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Abstract
We establish several results on gluing/embedding/extending geometric struc-
tures in vacuum spacetimes with a cosmological constant in any spacetime
dimensions d⩾ 4, with emphasis on characteristic data. A useful tool is
provided by the notion of submanifold-data of order k. As an application
of our methods we prove that vacuum Cauchy data on a spacelike Cauchy
surface with boundary can always be extended to vacuum data defined beyond
the boundary.
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1. Introduction

In a recent series of pioneering papers, Aretakis et al [1–3] presented a gluing construction
for characteristic initial data for four-dimensional vacuum Einstein equations. The purpose of
this paper is to show that related gluing constructions can be done using a spacelike gluing
à la Corvino [25]. While the construction in [1–3] uses the structure of the four-dimensional
Einstein equations in a substantial way, our approach applies to any dimensions. As a bonus,
we allow a non-vanishing cosmological constant. The resulting spacetimes are essentially
identical, but the intermediate steps are different.

As such, the general relativistic gluing problem can be viewed as the following question:
given two spacetimes, solutions of vacuum Einstein equations, can one find a third one where
non-trivial subsets of each of the original spacetimes are isometrically included?

A version of this can be formulated at the level of spacelike Cauchy data: consider a man-
ifold Σ and two vacuum initial data sets (Σ1,g1,K1) and (Σ2,g2,K2) defined on overlapping
subsets Σ1 and Σ2 of Σ. Can one find a vacuum data set (g,K) on Σ which coincides with
the original ones away from the overlap, or away from a small neighborhood of the com-
mon boundary? A positive answer to this has first been given by Corvino [25] in a restricted
setting, and generalised in [17, 26]; see [11, 14] for further references. The problem is well
understood for data sets which are not-too-far-away from each other in the overlap: the gluing
can be performed if the spacetimes (M1,g1) and (M2,g2), obtained by evolving (Σ1,g1,K1)
and (Σ2,g2,K2), have no Killing vectors near the overlapping region. Equivalently, the set of
Killing initial data on the overlap is trivial.

Note that a gluing of overlapping spacelike initial data leads to a gluing of spacetimes in
the following sense: the domains of dependence of Σ1 \Σ2 and Σ2 \Σ1, within the spacetime
obtained by evolving the data onΣ, are isometric to the corresponding domains of dependence
in the original spacetimes (M1,g1) and (M2,g2), see figure 1(a).

An essentially identical construction applies with Σ1 and Σ2 lying on opposite sides of a
common boundary, ∂Σ1 = ∂Σ2, see figure 1(b).
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Figure 1. Spacelike gluings. The metric is smooth and vacuum everywhere, identical to
the original one in the left (yellow) and right (green) regions, the metric in the middle
(violet) region interpolates smoothly between the original ones.

One is then led to the question, whether something similar can be done using null initial
data1. For instance, consider a smooth hypersurface N and two characteristic data sets on
overlapping subsets N1 and N2 of N . Suppose that the data on both N1 ⊂ M1 and N2 ⊂ M2

arise by restriction from vacuum spacetimes (M1,g1) and (M2,g2). Can one find a vacuum
spacetime (M ,g), withN ⊂ M , so that the data onN , arising by restriction from g, coincide
with the original ones away from the overlapping region?

1 Classic works concerned with characteristic spacetime gluing include [4, 35, 37]. While [4, 35] focus on lightlike
shells, the point of our constructions is to avoid occurrence of such shells.
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Figure 2. Gluing construction of [2].

Here the situation is somewhat different, as a well-posed characteristic initial-value problem
requires either two transverse initial-data surfaces N and N (not to be confused with the
hypersurfaces N1 and N2 considered above and in what follows, which are included in a
single smooth hypersurface N ), or a light cone. This makes it clear that an answer in terms
of characteristic initial data on a single smooth hypersurface is not possible. However, given
k ∈ N, one can complement the characteristic initial data onN1 andN2 with information about
k derivatives of the metric in directions transverse to N1 and N2; such transverse derivatives
can be obtained by solving transport equations (i.e. ODE’s along the generators) onN1 andN2

from data on cross-sections S1 ⊂ M1 and S2 ⊂ M2 after some gauge choices have been made.
Denoting byΨ[N1,k] a set of characteristic data on N1 together with transverse derivatives up
to order k ∈ N∪{∞}, and by Ψ[N2,k] the set of such data on N2, one can ask whether there
exist data Ψ[N ,k] on N which coincide with the original data on the overlap region.

