( f2(a1), f2(a2)) + . . . + τ1( f1(an−2)), f1(an−1)

+ τ2( f2(an−1), y
2) =

τ1(x
1, f1(a1)) + τ2( f2(a1), f2(a2)) + . . . + τ2( f2(an−2), f2(an−1))

+ τ2( f2(an−1), y
2) ≤

τ1(x
1, f1(a1)) + τ2( f2(a1), y

2).

��
The following lemma is helpful for the gluing theorem. It says that certain diamonds
in the glued space are built from corresponding diamonds in the original spaces.

Lemma 3.3.8. (Amalgamated diamonds) Let X be the amalgamation of two
Lorentzian pre-length spaces X1 and X2. Assume that f1 : A → A1 and
f2 : A → A2 are ≤-preserving. Then we have the following decomposition of
causal diamonds in X:

(i) If [x], [y] ∈ A, then JX ([x], [y]) = π(J1(x1, y1) � J2(x2, y2)).
(ii) Let i ∈ {1, 2}. If xi , yi ∈ Xi\A are such that Ji (xi , yi ) ∩ Ai = ∅, then

JX ([x], [y]) = π(Ji (xi , yi )).

If f1 and f2 are 	-preserving, we get the same statement for timelike diamonds.

Proof. One inclusion always holds by Corollary 3.1.7: if qi ∈ Ji (xi , yi ), i.e.,
xi ≤1 qi ≤i yi , then [x] ≤̃ [q] ≤̃ [y], hence [q] ∈ JX ([x], [y]). We show the other
inclusion separately.
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(i) Let [q] ∈ JX ([x], [y]) and assume without loss of generality q1 ∈ [q]. Then
[x] ≤̃ [q], i.e., there exists a chain such that x1 ≤1 a11 ∼ a21 ≤2 a22 ∼ a12 ≤1
a13 ∼ . . . ∼ a1n ≤1 q1. Since f1 and f2 are ≤-preserving, we can transfer
each relation in X2 to a corresponding relation in X1 and ultimately obtain
x1 ≤1 q1. Analogously, we obtain q1 ≤1 y1 and the claim follows.

(ii) Let [q] ∈ JX ([x], [y]). Note that [x] = {xi } and [y] = {yi }. Since Ji (xi , yi )∩
Ai = ∅ and f1 and f2 are ≤-preserving, any chain starting at xi and ending
at yi must necessarily only contain trivial relations and so has to stay inside
Xi . Thus, [q] = {qi }, xi ≤i qi and qi ≤i yi .

��

4. Gluing preparations

In this section, we revisit the Lorentzian version of Alexandrov’s lemma and show
a gluing lemma for timelike triangles, which is essential for the proof of the gluing
theorem. At first, we recall some terminology from [2], which is of great use to us.
For a more detailed analysis of the contents therein, see [14].
Our approach for proving the gluing theorem in the Lorentzian setting is in spirit
very close to the metric version, which introduces a so-called gluing lemma for
triangles, cf. [6, Lemma II.4.10], whose proof relies onAlexandrov’s lemma.While
[2, Lemma 2.4] certainly is a very powerful formulation of Alexandrov’s Lemma
valid in any semi-Riemannian manifold, this is not ideal for our situation since it
relies too much on the differential structure present in the model spaces.

4.1. Signed distance and other techniques

In this first subsection, we introduce some very general concepts from [2] and
collect some useful facts concerning angles.

Definition 4.1.1. (Signed length and signed distance) Let (M, g) be a spacetime
and let p ∈ M . For v ∈ TpM , we denote the “norm” of v by |v| := √|gp(v, v)|.
We then define the signed length of v as |v|± := sgn(v)

√|gp(v, v)| = sgn(v)|v|,
where

sgn(v) :=
{
1 gp(v, v) ≥ 0,
−1 gp(v, v) < 0.

(4.1.1)

If p, q ∈ M are contained in a normal2 neighbourhood U , then there exists a
unique geodesic γpq : [0, 1] → M connecting p and q contained in U . We define
the signed distance of p and q as |pq|± := |γ ′

pq(0)|±. Note that if p ≤ q and M
is strongly causal, then

τ(p, q) = −|pq|± =
√

−gp(γ ′
pq(0), γ

′
pq(0)). (4.1.2)

2 We follow the notation of [2] where a normal neighbourhood is a (diffeomorphic) expo-
nential image of an open set of the tangent space. More commonly, such neighbourhoods
may also be called geodesically convex neighbourhoods or convex normal neighbourhoods.
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Definition 4.1.2. (Hyperbolic and nonnormalized angle) LetM be a spacetime and
let p ∈ M . Let q, r ∈ I±(p) be such that γ ′

pq(0) =: v and γ ′
pr (0) =: w exist. The

hyperbolic angle between q and r at p is defined as

�p(q, r) := arcosh

( |gp(v,w)|
|v||w|

)
. (4.1.3)

Let now q, r be any points in a normal neighbourhood of p. The nonnormalized
angle between q and r at p is defined as ∠qpr := gp(v,w).

These two notions of angles are closely related (if the points are timelike related).
Keeping the above terminology, one immediately sees that

�p(q, r) = arcosh

( |∠pqr |
|v||w|

)
. (4.1.4)

Note that the nonnormalized angle is muchmore general in the sense that the points
need not be timelike related at all. However, if both angles exist, the nonnormalized
angle in some way better captures what “type” of angle we are dealing with, i.e., if
the tangent vectors lie in the same timecone or not (recall that for timelike vectors
v and w, g(v,w) < 0 if both are future or past directed and g(v,w) > 0 if they
have different time orientation). Observe that the nonnormalized angle is not scale
invariant.

Remark 4.1.3. (Implicit inequalities on angles) With this in mind, we want to
touch on an implication of inequalities of angles. Keeping the above notation, if
say �p(q, r) ≤ �p′(q ′, r ′), |v| = |v′|, |w| = |w′| and both tangent vectors point
in the same direction, then ∠qpr ≥ ∠q ′ p′r ′ (and vice versa). If the vectors lie
in different timecones, then the inequality of the nonnormalized angles reverses.
Note that gp(v,w) and gp(v′, w′) must have the same sign in order to infer some
inequality.

One big advantage of signed distance and the nonnormalized angle is the very
powerful hinge lemma, of which we will make extensive use. For a proof of the
following statement see [2, Lemma 2.2].

Lemma 4.1.4. (Hinge lemma) Let (|pq|±, |qr |±, |pr |±) ∈ R
3\{0} be a triple

realizable as the sidelengths of a triangle in MK . If we vary the length of the third
side |pr |± while keeping |pq|± and |qr |± fixed, then:

(i) The nonnormalized angle ∠pqr is a decreasing function of |pr |±.
(ii) The nonnormalized angles ∠qpr and ∠qrp are increasing functions of |pr |±.

��
The following lemma will be essential for one case in the gluing lemma, cf. [14,
Lemma 5.1.1].

Lemma 4.1.5. (Bounding function via derivative) For k ∈ R, let f : [0, L] → R

be a smooth function such that f ′′ + k f ≤ 0, f (0) = 0 and f (L) = 0. If k > 0,
assume additionally that L < π√

k
. Then f (t) ≥ 0 for all t ∈ [0, L]. ��
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We note that, on the one hand, by replacing f with − f , we can make a similar
statement with reversed inequalities. That is, if f ′′ + k f ≥ 0, then f ≤ 0. On the
other hand, Lemma 4.1.5 holds as well if we only assume f (0) ≥ 0 and f (L) ≥ 0.
Indeed, suppose indirectly that this is not the case, then there exists t0 ∈ (0, L) such
that f (t0) < 0.By themean value theorem, theremust exist t1 ∈ (0, t0), t2 ∈ (t0, L)

such that f (t1) = f (t2) = 0. Then simply apply Lemma 4.1.5 to [t1, t2] ⊆ [0, L]
to obtain the desired contradiction.

Remark 4.1.6. (Dealingwith hyperbolic angles) Before proceeding to the following
results,wewant tomention someuseful properties of the hyperbolic angle. Contrary
to the nonnormalized angle, the hyperbolic angle is independent of the length of
its sides (when considering it as a hinge). Suppose in Mk (or in fact, any two-
dimensional spacetime) we have three geodesics emanating from a point p that all
go into the same time direction, say the future. Then we can definitively speak of
a “middle segment”, say [p, y] lies between3 [p, x] and [p, z]. Then the triangle
equality for hyperbolic angles holds:

�p(x, y) + �p(y, z) = �p(x, z). (4.1.5)

This is immediate when viewing the hyperbolic angle as the area under a hyperbolic
segment.

Remark 4.1.7. (Hinge behaviour) Furthermore, we want to highlight a fact valid
in any spacetime: consider a timelike triangle �(q, r, p) with a = τ(q, p), b =
τ(r, p), c = τ(q, r) and ω = �p(q, r). Moving the point q further into the past
along the geodesic extending [q, p] causes the distance from r to q to increase as
well. More precisely, if q ′ 	 q is such that [q, p] ⊆ [q ′, p], then c′ := τ(q ′, r) ≥
τ(q, r) = c. This is a simple consequence of the reverse triangle inequality. We
want to reformulate this as follows, so that it can be applied similarly to the hinge
lemma: let α and β be the (past-oriented) geodesics extending the segments [q, p]
and [r, p], respectively. Assume α(1) = q. Consider the hinge (α, β) and denote
the included hyperbolic angle by ω. Then τ(α(t), r) is an increasing function4 in
t for all t ≥ 1. Intuitively, one should think of the behaviour illustrated in Fig. 4:
increasing the longest side in a timelike triangle while keeping one of the short
sides fixed (and hence also the included hyperbolic angle) causes the other short
side to increase as well.

4.2. A visual Lorentzian version of Alexandrov’s lemma

As in the metric case, the gluing lemma heavily relies on Alexandrov’s lemma.
[2] gives an exceptionally general version of Alexandrov’s lemma valid in semi-
Riemannian comparison theory. The following lemma may in some sense be

3 The segment [p, y] is said to lie between [p, x] and [p, z] if the following holds: consider
the three tangent vectors corresponding to the three segments. These have the same time
orientation. Extend them to rays and denote these by Rx , Ry and Rz . Then for all v ∈
Rx , w ∈ Rz the connecting segment [v,w] intersects the ray Ry .
4 Note that this of course only makes sense if the geodesic α can actually be extended.

Sincewe are anyways only interested in applying this inmodel spaces, this is not problematic.
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Fig. 4. Increasing a causes c to increase as well

regarded as a special case of [2, Lemma 2.4] but we still feel justified to give a
full statement here. On the one hand, our approach is much more visual and hence
more in the spirit of the original (Euclidean) version of the lemma. On the other
hand,we have to avoid assumptions on the behaviour of nonnormalized angles in the
comparison situation since the triangles are originally from Lorentzian pre-length
spaces, where currently the concept of (hyperbolic) angles is not fully developed.

Lemma 4.2.1. (Alexandrov’s lemma, Lorentzian version) Let �(x, p, y) and
�(p, y, z) be two triangles in MK arranged in a way such that x and z lie on
opposite sides of the geodesic line extending [p, y]. Suppose p, y ∈ I (x, z) and
τ(x, y) + τ(y, z) < τ(x, p) + τ(p, z). Let �(x ′, y′, z′) be a (timelike) trian-
gle in MK such that τ(x ′, y′) = τ(x, y), τ (y′, z′) = τ(y, z) and τ(x ′, z′) =
τ(x, p)+ τ(p, z). In particular, we have to assume that �(x, p, y) and �(p, y, z)
are small enough such that the size bounds for �(x ′, y′, z′) are satisfied as
well. Then ∠xyz ≤ ∠x ′y′z′. Moreover, if [x, z] ∩ [p, y] = ∅ then ∠pzy ≥
∠p′z′y′,∠pxy ≥ ∠p′x ′y′ and |py|± ≤ |p′y′|±. And if [x, z] ∩ [p, y] �= ∅ then
∠pzy ≤ ∠p′z′y′,∠pxy ≤ ∠p′x ′y′ and |py|± ≥ |p′y′|± with equalities every-
where if and only if one of the inequalities is an equality, which happens if and only
if [x, z] ∩ [p, y] = {p}.
Proof. We only show the case [x, z] ∩ [p, y] = ∅, which is also the relevant one
for the gluing lemma. The other case is done analogously (see last paragraph). To
begin with, we want to explain the assumption

τ(x, y) + τ(y, z) < τ(x, p) + τ(p, z). (4.2.1)

On the one hand, this gives the reverse triangle inequality in the “straightened” big
triangle, guaranteeing its (nondegenerate) existence. On the other hand, this ensures
that we can actually apply Alexandrov’s lemma to the gluing lemma below. The
condition [x, z] ∩ [p, y] = ∅ serves as an analogue to having an angle greater than
π at p in the metric case. So from a Euclidean point of view, the quadrilateral is
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Fig. 5. The left and the middle configuration depict the two possible cases of a concave
quadrilateral. The figure on the right illustrates how to rule out the middle case

concave. But if you take a look at Fig. 5, there are two possibilities for this quadri-
lateral to turn out concave. To put it another way: we know that the quadrilateral is
concave, but since we cannot explicitly connect this nonempty intersection with a
(Euclidean) large angle at p, it could happen that this large angle appears at y.
Suppose we are in this case, then extend the segment [x, y] until it intersects [p, z],
say in a point q. Thenwith the reverse triangle inequality and the fact that y ∈ [x, q]
and q ∈ [p, z], we compute

τ(x, y) + τ(y, z) ≥ τ(x, y) + τ(y, q) + τ(q, z) = τ(x, q) + τ(q, z)

≥ τ(x, p) + τ(p, q) + τ(q, z) = τ(x, p) + τ(p, z),

a contradiction to (4.2.1).
Turning now to the actual proof, note that by the reverse triangle inequality we
have τ(x ′, z′) = τ(x, p) + τ(p, z) ≤ τ(x, z). For the angle at y, consider the
triangles �(x, y, z) and �(x ′, y′, z′). They have two sides of equal length, and
since τ(x ′, z′) ≤ τ(x, z), we have |xz|± ≤ |x ′z′|±. Thus, ∠xyz ≥ ∠x ′y′z′ by the
hinge lemma.
For the remaining estimates, we follow the same visual approach as the original
version of Alexandrov’s lemma. Let x̃ be the unique point with τ(x̃, p) = τ(x, p)
such that x̃ lies on the extension of the timelike geodesic segment [p, z], see Fig. 6.
Since [x, z] ∩ [p, y] = ∅, the segment [x̃, p] lies between the segments [x, p] and
[p, y] (in the sense of Remark 4.1.6). This already implies ∠xpy ≤ ∠x̃ py. To see
this, we observe that ∠xpy ≤ ∠x̃ py is equivalent to

〈γ ′
px̃ (0) − γ ′

px (0), γ
′
py(0)〉 ≥ 0. (4.2.2)

Clearly, γ ′
px̃ (0)−γ ′

px (0) is a spacelike vector as the difference of two past directed
timelike vectors of the same length. Recall that the scalar product with a spacelike
vector v is non-negative if and only if the other vector lies in the same half-space as
v generated by the normal space of v. For better visualization, we apply a Lorentz
transformation to view γ ′

px̃ (0) − γ ′
px (0) as a horizontal vector and p as the origin,



T. Beran, F. Rott

x

p

y

z

x

y

z

p

x̃

Fig. 6. A visual approach in the spirit of the original version of Alexandrov’s lemma

0

γpx̃(0) γpx(0)

γpz(0)

γpy(0)

Fig. 7. The two vectors in the scalar product lie in the same half-space

see Fig. 7. Then the normal space of γ ′
px̃ (0) − γ ′

px (0) is a vertical line through 0.
From a Euclidean point of view, γ ′

px̃ (0) − γ ′
px (0) is at an angle of ninety degrees

and symmetric with respect to its normal space. Since p ∈ [x̃, z], it follows that
γ ′
px (0) and γ ′

px̃ (0) differ by a Euclidean reflection with respect to the normal space.
Together, this implies that γ ′

pz(0) and γ ′
px (0) lie in the same half-space.

Now keep in mind that these directional vectors originally come from the sides of
two triangles which together yield a concave situation without self-intersection. In
this way, we not only obtain that γ ′

py(0) does not lie between γ ′
px (0) and γ ′

pz(0),
but also that γ ′

py(0) has to lie between the mirrored versions of these vectors, that
is between γ ′

px̃ (0) and −γ ′
px (0). Thus, it is clear that both entries in (4.2.2) are in

the same half-space with respect to the normal space of the spacelike entry, and so
the inequality is true.
Now consider the triangles �(x, p, y) and �(x̃, p, y). By construction we have
|px |± = |px̃ |±, so they have two sides of equal length since they have the
segment [p, y] in common. Moreover, since ∠x̃ py ≥ ∠xpy, the hinge lemma
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gives |x̃ y|± ≤ |xy|±. We continue with the triangles �(x̃, y, z) and �(x ′, y′, z′).
Again, we have two pairs of equal length since |yz|± = |y′z′|± and |x ′z′|± =
|xp|± +|pz|± = |x̃ p|± +|pz|± = |x̃ z|±, where the last equality holds since p lies
on the segment [x̃, z]. For the third side we know |x̃ y|± ≤ |xy|± = |x ′y′|± by the
above considerations. Thus, the hinge lemma implies ∠x̃ zy ≥ ∠x ′z′y′. And since
p and p′ correspond to each other on the segments [x̃, z] and [x ′, z′], respectively,
we also have ∠pzy ≥ ∠p′z′y′.
Analogously, we find a point z̃ that lies on the extension of [x, p] at distance
τ(p, z) from p. A similar argument then implies ∠pxy ≥ ∠y′x ′z′. Finally, the
triangles �(x, p, y) and �(x ′, p′, y′) have two sides with equal length and we
know ∠pxy ≥ ∠p′x ′y′. Consequently, we obtain |py|± ≤ |p′y′|± by the hinge
lemma.

At last, note that if [x, z] ∩ [p, y] = {p}, then [x, z] in fact is composed of the
two sides [x, p] and [p, z] in the triangles and hence �(x, y, z) is isometric to
�(x ′, y′, z′), so equality in all inequalities in the statement follows immediately.
Also if [x, z]∩ [p, y] = {q} �= {p}, then the procedure from above causes [x, p] to
be between [p, y] and [p, x̃]. Then the same calculation yields ∠x̃ py ≤ ∠xpy and
consequently all the following inequalities are reversed. Any of the inequalities
being an equality forces the others to be equalities as well, which then implies
q = p. ��

In the statement above we assumed the configuration of triangles to be such that the
subdivision happens along the longest side of�(x ′, y′, z′). For a proper application
we need to guarantee the desired behaviour in the other cases as well. However,
this can be done analogously. We give a rough sketch of the proof.

Lemma 4.2.2. (Alexandrov’s Lemma, other constellations) Let �(x, p, z) and
�(p, y, z) be two triangles in MK such that [x, p], [x, z], [p, y] as well as [y, z]
are timelike and the triangles are arranged on opposite sides of the geodesic line
extending the segment [p, z], see Fig.8. Let�(x ′, y′, z′) be a timelike triangle such
that τ(x ′, y′) = τ(x, p) + τ(p, y), τ (y′, z′) = τ(y, z) and τ(x ′, z′) = τ(x, z).
Then ∠pzy ≥ ∠p′z′y′. If [x, y] ∩ [p, z] = ∅, then ∠pxz ≥ ∠p′x ′z′,∠pxy ≥
∠p′x ′y′ and |py|± ≤ |p′y′|±.

Proof. Note that since p 	 y 	 z, also [p, z] is timelike and so we are in fact
dealing with two timelike triangles. We have τ(x ′, y′) = τ(x, p) + τ(p, y) ≤
τ(x, y), i.e., |x ′y′|± ≥ |xy|±, hence ∠pzy ≥ ∠p′z′y′ by the hinge lemma. As
for the other inequalities, extend the segment [p, x] to obtain a point ỹ on this
extension such that τ(p, y) = τ(p, ỹ), cf. Fig. 6. Then as in Fig. 7, we obtain
∠ypz ≤ ∠ỹ pz. Considering the triangles �(p, ỹ, z) and �(p, y, z), we infer
|yz|± ≥ |ỹz|± from the hinge lemma. Then consider �(x, ỹ, z) and �(x ′, y′, z′)
and obtain ∠pxz ≥ ∠p′x ′z′. We can argue similarly to obtain ∠pyz ≥ ∠p′y′z′.
Finally, |pz|± ≤ |p′z′|± again by the hinge lemma. ��
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4.3. The gluing lemma

We now formulate and prove the gluing lemma for timelike triangles. This really
is the main tool in the proof of the gluing theorem, both in the metric case and in
the Lorentzian setting. The proof is rather long and quite technical.

Lemma 4.3.1. (Gluing lemma for timelike triangles, case I) Let X be a Lorentzian
pre-length space and letU ⊆ X be a subset that satisfies (i) and (i i) in the definition
for a comparison neighbourhood in X, cf. Definition 2.1.3. That is, τ |U×U is finite
and continuous and for all x, y ∈ U with x 	 y there is a causal curve contained
in U with length τ(x, y). Let K ∈ R and let T3 := �(x, y, z) be a timelike triangle
in U satisfying size bounds for MK . Let p ∈ [x, z] such that p 	 y (or y 	 p). In
other words, T1 := �(x, p, y) and T2 := �(p, y, z) are again timelike triangles
(if y 	 p then the order of the points changes), see Fig.9. Let �T1 := �(x̄, p̄, ȳ)
and �T2 := �( p̄, ȳ, z̄) be comparison triangles for T1 and T2 in MK , respectively.
Suppose T1 and T2 satisfy timelike curvature bounds from above for K , i.e., for
all a, b ∈ Ti and corresponding comparison points ā, b̄ ∈ �Ti , i = 1, 2 we have
τ(a, b) ≥ τ̄ (ā, b̄). Then T3 satisfies the same timelike curvature bound from above.

Proof. Realize the comparison triangles for T1 and T2 in such a way that they share
the timelike geodesic segment [ p̄, ȳ] and such that x̄ and z̄ lie on opposite sides
of this segment (as in Alexandrov’s lemma). Note that because of the size bounds,
either [ p̄, ȳ] and [x̄, z̄] intersect in a single point or they do not intersect at all. If
[ p̄, ȳ] ∩ [x̄, z̄] = {p}, then as in Lemma 4.2.1, �T1 and �T2 together already form a
comparison triangle �T3 for T3 andwe are done. The cases of comparing pointswhich
are not immediate from this assumption will be covered later in greater generality.
Conversely, if [ p̄, ȳ] ∩ [x̄, z̄] = {q} �= {p}, then τ̄ (x̄, z̄) = τ̄ (x̄, q̄) + τ̄ (q̄, z̄) and,
since q̄ ∈ [ p̄, ȳ], q̄ is a comparison point for some q ∈ [p, y]. Moreover, x and q
are on the sides of T1 and q and z are on the sides of T2. Since T1 and T2 satisfy
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Fig. 9. A timelike triangle in X subdivided into two timelike triangles, the comparison
triangles for the smaller triangles and the comparison triangle for the big triangle

timelike curvature bounds, we compute5

τ̄ (x̄, z̄) = τ̄ (x̄, q̄) + τ̄ (q̄, z̄) ≤ τ(x, q) + τ(q, z) ≤ τ(x, z). (4.3.1)

But this is in contradiction to

τ(x, z) = τ(x, p) + τ(p, z) = τ̄ (x̄, p̄) + τ̄ ( p̄, z̄) < τ̄ (x̄, z̄), (4.3.2)

so such an intersection cannot occur with an upper curvature bound. Thus, [ p̄, ȳ]∩
[x̄, z̄] = ∅ is the only interesting case we have to consider. Moreover, as τ(x, p) +
τ(p, z) = τ(x, z) ≥ τ(x, y) + τ(y, z) by the reverse triangle inequality, we can
realize the situation in MK as in Fig. 9.
What follows now are several applications of Alexandrov’s Lemma 4.2.1. First,
we “bend” �T1 and �T2 in such a way that they form a comparison triangle for T3,
cf. Fig. 6. More precisely, let �T3 := �(x̄ ′, ȳ′, z̄′), where τ̄ (x̄ ′, ȳ′) = τ̄ (x̄, ȳ) =
τ(x, y), τ̄ (ȳ′, z̄′) = τ̄ (ȳ, z̄) = τ(y, z) and τ̄ (x̄ ′, z̄′) = τ̄ (x̄, p̄) + τ̄ ( p̄, z̄) =
τ(x, p) + τ(p, z) = τ(x, z). When talking about the comparison triangles for
T1 and T2 simultaneously, it will be convenient to denote their union, which is a
quadrilateral, by �T1 ∪ �T2. That is, by ā ∈ �T1 ∪ �T2 we mean a point which belongs
either to �T1 or �T2 (or both if ā ∈ [ p̄, ȳ]). We distinguish several cases, depending on
which sides the points lie on. Note that for any point on �T3, we can find a “compar-
ison point” in either �T1 or �T2, i.e., a point on the corresponding side of equal time
separation to the endpoints (the common edge [ p̄, ȳ] of �T1 and �T2 is the only one
not (isometrically) transferred to �T3). We choose two points ā′, b̄′ ∈ �T3 and check
all possible configurations. The general idea is to at first show that time separation
in �T3 is even smaller than in �T1 ∪ �T2, i.e., τ̄ (ā, b̄) ≥ τ̄ (ā′, b̄′), and then relating

5 It may a priori not be clear that x ≤ q ≤ z so one can apply the reverse triangle
inequality, but this can be seen as follows: we have q̄ ∈ [x̄, z̄], hence x̄ 	 q̄ 	 z̄ and so
0 < τ̄(x̄, q̄) ≤ τ(x, q) by the curvature condition and thus x 	 q . We get a similar estimate
for q and z.
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this inequality to time separations in X , i.e., τ(a, b) ≥ τ̄ (ā, b̄), thus ensuring the
desired curvature bound. We may assume without loss of generality that ā′ 	 b̄′
always holds, since otherwise there is nothing to show. Since all these (sub-)case
distinctions may become a bit confusing, we try to give a “to-do list” summarizing
everything. Note that some descriptions might only make sense when reading the
proof of the respective cases. The cases (B) and (C) are entirely analogous, hence
we omit the descriptions in (C).

(A) ā′ ∈ [x̄ ′, ȳ′] and b̄′ ∈ [ȳ′, z̄′] (both points on short sides): this case is easy and
also the only one where we do not need any subcases.

(B) ā′ ∈ [x̄ ′, ȳ′] and b̄′ ∈ [x̄ ′, z̄′] (one point on short and long side each): here, we
distinguish whether ā′ and b̄′ are in the same triangle or not.
(1) b̄′ ∈ [x̄ ′, p̄′] (same triangle): this case is easy and very similar to (A).
(2) b̄′ ∈ [ p̄′, z̄′] (different triangle): this needs yet another distinction, namely

whether the connecting segment [ā, b̄] stays inside �T1 ∪ �T2 or not.
(i) [ā, b̄] stays inside comparison situation: we construct several subtrian-

gles and use the law of cosines.
(ii) [ā, b̄] leaves comparison situation: we improve the bound on τ̄ (ā′, b̄′)

by taking a detour through p̄.
(C) ā′ ∈ [ȳ′, z̄′] and b̄′ ∈ [x̄ ′, z̄′] (one point on short and long side each)

(1) b̄′ ∈ [ p̄′, z̄′] (same triangle)
(2) b̄′ ∈ [x̄ ′, p̄′] (different triangle)

(i) [ā, b̄] stays inside comparison situation
(ii) [ā, b̄] leaves comparison situation

Finally, observe that switching the labels or assuming b̄′ 	 ā′ does not change the
proof at all. Hence this is a complete list that covers all possible configurations.
ā′ ∈ [x̄ ′, ȳ′] and b̄′ ∈ [ȳ′, z̄′] (A): In this first case ā′ 	 b̄′ holds anyways. We find

comparison points ā ∈ [x̄, ȳ] and b̄ ∈ [ȳ, z̄], i.e., τ̄ (x̄, ā) = τ̄ (x̄ ′, ā′) and τ̄ (ȳ, b̄) =
τ̄ (ȳ′, b̄′). Consider the triangles�(x̄, ȳ, z̄) and�(x̄ ′, ȳ′, z̄′). In these triangles, two
sidelengths are the same, namely |x̄ ȳ|± = |x̄ ′ ȳ′|± and |ȳ z̄|± = |ȳ′ z̄′|±. For the third
side, we have τ̄ (x̄ ′, z̄′) = τ̄ (x̄, p̄) + τ̄ ( p̄, z̄) ≤ τ̄ (x̄, z̄), and hence |x̄ z̄|± ≤ |x̄ ′ z̄′|±.
Then by the hinge lemma we infer ∠x̄ ȳ z̄ ≥ ∠x̄ ′ ȳ′ z̄′, exactly as in Lemma 4.2.1.
Nowconsider the “smaller” triangles�(ā, ȳ, b̄) and�(ā′, ȳ′, b̄′), i.e., instead of the
sides [x̄, ȳ] and [ȳ, z̄]we consider the (from the point of view of ȳ) initial segments
[ā, ȳ] and [ȳ, b̄] (and the same in the other triangle). Again, two side lengths are
pairwise equal. We want to use the hinge lemma in the other direction to obtain
estimates on the third side. This is easily possible since∠ā ȳb̄ and∠ā′ ȳ′b̄′ are equal
multiples of ∠x̄ ȳ z̄ and ∠x̄ ′ ȳ′ z̄′, respectively. Thus, we obtain |āb̄|± ≤ |ā′b̄′|± and
hence τ̄ (ā, b̄) ≥ τ̄ (ā′, b̄′).
We finished the casewere both points lie on short sides.We are left with considering
pairs of points where one is on the longest side and the other on a short side. These
two possibilities clearly are analogous (since they only differ by time orientation),
so we will only consider case (B) explicitly. In each of these cases, however, there
are subcases which are respectively similar as well. Namely, we have to distinguish
whether the point on the long side is chronologically before or after p̄′, i.e., if it
is in [x̄ ′, p̄′] or in [ p̄′, z̄′]. In other words, this distinction tells us if the two points
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Fig. 10. This configuration requires some additional construction steps

originate from the same triangle or not. Before returning to the proof, observe that
by Lemma 4.2.1 we have τ̄ ( p̄, ȳ) ≥ τ̄ ( p̄′, ȳ′) as well as ∠ p̄x̄ ȳ ≥ ∠ p̄′ x̄ ′ ȳ′ and
∠ p̄z̄ ȳ ≥ ∠ p̄′ z̄′ ȳ′.
ā′ ∈ [x̄ ′, ȳ′] and b̄′ ∈ [x̄ ′, p̄′] ⊆ [x̄ ′, z̄′] (B.1): Here, both points are from �T1. Con-
sider the smaller triangles �(x̄, ā, b̄) and �(x̄ ′, ā′, b̄′). We have as in the case (A)
above that ∠ā x̄ p̄ and ∠ā′ x̄ ′ p̄′ are equal multiples of ∠ȳ x̄ p̄ and ∠ȳ′ x̄ ′ p̄′, respec-
tively. Two sides are of equal length by construction. Thus, we infer |āb̄|± ≤ |ā′b̄′|±
from the hinge lemma and hence τ̄ (ā, b̄) ≥ τ̄ (ā′, b̄′). Note that in this case (and
also in (C.1)), since both points originate from the same triangles, we immediately
obtain τ(a, b) ≥ τ̄ (ā, b̄) as well.
Looking at the list from above, we are now in the case (B.2), where we have to
make yet another distinction. The extension of [ p̄, z̄]meets [x̄, ȳ] in a unique point,
denote it by q̄ . We have to distinguish whether ā lies chronologically before or after
q̄ . This distinction in particular tells us if [ā, b̄] lies inside of �T1∪ �T2 or not. We first
cover the case where this segment lies inside the triangles (the other case requires
even more extra work).
ā′ ∈ [q̄ ′, ȳ′] ⊆ [x̄ ′, ȳ′] and b̄′ ∈ [ p̄′, z̄′] ⊆ [x̄ ′, z̄′] (B.2.i): We try to construct a tri-

angle in �T1 ∪ �T2 that has both ā and b̄ as vertices and somehow inherits enough
properties so that we can deduce the claim, see Fig. 10.
In the end, thiswill be the timelike triangle�(ā, b̄, z̄). However, before thiswe need
to estimate the hyperbolic angle �z̄(b̄, ā). Recall that we have ∠ȳ z̄ p̄ ≥ ∠ȳ′ z̄′ p̄′.
As the two legs have the same time orientation and the same length, we infer
�z̄(ȳ, p̄) ≤ �z̄′(ȳ′, p̄′), cf. Remark 4.1.3. Now consider the timelike triangles
�(ā, ȳ, z̄) and �(ā′, ȳ′, z̄′). They have two sides of pairwise equal length. Then
|āz̄|± ≤ |ā′ z̄′|± easily follows from the hinge lemma.As both triangles are timelike,
we can change our perspective in the sense that we go from signed lengths and
the hinge lemma to (positive) time separation values and the Lorentzian law of
cosines, cf. [14, Theorem 3.1.3]. We do this because the adjacent sides of ∠āz̄ ȳ
and ∠ā′ z̄′ ȳ′ do not have pairwise equal length. Recall the following consequence



T. Beran, F. Rott

of the Lorentzian law of cosines: fixing the two short sides in a timelike triangle
and letting the longest side vary, any hyperbolic angle is an increasing function in
the length (understood as time separation) of the longest side. In our case, [ā, z̄]
and [ā′, z̄′] are the longest sides and so we obtain �z̄(ā, ȳ) ≥ �z̄′(ā′, ȳ′). Also,
since �z̄(ȳ, ā) + �z̄(ā, p̄) = �z̄(ȳ, p̄) ≤ �z̄′(ȳ′, p̄′) = �z̄′(ȳ′, ā′) + �z̄′(ā′, p̄′),
we must have �z̄(ā, b̄) = �z̄(ā, p̄) ≤ �z̄′(ā′, p̄′) = �z̄′(ā′, b̄′). Finally, consider
�(ā, b̄, z̄) and �(ā′, b̄′, z̄′). We know B := τ̄ (b̄, z̄) = τ̄ (b̄′, z̄′), A := τ̄ (ā, z̄) ≥
τ̄ (ā′, z̄′) =: A′ and ω := �z̄(ā, b̄) ≤ �z̄′(ā′, b̄′) =: ω′ and we want to infer
C := τ̄ (ā′, b̄′) ≤ τ̄ (ā′, b̄′) =: C ′. In two steps, we want to transform one triangle
into the other. In �(ā′, b̄′, z̄′), fix A′ and B and decrease ω′ to ω. From the law of
cosines, it easily follows that C ′ increases as ω′ decreases. In this way we obtain
an intermediate triangle with sidelengths A′, B and a hyperbolic angle ω opposite
of a side C̃ ≥ C ′. Now we want to increase A′ to A while keeping B and ω fixed
so that C̃ changes to C (we do not yet know whether it increases or decreases). But
this is precisely the situation in Remark 4.1.7, and so we obtain C ≥ C̃ ≥ C ′, as
desired.
So we are only left with the case (B.2.ii). In almost all the cases we covered
so far, relating the distance in �T1 ∪ �T2 with the original distances in X is not
difficult. Either the points already stem from the same small triangle in X , e.g.,
a ∈ [x, y], b ∈ [x, p] ⊆ [x, z] in (B.1), in which case we have τ(a, b) ≥ τ̄ (ā, b̄)
by assumption. Or the points lie in different triangles but the connecting geodesic
is entirely contained in the union of �T1 and �T2. For instance in (B.2.ii), the very last
case we covered, for ā′ ∈ [x̄, q̄] ⊆ [x̄ ′, ȳ′] and b̄′ ∈ [ p̄′, z̄′] ⊆ [x̄ ′, z̄′] there exists
an intersection point of [ p̄, ȳ] and [ā, b̄], call it r̄ . Then we compute

τ̄ (ā′, b̄′) ≤ τ̄ (ā, b̄) = τ̄ (ā, r̄) + τ̄ (r̄ , b̄) ≤ τ(a, r) + τ(r, b) ≤ τ(a, b).(4.3.3)

Illustratively, we divided the segment [ā, b̄] in two parts which both lie inside a
single triangle and then apply the respective curvature conditions of T1 and T2. The
reader may already have suspected that this unfortunately is not always possible.
Take ā ∈ [x̄, ȳ], b̄ ∈ [ȳ, z̄] in case (A), where ā and b̄ are close to x̄ and z̄,
respectively. Then the connecting segment leaves the triangles. While τ̄ (ā, b̄) ≥
τ̄ (ā′, b̄′) is easy to see, we have no way of relating τ̄ (ā, b̄) with τ(a, b). Moreover,
in the remaining case (B.2.ii) this is by assumption always the case. We rectify this
situation by improving the bound on τ̄ (ā′, b̄′): in (B.2.ii) and the cases of (A) where
the connecting segment leaves the triangle, we want to show

τ̄ (ā, p̄) + τ̄ ( p̄, b̄) ≥ τ̄ (ā′, b̄′). (4.3.4)

To make the following already very lengthy computations a bit easier and also to
do both cases kind of simultaneously, we assume for now b̄′ = z̄′. After showing
(4.3.4) in this case, we let b̄′ vary. Bymoving b̄′ onto [ȳ′, z̄′]we cover the remaining
case of (A) and by moving b̄′ onto [ p̄′, z̄′] we cover (B.2.ii). Remember that we
denote by q̄ the point where the extension of [ p̄, z̄] meets [x̄, ȳ].
ā ∈ [x̄, q̄] ⊆ [x̄, ȳ] and b̄ = z̄ (B.2.ii & A): If we can show (4.3.4), then this
implies τ(a, z) ≥ τ(a, p) + τ(p, z) ≥ τ̄ (ā, p̄) + τ̄ ( p̄, z̄) ≥ τ̄ (ā′, z̄′).
In Fig. 11, this effectively means that the detour through p̄ in �T1 ∪ �T2 is still larger
than the direct connection in �T3. We proceed in an elementary yet effective way.
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Fig. 11. Improving the bound on τ̄ (ā′, z̄′)

We define a function that compares these two lengths and show that its sign does
not change. Unfortunately, we have to show this separately for the different cases
of curvature.
Minkowski space (K = 0): Recall that the points ā and ā′ can be described as
ā = γx̄ ȳ(t) = t y + (1 − t)x and ā′ = γx̄ ′ ȳ′(t) = t y′ + (1 − t)x ′, respectively.
Set γx̄ ȳ(m) =: q̄ ∈ [x̄, ȳ] and similarly γx̄ ′ ȳ′(m) =: q̄ ′ ∈ [x̄ ′, ȳ′]. Then define
f : [0,m] → R by

f (t) := (τ̄ (ā, p̄) + τ̄ ( p̄, z̄))2 − τ̄ (ā′, z̄′)2. (4.3.5)

We square these values solely for ease of computation. If t = 0, then ā = x̄ and
ā′ = x̄ ′, and since by construction τ̄ (x̄, p̄)+τ̄ ( p̄, z̄) = τ̄ (x̄ ′, z̄′), we have f (0) = 0.
If t = m, then ā = q̄ and since q̄ lies on the extension of the segment [ p̄, z̄], we
have τ̄ (q̄, p̄) + τ̄ ( p̄, z̄) = τ̄ (q̄, z̄) ≥ τ̄ (q̄ ′, z̄′), hence f (m) ≥ 0. Thus, if we can
show that f ′′ ≤ 0, we obtain f ≥ 0 and so (τ̄ (ā, p̄)+ τ̄ ( p̄, z̄))2 ≥ τ̄ (ā′, z̄′)2 which
clearly also implies τ̄ (ā, p̄)+ τ̄ ( p̄, z̄) ≥ τ̄ (ā′, z̄′). Also note that since ā 	 q̄ 	 p̄,
all distances are timelike. For the calculation, we first observe that

γ ′̄
a p̄(0) = p̄ − x̄ + t (x̄ − ȳ), (4.3.6)

and we get a similar expression for γ ′
ā′ z̄′(0). After calculating the squares one

observes that 〈γ ′̄
pz̄(0), γ

′̄
pz̄(0)〉 does not depend on t at all (since it does not depend

on the position of ā), so we can ignore this value for the derivative of f . The
following expressions become quite lengthy, so we abbreviate B := γ ′̄

a p̄(0), A :=
d
dt γ

′̄
a p̄(0) = x̄ − ȳ, B ′ := γ ′

ā′ z̄′(0) and A′ := d
dt γ

′
ā′ z̄′(0) = x̄ ′ − ȳ′. Then f reads

f (t) = −〈B, B〉 − 2| p̄z̄|±
√−〈B, B〉 − 〈γ ′̄

pz̄(0), γ
′̄
pz̄(0)〉 + 〈B ′, B ′〉, (4.3.7)

and

d

dt
f (t) = −2〈A, B〉 − 2| p̄z̄|± −〈A, B〉√−〈B, B〉 + 2〈A′, B ′〉. (4.3.8)
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We further compute the second derivative of the middle term:

d

dt

−〈A, B〉√−〈B, B〉 = 〈A, A〉〈B, B〉 − 〈A, B〉2√
(−〈B, B〉)3 ≤ 0, (4.3.9)

where the inequality follows by the reverse Cauchy Schwarz inequality for timelike
vectors, cf. [19, Prop. 5.30 (i)]. For the remaining terms of ( d

dt )
2 f (t), we have

d

dt
2〈A, B〉 = 2〈A, A〉 = 2〈A′, A′〉 = d

dt
2〈A′, B ′〉, (4.3.10)

where the middle equality holds since by construction we have τ̄ (x̄, ȳ) = τ̄ (x̄ ′, ȳ′).
Thus, these two terms cancel out and the second derivative of f consists only of a
nonpositive term. Keep in mind that −2| p̄z̄|± is positive as | p̄z̄|± is negative.
De Sitter space (K = 1): In de Sitter space, the situation is more involved. Here,
we will need Lemma 4.1.5. In this case and the following case of anti-de Sitter
space, we choose to omit the bars of points since we are anyways only working in
MK . Let γv be the unique geodesic from x to y, i.e., γv(t) := cosh(t)x + sinh(t)v,
where v is a timelike unit vector perpendicular to x . That is, γv is the unit-speed
parameterization of γxy . Let q := γv(m) be the (unique) point in the intersection of
[x̄, ȳ] and the geodesic extending γz̄ p̄. Applying a suitable Lorentz transformation
we may assume that x = x ′, y = y′ and so v = v′ and a = a′. We let a vary
on the geodesic γv between the parameters 0 and m. The point a is given by
a = γv(t) = cosh(t)x + sinh(t)v = a′. Then define f : [0,m] → R,

f (t) := cosh(τ (a, p) + τ(p, z)) − cosh(τ (a, z′), (4.3.11)

where we applied the monotone function cosh to make computation easier. As
in the Minkowski case we know f (0) = 0 and f (m) ≥ 0. But we will show
f ′′(t) − f (t) ≤ 0 instead of f ′′(t) ≤ 0, which suffices to infer f (t) ≥ 0 by
Lemma 4.1.5. Note that in de Sitter space we have τ(x, y) = arcosh(〈x, y〉) for
x 	 y, cf. [12]. Then with the help of addition theorems for cosh, the function f
simplifies to

f (t) = 〈a, p〉〈p, z〉 + sinh(arcosh(〈a, p〉)) sinh(arcosh(〈p, z〉)) − 〈a, z′〉.(4.3.12)

Using the relation sinh(arcosh(x)) = √
x2 − 1, we further obtain

f (t) = 〈a, p〉〈p, z〉 +
√

〈a, p〉2 − 1
√

〈p, z〉2 − 1 − 〈a, z′〉. (4.3.13)

Now we take the first derivative. Note that of the three points appearing, only a
depends on t . For now, we will leave the derivative of a not explicitly calculated.
This will be simpler to do later on.

d

dt
f (t) = 〈 d

dt
a, p〉〈p, z〉 +

√
〈p, z〉2 − 1

〈a, p〉〈 d
dt a, p〉√〈a, p〉2 − 1

− 〈 d
dt

a, z′〉(4.3.14)

For the second derivative, note that ( d
dt )

2a = a. We calculate and simplify(
d

dt

)2

f (t) = 〈a, p〉〈p, z〉 +
√

〈p, z〉2 − 1
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( 〈 d
dt a, p〉2 + 〈a, p〉2√〈a, p〉2 − 1

− 〈a, p〉2〈 d
dt a, p〉2√〈a, p〉2 − 1

3

)
− 〈a, z′〉. (4.3.15)

Now we observe that this very much resembles the original function f . Using this,
we can write(

d

dt

)2

f (t) − f (t) = −
√

〈a, p〉2 − 1
√

〈p, z〉2 − 1 +
√

〈p, z〉2 − 1( 〈 d
dt a, p〉2 + 〈a, p〉2√〈a, p〉2 − 1

− 〈a, p〉2〈 d
dt a, p〉2√〈a, p〉2 − 1

3

)
. (4.3.16)

Then by Lemma 4.1.5 it suffices to show that the right hand side is lesser than or
equal to 0. We further simplify this expression and observe that it is equivalent to

〈a, p〉2 − 1 − 〈 d
dt

a, p〉2 ≤ 0. (4.3.17)

Now we insert a = cosh(t)x + sinh(t)v and d
dt a = sinh(t)x + cosh(t)v into this

inequality and at the same time use the bi-linearity of the scalar product. In this
way we get

(cosh(t)〈x, p〉 + sinh(t)〈v, p〉)2 − 1 − (sinh(t)〈x, p〉 + cosh(t)〈v, p〉)2 ≤ 0.

(4.3.18)

After computing the big square, we factor appropriately and use cosh(t)2 −
sinh(t)2 = 1 to obtain

〈x, p〉2 − 1 ≤ 〈v, p〉2. (4.3.19)

Since τ(x, p) = arcosh(〈x, p〉), we have 〈x, p〉 = cosh(τ (x, p)) and so
cosh(τ (x, p))2 − 1 = sinh(τ (x, p))2. Thus, after taking the root on both sides
we finally end up with

sinh(τ (x, p)) ≤ |〈v, p〉|. (4.3.20)

We now try to give these reformulations some intuitive value. First note that since
v by definition is perpendicular to x , we can write |〈v, p〉| = |〈v, p − x〉|. This
gives this scalar product a bit more meaning, because v is a (unit) tangent vector at
x while p is a point in de Sitter space. Now both p − x and v can be regarded as
vectors in the ambientMinkowski space starting at x . In particular, they are timelike
(since x 	 p and x 	 y) and so we can use the hyperbolic angle:

|〈v, p − x〉| = −〈v, p − x〉 = ‖v‖‖p − x‖ cosh(�x (v, p − x))

= ‖p − x‖ cosh(�x (v, p − x)). (4.3.21)

We now try to minimize this expression while letting v vary among unit tangent
vectors. In this way, only cosh(�x (v, p− x)) changes, and it is minimal if and only
if �x (v, p− x) is minimal. This angle is minimal precisely if v is the unit vector in
the direction of the projection of p−x onto the tangent space. Since p is in a normal
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neighbourhood of x , we can write p = cosh(s)x + sinh(s)w for some appropriate
unit vector w and s = τ(x, p). Then p − x = (cosh(s) − 1)x + sinh(s)w. We can
consider this as an orthogonal decomposition with respect to Tx dS: (cosh(s)−1)x
is the orthogonal component and sinh(s)w is the parallel component. Then the
angle is minimal if v = w. In particular, we then have

〈p − x, v〉 = 〈(cosh(s) − 1)x + sinh(s)v, v〉 = (cosh(s) − 1)〈x, v〉
+ sinh(s)〈v, v〉

= − sinh(s) = − sinh(τ (x, p)).

Hence −〈p− x, v〉 = sinh(τ (x, p)) which is precisely the left hand side. So if v is
any other (unit) vector than the projection of x− p onto Tx dS then |〈v, p〉|would be
even larger. Thus, the inequality holds and Lemma 4.1.5 implies f (t) ≥ 0, which in
turn implies cosh(τ (a, p)+ τ(p, z)) ≥ cosh(τ (a, z′). Since cosh is monotonously
increasing, we finally obtain τ(a, p) + τ(p, z) ≥ τ(a, z′).

Anti-de Sitter space (K = −1): This case is very similar to the case of positive
curvature. In fact, one can mostly copy the assumptions and computations from the
de Sitter case. This time we define f : [0,m] → R,

f (t) = cos(τ (a, p) + τ(p, z)) − cos(τ (a, z′). (4.3.22)

We omit the calculations for this case. Keep in mind that as cos is decreasing, we
have to reverse some inequalities.
Clearly, the last two cases also work for any other K �= 0, as one only has to respect
additional scaling constants.
Letting b̄ vary: As announced before, we do not only want to cover the case b̄ = z̄

but rather let b̄ vary. First suppose b̄ ∈ [ p̄, z̄]. We consider a function fb : [0,m] →
R,

fb(t) := g(τ̄ (ā, p̄) + τ̄ ( p̄, b̄)) − g(τ̄ (ā′, b̄′)), (4.3.23)

where g is, depending on K , one of the three monotone functions we introduced for
easier computations. In the above calculations concerning the second derivative, z̄
(and z̄′) did not really play an important role, so we could have easily exchanged
this point for b̄ (or b̄′). In particular, we thus have fb(t) ≥ 0 if we can show that
fb is nonnegative at the boundary of [0,m]. By definition we have fb(0) = 0. For
fb(m), i.e., ā = q̄ , note that

τ̄ (q̄, p̄) + τ̄ ( p̄, b̄) + τ̄ (b̄, z̄) = τ̄ (q̄, z̄) ≥ τ̄ (q̄ ′, z̄′) ≥ τ̄ (q̄ ′, b̄′) + τ̄ (b̄′, z̄′).(4.3.24)

Since we have τ̄ (b̄, z̄) = τ̄ (b̄′, z̄′) by construction, τ̄ (q̄, p̄) + τ̄ ( p̄, b̄) ≥ τ̄ (q̄ ′, b̄′)
follows and so fb(m) ≥ 0.
Now assume b̄ ∈ [ȳ, z̄]. In contrast to b̄ ∈ [ p̄, z̄], we have to restrict the position
of ā even further since it may otherwise happen that the connecting geodesic [ā, b̄]
stays inside the triangles. The values of ā we have to check actually depend on the
position of b̄ in the followingway: denote by r̄ =: γv(n) the point in the intersection
of [x̄, ȳ] and the extension of [ p̄, b̄], where γv is the unique geodesic from x to
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y. In particular, n ≤ m with equality if and only if b̄ = z̄. Then we consider
fb : [0, n] → R as above. As for fb(n), note that we have

τ̄ (r̄ , p̄) + τ̄ ( p̄, b̄) − τ̄ (r̄ ′, b̄′) = τ̄ (r̄ , b̄) − τ̄ (r̄ ′, b̄′) ≥ 0. (4.3.25)

In particular, τ̄ (r̄ , p̄)+ τ̄ ( p̄, b̄) ≥ τ̄ (r̄ ′, b̄′). By applying g and then bringing every-
thing to one sidewe infer the claim fb(n) ≥ 0.Also, fb(0) = g(τ̄ (x̄, p̄)+τ̄ ( p̄, b̄))−
g(τ̄ (x̄ ′, b̄′)) is completely analogous to the case of ā and z̄ we explicitly calculated
(with reversed time orientation). Thus, we have finally shown all inequalities and
so T3 actually satisfies the same curvature bound from above.
As a last remark, we observe that every argument can be repeated if the timelike
relation of p and y is reversed, i.e., if y 	 p. This is entirely analogous and
basically differs only up to time orientation. ��
For applications to a gluing theorem, we of course do not want to restrict the
placement of p to only the longest side in a triangle. As the proof of Lemma 4.3.1
basically only uses Lemma 4.2.1, and there the placement of p did not matter, we
immediately obtain the following corollary.

Corollary 4.3.2. (Remaining constellations of the gluing lemma) Let X and U be
as in Lemma 4.3.1 and let �(x, y, z) be a timelike triangle in U. Let p be a point
on [x, y] (or [y, z]) and consider the two resulting subtriangles that share the
(timelike) segment [p, z] (or [x, p]). If the subtriangles satisfy a timelike curvature
bound from above, then so does the original triangle.

Proof. In this case we mainly use Lemma 4.2.2 and then observe that everything
works out similarly as in the situation of the gluing lemma we just proved. ��
Finally, we need a version of the gluing lemma that applies even when the shared
segment in a Lorentzian pre-length space is not timelike. In general, this would not
make any sense in an ordinary Lorentzian pre-length space aswe have no concept of
spacelike distance in such spaces. However, the main application of these lemmas
is when the two spaces in the amalgamation are manifolds. In this case it does make
sense to talk about a shared segment which is not timelike.

Lemma 4.3.3. (Gluing lemma for manifolds) Let X and U be as in Lemma 4.3.1.
Let X1 and X2 be two strongly causal spacetimes and Ui ⊆ Xi , (i = 1, 2) with the
same assumptions as in Lemma 4.3.1 as well. Let T3 := �(x, y, z) be a timelike
triangle in U ⊆ X and let p ∈ [x, z]. Assume that there exist geodesic triangles
T1 := �(x1, p1, y1) and T2 := �(p2, y2, z2) in U1 and U2, respectively, such
that τ(x1, p1) = τ(x, p), τ (x1, y1) = τ(x, y), τ (p2, z2) = τ(p, z), τ (y2, z2) =
τ(y, z) and |p1y1|± = |p2y2|±. If T1 and T2 satisfy curvature bounds above by
K in the sense of [2],6 then T3 has timelike curvature bounded above by K in the
sense of Definition 2.1.3.

6 In [2], a Lorentzian manifold is said to have (sectional) curvature bounded above by
K ∈ R if spacelike sectional curvatures are ≤ K and timelike sectional curvatures are ≥ K .
We say a geodesic triangle satisfies such a curvature bound if |ab|± ≤ |āb̄|± for all points
a, b in the triangle and corresponding comparison points ā, b̄ in the comparison triangle in
MK .
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Proof. The proof of Lemma 4.3.1 can be adapted entirely into this setting. One
easily observes that the fact that the shared segment is not timelike does not impact
the comparison calculations. ��
Remark 4.3.4. (Gluing with reverse curvature bound) In the metric case, the glu-
ing theorem only works when considering spaces with an upper curvature bound.
Roughly speaking, this is because in Alexandrov’s lemma one angle always
increases independently of whether one starts with a concave or convex quadri-
lateral. This in turn prevents the gluing lemma from working in the other direction.
In our case we encounter very similar behaviour: in Lemma 4.2.1, the inequality
∠xyz ≥ ∠x ′y′z′ is independent of the general shape of the quadrilateral. Note
that in the Lorentzian setting we want this inequality to point in the other direction
compared to the two other angle estimates because of the sign of the nonnormalized
angle.

Remark 4.3.5. (Hyperbolic angles in Lorentzian pre-length spaces) The first author
is currentlyworking together with C. Sämann on adapting the concept of hyperbolic
angles to the synthetic setting. The approach is similar to the Alexandrov angle in
metric geometry, cf. [Definition I.1.12] [6]. This may simplify some of the calcu-
lations in this section while also allowing nicer formulations of some statements.

5. The gluing theorem

This section covers the proof of an analogue of the gluing theorem of Reshetnyak
for CAT(k) spaces. As mentioned before, a gluing theorem for Lorentzian pre-
length spaces at present does not seem to be possible, at least not in a reasonably
general formulation. Indeed, one would require that (locally) any two points in the
identified set are timelike related, which basically forces each Ai to be a timelike
geodesic (or a “discrete” union of timelike geodesics). The problem is essentially
the missing concept of spacelike distance. Our proof idea very much follows the
metric case, where one subdivides a triangle into smaller triangles and then applies
Lemma 4.3.1. In the Lorentzian setting, however, it may happen that such a division
into timelike triangles is not always possible: consider two copies ofR3

1 glued along
a vertical plane. Then one can construct an arbitrarily small timelike triangle whose
intersection with the plane consists of two points which are spacelike related.
Nevertheless,we can formulate the gluing theorem forLorentzianmanifolds viewed
as Lorentzian pre-length spaces. In this settingwe have access to spacelike distances
and the triangle subdivision problem can be overcome.

5.1. Constructing comparison neighbourhoods

One main obstacle in the proof of the gluing theorem is the construction of suit-
able comparison neighbourhoods. In particular, the comparison neighbourhoods of
points in the glued set additionally have to be geodesically convex rather than just
ensure the existence of maximizers between timelike related points. This is because
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when applying the gluing lemma in the spirit of Reshetnyak it might happen that
the triangle subdivision occurs along a spacelike or null geodesic. Moreover, we
also need them to be causally convex to ensure the existence of geodesics between
the two spaces (obtained as a limit of converging curves).
Fortunately, in recent work by E. Minguzzi such neighbourhoods are constructed,
cf. [18]. The basic idea is the following: let M be a spacetime, p ∈ M andU ⊆ M
a normal neighbourhood of p. Define the function D2

p : U → R by

D2
p(q) := gp(exp

−1
p (q), exp−1

p (q)). (5.1.1)

That is, the function D2
p is the (squared) signed distance from the point p (but

applying the sign after the squaring). In the terminology of [2], D2
p(q) is called the

energy Eq(p) = Ep(q). Let γ be a timelike geodesic through p. Then from [18,
Lemma 4] we infer the existence of q1, q2 in the image of γ, q1 	 p 	 q2, and
a normal neighbourhood O of p such that, setting c1 := D2

q1(p), c2 := D2
q2(p)

(both of which are negative), for sufficiently close c′
1 > c1 and c′

2 > c2 the set

(D2
q1)

−1(−∞, c′
1) ∩ (D2

q2)
−1(−∞, c′

2) ∩ O (5.1.2)

is geodesically convex and globally hyperbolic. Moreover, in this proof the set O is
chosen in such a way that �O ⊆ I (q1, q2) and the (closure of the) desired connected
component of (D2

q1)
−1(−∞, c′

1)∩ (D2
q2)

−1(−∞, c′
2) is contained in O . Hence the

set in (5.1.2) is causally convex as well. This set might be visually described as
a “lens”, i.e., the (bounded) region obtained by intersecting two hyperboloids in
Minkowski space. In our setup, this region can more easily be described by using
the time separation function τ instead of D2

p. We will go into a bit more detail on
how we adapt this construction in Remark 5.1.2.

Remark 5.1.1. (Assumptions on the glued set) When viewing manifolds as
Lorentzian length spaces, one has to be especially careful when dealing with sub-
manifolds. This is because on a Lorentzian submanifold A ⊆ M there are a priori
two – potentially strongly differing – structures when viewing them as Lorentzian
pre-length spaces. One the one hand, there is the induced substructure on A as
a Lorentzian submanifold which is very common in Lorentzian geometry. This
leads to concepts such as relative causality relations, usually denoted by 	A and
≤A. In particular, a submanifold equipped with this induced structure is always a
Lorentzian length space. On the other hand, the restricted structure as a Lorentzian
pre-length space just considers the restriction of the causality relations and the time
separation function to the submanifold. In this case, A is usually just a Lorentzian
pre-length space and one will lose the original description of τ,	 and ≤. For
example, if p, q ∈ A, p ≤ q, then clearly p ≤|A q. But if there is no causal curve
from p to q that stays inside A, we do not get p ≤A q. This is why the restricted
Lorentzian structure finds little application from a relativistic or differential geo-
metric viewpoint. A subspace of a metric space is a common example where one
uses the restricted structure. But also in this case, if one starts with a length space
then an arbitrary subspace will only be a metric space and not a length space in
general.
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A
A

Fig. 12. Two possible choices for A in the Minkowski plane: a “half-space” with cornered
boundary and a vertical strip

This observation is one of the reasons we decided to not require the identified sets to
be submanifolds (the other of course is a pursuit of generality). We now summarize
the properties we require of the identified sets. Let A1 and A2 be two closed subsets
of strongly causal spacetimes M1 and M2, respectively. Let f : A1 → A2 be a
locally bi-Lipschitz homeomorphism (wewill formulate the gluing theoremwithout
an artificial space A). Then we require A1, A2 and f to be compatible in the
following way:

(i) A1 and A2 are non-timelike locally isolating.
(ii) f is τ -preserving and ≤-preserving.
(iii) A1 is “convex” in the following sense: for all p ∈ A1 there exists a normal

neighbourhood V1 ⊆ M1 of p such that the following holds: whenever x, y ∈
U1 := V1 ∩ A1 then the unique geodesic connecting them in V1 is contained in
U1. The same holds for A2.

(iv) f locally preserves the signed distance: for all p ∈ A1 there exists a normal
neighbourhood V1 ⊆ M1 of p such that the following holds: whenever x, y ∈
U1 := V1 ∩ A1 then |xy|± = | f (x) f (y)|±.

Observe that both (iii) and (iv) also hold for any smaller (convex) normal neigh-
bourhood contained in V . (iii) suggests that the set Ai is at least contained in a
totally geodesic submanifold. However, we still gain the possibility of admitting
boundaries and even corners, see Fig. 12.

This is also the reason why we do not exactly copy the construction mentioned in
[18, Lemma 4], because there the sets in (5.1.2) have both “control points” on a
geodesic through p. And if p is a boundary point of A there might not be a geodesic
through p that stays inside A.

Remark 5.1.2. (Modified lenses) Our modification of the sets in (5.1.2) is very
minor. Let p ∈ A ⊆ M be as in Remark 5.1.1. Choose normal coordinates (ϕ,U )

centered at p. In the chart neighbourhoodϕ(U ), let BS(0)be aEuclidean ball around
0 = ϕ(p) such that ϕ−1(BS(0)) is convex (this is equivalent to saying that BS(0) is
convex with respect to the push forward metric induced by g) and moreover such
that for all smaller balls entirely contained in BS(0), their (inverse) image is convex
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as well. By the non-local timelike isolation of A we find b−, b+ ∈ BS(0) ∩ ϕ(A)

which are τη-equidistant7 (and hence, as p is the center of the normal coordinate
chart, also τ g-equidistant) from 0 such that b− 	 0 	 b+. Consider the timelike
straight line segments [b−, 0], [0, b+] in BS(0) (which are actually contained in
ϕ(A) as well by the convexity of A and moreover correspond to the geodesic
segments in the manifold). These segments intersect at 0 in an ordinary Minkowski
hyperbolic angle of ω < ∞ (which is also the hyperbolic angle measured in the
manifold). Apply a Lorentz transformation if necessary to position these segments
in the plane spanned by ∂0, ∂1 and such that they are symmetric (from a Euclidean
point of view) with respect to the ∂1 direction. Then the segment [b−, b+] is parallel
to the ∂0-axis. If necessary, choose S even smaller such that the ball is still convex
after the Lorentz transformation. Introduce a flat metric in the chart neighbourhood
via

η+ := −(2dx0)
2 +

n∑
i=1

(dxi )
2. (5.1.3)

Clearly, gp = η < η+8 and by choosing S smaller if necessary we can assume that
g < η+ holds on all of BS(0). Set R := τη+

(b−, b+). Consider the following set:

L :=
{
x ∈ BS(0) | τη+

(b−, x) >
R

3
, τ η+

(x, b+) >
R

3

}
, (5.1.4)

which will be our replacement for the set in (5.1.2). Visually, this set may be
described as a “wide lens”. Using the law of cosines, an elementary calculation
yields 0 ∈ L independent of ω and R, see Fig. 13.
Say b− := γ1(t), b+ = γ2(t), where γ1 and γ2 are the (unit speed) geodesics cor-
responding to the extensions of the straight line segments from above. By choosing
t smaller, i.e., by moving b− and b+ closer to 0 along these segments (but still
keeping them equidistant to 0), it easily follows that R decreases as well. More-
over, L has a “width” which is only dependent on R and can be easily calculated.
Denote by q the midpoint of [b−, b+], which due to the above applied Lorentz
transformation is situated on the ∂1-axis. Let r be half the width of L . By choosing
t small enough, we can achieve that Br (q) ⊆ BS(0). In particular, L ⊆ Br (q) any-
ways holds and ϕ−1(Br (q)) is geodesically convex. With arguments very similar
to [18, Theorem 10, Theorem 11 & Lemma 4] one can then show that ϕ−1(L) is
geodesically convex, causally convex and globally hyperbolic.

7 As the time separation is defined as the supremum of lengths of causal curves, it clearly
is dependent on which metric is considered. We denote by τ g the time separation measured
with respect to the metric g. In the same spirit, we can define the signed distance with
respect to a certain metric, denoted by | · ·|g±, which is the g-length of the unique g-geodesic
connecting two points (of course the two points have to be in a normal neighbourhood with
respect to g).
8 For two Lorentzian metrics g and h on a manifold we say h has wider lightcones than g,

and write g < h, if for all points the timelike past/future with respect to h contains the causal
past/future with respect to g, cf. [18]. In other sources, one may find the notation g ≺ h and
the formulation g(v, v) ≤ 0 ⇒ h(v, v) < 0 for all v ∈ T M .
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0

b+

b−

q ω
L

Br(q)

BS(0)

Fig. 13. Constructing nice neighbourhoods in the spirit of [18]

5.2. Formulation and proof of the gluing theorem

Now we can finally state and prove the Lorentzian analogue of the gluing theorem.

Theorem 5.2.1. (Reshetnyak’s gluing theorem, Lorentzian version) Let (X1, g1)
and (X2, g2) be two smooth and strongly causal spacetimes with dim(X1) =: n ≥
m := dim(X2). Let A1 and A2 be two closed non-timelike locally isolating subsets
of X1 and X2, respectively. Let f : A1 → A2 be a τ -preserving and ≤-preserving
locally bi-Lipschitz homeomorphism which locally preserves the signed distance.
Suppose A1 and A2 are convex in the sense of Remark 5.1.1(iii). Suppose X1 and
X2 have (sectional) curvature bounded above by K ∈ R in the sense of [2]. Then
the Lorentzian amalgamation X := X1 �A X2

9 is a Lorentzian pre-length space
with timelike curvature bounded above by K .

Proof. By [16, Proposition 3.5, Example 3.24, Theorem 3.26 & Example 4.9], X1
and X2 are strongly causal regular (SR)-localizable Lorentzian length spaces with
timelike curvature bounded above by K in the sense of [16]. Let [p] ∈ X and assume
first [p] = {p1}. We can choose comparison neighbourhoods in X1 (and in X2) to
be (small enough) timelike diamonds, cf. [5, Remark 2.2.12]. Since A1 is closed, we
find a neighbourhoodU1 ⊆ X1 of p1 which does not meet A1. Since X1 is strongly
causal, there exists a timelike diamond I1(x1, y1) inU1 containing p1. In particular,
this timelike diamond does not meet A1 and hence IX ([x], [y]) = π(I1(x1, y1)) by
Lemma 3.3.8. Since τ̃ restricts to τ1 on X1 by Proposition 3.3.7, it easily follows
that IX ([x], [y]) is a comparison neighbourhood for [p] ∈ X . Thus, we only have
to further investigate points in A.
Let p1 ∈ A1. Choose normal coordinates (ϕ1, V1) around p1 in X1 such that V1
is globally hyperbolic, convex in the sense of Remark 5.1.1(iii) and f preserves

9 Technically, in this formulation the space A does not exist. As it is still convenient in
the proof to say when an equivalence class consists of two elements, we keep this notation.
One can simply define A := π(A1 � A2).
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the signed distance on V1 ∩ A1 =: U1. We can further assume that V1 is contained
in a comparison neighbourhood and a causally closed neighbourhood of p1 in X1
and all small enough balls inside V1 are geodesically convex as well. Moreover,
by choosing V1 smaller if necessary, we can also assume that f (U1) := U2 is
of the form U2 = V2 ∩ A2 where V2 has all the properties we imposed on V1.
In particular, (ϕ2, V2) are normal coordinates around p2 in X2. As A1 is non-
timelike locally isolating, we find b1−, b1+ ∈ U1 which we choose τ g1 -equidistant
from p1 such that b1− 	1 p1 	1 b1+. Since f is τ -preserving and hence 	-
preserving, we have b2−, b2+ ∈ U2 as well as b2− 	2 p2 	2 b2+ (and they are
τ g2 -equidistant from p2). By applying a Lorentz transformation, we can assume
ϕ1(p1) = 0 = ϕ2(p2), ϕ1(b1−) = ϕ2(b2−) =: b−, ϕ1(b1+) = ϕ2(b2+) =: b+ and the
straight line segments [b−, 0] and [0, b+] lie in the plane spanned by ∂0, ∂1 and b−
and b+ are symmetric with respect to the ∂1 direction (as in Remark 5.1.2). Now
consider a set as the one described in (5.1.4) and recall the metric defined in (5.1.3).
Set R := τη+

(b−, b+). That is, define the set

L̃ :=
{
x ∈ R

n | τη+
(b−, x) >

R

3
, τ η+

(x, b+) >
R

3

}
(5.2.1)

and set Li := ϕ−1
i (L̃)10. By the observations in Remark 5.1.2, we have 0 ∈

L̃ and hence pi ∈ Li . In particular, by moving b− and b+ closer to 0 along
these segments, we can achieve that both L1 and L2 have the desired properties
of geodesic convexity, causal convexity and global hyperbolicity. While we can
make no statement about the equality of L1 and L2 as they belong to different
manifolds which we cannot relate as a whole, we indeed can say something about
their intersections with Ai ! Namely, we claim f (L1 ∩ A1) = L2 ∩ A2. This fact
is absolutely essential so that the neighbourhoods of [p] coming from X1 and X2,
respectively, are compatible. To this endobserve that aswe are in normal coordinates
around pi and f is signed distance preserving, we have

|0ϕ1(a1)|η± = |p1a1|g1± = |p2a2|g2± = |0ϕ2(a2)|η±. (5.2.2)

This in turn yields an equality on the nonnormalized angles:

∠b−0ϕ1(a
1) = ∠b−0ϕ2(a

2). (5.2.3)

Thus, the η-triangles �(b−, 0, ϕi (ai )), i = 1, 2 have two sides of equal length
and an equal angle between these sides. Then the law of cosines implies that the
opposite side is equal as well, i.e., |b−ϕ1(a1)|η± = |b−ϕ2(a2)|η±. An analogous
argument gives |ϕ1(a1)b+|η± = |ϕ2(a2)b+|η±. Thus, ϕ1(a1) and ϕ2(a2) both lie
on the intersection of two lightcones and/or hyperboloids with respect to η. In
any case this intersection is a Euclidean sphere of two dimensions less than the
manifold (if the manifolds do not have the same dimension, it is two less than
the lower dimensional manifold). Moreover, the center of this sphere is located on
[b−, b+] and thus, as [b−, b+] is parallel to ∂0, all points on this sphere have the

10 If the dimension of X2 is lower, one may want to view ϕ2 as embedding R
m into R

n ,
i.e., ϕ2 : V2 → R

m × {0} ⊆ R
n .
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same time coordinate. Because of the equality on the signed distance we obtain
η(b− − a1, b− − a1) = η(b− − a2, b− − a2). This, together with the fact that
the first components of a1 and a2 are equal, implies η+(b− − a1, b− − a1) =
η+(b− − a2, b− − a2) and hence τη+

(b−, a1) = τη+
(b−, a2). In particular, we

have ϕ1(a1) ∈ L̃ if and only if ϕ2(a2) ∈ L̃ and so a1 ∈ L1 ∩ A1 if and only if
a2 ∈ L2 ∩ A2. We claim that L := π(L1 � L2) is a comparison neighbourhood for
[p] ∈ A.
We first show that L is timelike geodesic, i.e., for all [x], [y] ∈ L with [x] 	̃ [y]
there exists a τ̃ -realizing causal curve from [x] to [y] contained in L . To this end we
claim the following: Let {x1} = [x] ∈ π(L1) ⊆ L and {y2} = [y] ∈ π(L2) ⊆ L .
Then JX ([x], [y]) ∩ A ⊆ L ∩ A. To see this, let [q] ∈ JX ([x], [y]) ∩ A. Then
[q] = {q1, q2}. Since [x] ≤̃ [q], we find a chain of the form x1 ≤1 a11 ∼
a21 ≤2 a22 ∼ a12 ≤1 . . . ∼ a1n ≤1 q1. Since f is ≤-preserving, we obtain

x1 ≤1 q1 by the transitivity of ≤1. Since gi < η+, we get ϕ1(x1) 	η+
ϕ1(q1).

Clearly, b− 	η+
ϕ1(x1) as x1 ∈ L1. Then by the reverse triangle inequality

we obtain τη+
(b−, ϕ1(q1)) ≥ τη+

(b−, x) > R
3 . A similar argument implies

τη+
(ϕ2(q2), b+) ≥ τη+

(ϕ2(y2), b+) > R
3 . By the above arguments, we obtain

both inequalities for ϕ1(q1) and ϕ2(q2). Thus, these points are contained in L̃ and
so qi ∈ Li ∩ Ai and [q] ∈ L ∩ A follows.
Now let [x], [y] ∈ L with [x] 	̃ [y]. If both belong to one space, we take the
(projection of the) original geodesic connecting them. More precisely, if xi ∈
[x], yi ∈ [y], i ∈ {1, 2}, then π ◦ γxi yi is a τ̃ -realizing curve connecting [x] and
[y] (since τ̃ restricts to τi on Xi ). It is even contained in π(Li ) as Li is causally
convex. So the only relevant case is (up to symmetry) {x1} = [x] and {y2} = [y]
with [x] 	̃ [y]. By Proposition 3.3.7 we find a sequence ([an])n∈N such that

lim
n→∞ τ1(x

1, a1n) + τ2(a
2
n, y

2) = τ̃ ([x], [y]). (5.2.4)

Bydefinition,wehave [an] ∈ JX ([x], [y])∩A for alln. By the above considerations,
it then follows that [an] ∈ L ∩ A for all n. In particular, we find corresponding
sequences (a1n)n∈N in L1 ∩ A1 and (a2n)n∈N in L2 ∩ A2. By construction, we have
L1 ⊆ J1(b1−, b1+) and L2 ⊆ J2(b2−, b2+). Since V1 and V2 are globally hyperbolic
and A1 and A2 are closed, we find that these sequences converge to some a1 ∈ A1
and a2 ∈ A2. In particular, [an] → [a] ∈ JX ([x], [y])∩A. As [an] ∈ JX ([x], [y])∩
A, we have x1 ≤1 a1n and a2n ≤2 y2 for all n. Since V1 and V2 are contained in a
causally closed neighbourhood, it follows that x1 ≤1 a1 and a2 ≤2 y2 and hence
[a] ∈ JX ([x], [y]) ∩ A. In summary, we have

τ̃ ([x], [y]) = lim
n→∞ τ1(x

1, a1n) + τ2(a
2
n , y

2) = lim
n→∞ τ1(x

1, a1n) + lim
n→∞ τ2(a

2
n, y

2)

= τ1(x
1, a1) + τ2(a

2, y2),

where the last equality follows since τ1 and τ2 are continuous on L1 and L2,
respectively. Consider the two original geodesics from x1 to a1 and from a2 to y2

which are contained in L1 and L2, respectively, as these sets are causally convex.
Then the concatenation of their projections is a τ̃ -realizing curve from [x] to [y]
contained in L .
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Fig. 14. The two cases of different triangle configurations

The fact that τ̃ |L×L is finite and continuous easily follows from L being timelike
geodesic: if xi ∈ [x], yi ∈ [y], then τ̃ ([x], [y]) = τi (xi , yi ) by Proposition 3.3.7.
By assumption, this is finite and τi is continuous. So again, the case we have to
investigate further is (up to symmetry) {x1} = [x] and {y2} = [y]. If τ̃ ([x], [y]) >

0, then by the above there exists [a] ∈ A such that τ1(x1, a1) + τ2(a2, y2) =
τ̃ ([x], [y]). The left hand side is finite by assumption.
As for the continuity of τ̃ , note that τ̃ is lower semi-continuous by definition.
To see that τ̃ is upper semi-continuous in ([x], [y]), let [xn] → [x] and [yn] →
[y] be two sequences in L . We want to show τ̃ ([x], [y]) ≥ lim sup τ̃ ([xn], [yn]).
If lim sup τ̃ ([xn], [yn]) = 0, there is nothing to show. Otherwise (at least for a
subsequence converging to the lim sup) we have [xn] 	̃ [yn] for large enough n. In
this case let [an] ∈ A be such that τ1(x1n , a

1
n) + τ2(a2n, y

2
n ) = τ̃ ([xn], [yn]), which

exists since L is timelike geodesic. Similar to the above arguments, it follows
that a1n ∈ L1 ∩ A1 and a2n ∈ L2 ∩ A2 (here we have [an] ∈ JX ([xn], [yn]),
otherwise the argument is the same). By global hyperbolicity of V1 and V2 we infer
the existence of a convergent subsequence. Without loss of generality the whole
sequence converges, say [an] → [a]. Then we compute

τ̃ ([x], [y]) ≥ τ1(x
1, a1) + τ2(a

2, y2) = lim
n→∞ τ1(x

1
n , a

1
n) + lim

n→∞ τ2(a
2
n , y

2
n )

= lim
n→∞ τ1(x

1
n , a

1
n) + τ2(a

2
n, y

2
n ) = lim

n→∞ τ̃ ([xn], [yn]),

where the first equality holds since τ1 and τ2 are (locally) continuous.
So it is only left to show the triangle comparison condition. To this end consider a
timelike triangle T1 := �([x], [y], [z]) in L . Clearly, if all three points lie in a single
space, then the triangle satisfies the curvature bound by assumption. So we only
need to consider triangles passing through A, for which there are two possibilities.
Either an endpoint ([x] or [z]) of the triangle is isolated, i.e., one endpoint is in
one space while the other two points are in the other space. Or the intermediate
detour-point ([y]) is isolated, see Fig. 14.
The case where [y] is isolated, say [x], [z] ∈ X1, [y] ∈ X2, is easily finished:
indeed, choose arbitrary points [p] ∈ [[x], [y]] ∩ A, [q] ∈ [[y], [z]] ∩ A. Then
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[p], [q] ∈ L ∩ A. Since [x] 	̃ [p] 	̃ [y] 	̃ [q] 	̃ [z] and L is time-
like geodesic, we find a τ̃ -realizing (causal) curve from [p] to [q] entirely con-
tained in L . We can divide T1 into three smaller timelike triangles. Consider
T2 := �([p], [y], [q]), T3 := �([x], [p], [q]) and T4 := �([x], [q], [z]). By the
convexity of A in the sense of Remark 5.1.1(iii), we have [[p], [q]] ⊆ L ∩ A. Thus,
T2 ⊆ X2 and T3 ⊆ X1 and so both timelike triangles satisfy the curvature bound.
Then by Lemma 4.3.1 also the bigger triangle T5 := �([x], [y], [q]) formed by T2
and T3 satisfies the same curvature bound. Applying the gluing lemma oncemore to
the triangles T4 and T5 we obtain the desired curvature bound for the whole triangle
T1 and this case is finished.
Finally, we consider the case where an endpoint is isolated, say [x] ∈ X1, [y], [z] ∈
X2 (the case of [z] being isolated is clearly symmetric). Choose points [p] ∈
[[x], [z]] ∩ A, [q] ∈ [[x], [y]] ∩ A. Then [p], [q] ∈ L ∩ A. Since L1 and L2 are
convex in the sense of Remark 5.1.1(iii), there is a unique geodesic from p1 to
q1 in L1 ∩ A1 and a unique geodesic from p2 to q2 in L2 ∩ A2, respectively.
Moreover, these geodesics correspond to each other under f and have the same
signed length since f preserves the signed distance. We denote this image in X
by [[p], [q]] although it may not be a causal curve if [p] and [q] are not causally
related. By construction, we can identify the “subtriangles” T2 := �([x], [p], [q])
with �(x1, p1, q1) and T3 := �([p], [q], [z]) with �(p2, q2, z2). In this way
we can view T2 and T3 as triangles in the manifolds X1 and X2, respectively,
independently of the causal character of [[p], [q]]. Thus, we can apply themanifold
version of the gluing lemma, cf. Lemma 4.3.3, to T2 and T3. In this way, we obtain
that T5 := �([x], [q], [z]) satisfies the desired curvature bound. In particular, this
is a valid timelike triangle in X . At last, we apply Lemma 4.3.1 to the triangles
T4 := �([q], [y], [z]) and T5 and we finally obtain that the original triangle T1
satisfies the curvature bound as well. Thus, the proof is completed. ��

Remark 5.2.2. (On regularity) Clearly, one can formulate the above theorem for
Lorentzian metrics of regularity C2. As the techniques in [18] work even in C1,1,
it is expected that this holds for the gluing theorem as well.
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