Explicit parameterisations of the data Ψ[N ,k] are presented in sections 4, 5, and in
appendix A. The question of optimal differentiability conditions of the fields parameterising
Ψ[N ,k] is delicate, and for simplicity wewill require the existence of local coordinate systems
near N in which all the functions parameterising Ψ[N ,k] are smooth on N .

In their landmark work, Aretakis, Czimek and Rodnianski have given a positive answer
to the following variation of the gluing question, in a near-Minkowskian setting, illustrated
in figure 2. Namely, supposing that Ψ[N1,k] are close to Ψ[N2,k] on the overlap region, one
asks:

Question 1.1. Do there exist characteristic dataΨ[Ñ2,k] on a null hypersurface Ñ2, obtained
by slightly moving N2 in (M2,g2), and characteristic data Ψ[Ñ ,k], on a null hypersurface
Ñ connecting N1 \N2 and Ñ2, which coincide with Ψ[N1 \N2,k] on N1 \N2 and with the
data Ψ[Ñ2,k] on Ñ2?

Aretakis et al [1–3] assume that N has the topology of a light cone in four-dimensional
Minkowski spacetime and that k= 2. The overlap is taken to be far away from the tip of the
light cone, so that regularity issues at the tip are irrelevant. They show that there exists a ten-
parameter family of obstructions to the gluing. In the case where the data Ψ[N2,2] arise from
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a null hypersurface in a Kerr space-time, they show that one can get rid of the obstructions by
adjusting the mass and angular momentum of the Kerr metric. In [28] a striking extension of
the method is presented, where the obstructions are reduced to a single one, namely a lower
bound on the mass of the Kerr extension.

In [1] it is also shown how to make a Corvino-type spacelike gluing using the characteristic
gluing.

The aim of this work is to show that spacelike gluings can be used to construct space-
times with properties similar to those resulting from the construction of [2]. In the approach
described here the hypersurface Ñ2 of question 1.1 is again obtained by moving slightly N2

within (M2,g2), but we give up the requirement that N1 and Ñ2 are subsets of the same
smooth null hypersurface in the final spacetime. Indeed, in our construction the null hypersur-
face extending smoothly N1 in the new spacetime is obtained by moving Ñ2 in an auxiliary,
suitably constructed, nearby vacuummetric; see figure 11 below. Our method does not provide
a null gluing, but a variation thereof; hence the title of this paper.

A useful tool in this context is provided by submanifold data of order k, introduced in
section 3. We provide a simple parameterisation of vacuum characteristic data on null hyper-
surfaces and on submanifolds of codimension-two in section 4 using coordinate systems intro-
duced by Moncrief and Isenberg [44]. A second such parameterisation is provided in section 5
using Bondi coordinates. In section 6 we use a ‘hand-crank construction’ to show that vacuum
characteristic initial data, or vacuum spacelike data on a submanifold of codimension 2, of any
order can be realised by embedding as an interior submanifold of a smooth vacuum space-
time. As Corollaries we obtain that any spacelike general relativistic vacuum Cauchy data on
a manifold with smooth boundary can be extended to a larger vacuum initial data set, where
the original boundary becomes an interior submanifold (cf theorem 6.4 below; compare [5,
10, 27, 41, 48, 49] for similar results under restrictive conditions), and that any vacuum data
Ψ[{p},k] at a point p can be realised by a vacuummetric (cf corollary 6.7). In section 7 we use
a ‘Fledermaus construction’ to show that vacuum characteristic initial data on two transversely
intersecting hypersurfaces can likewise be realised by embedding as an interior submanifold
with corner of a smooth vacuum spacetime. In section 8 we show how to carry out a variation
of the characteristic gluing using spacelike gluing. We apply this result in section 9 to glue two
sets of cross-section data, one of them arising from the Kerr family. In appendix A we show
how the sphere data of [2] relate to our codimension-two data in Bondi parameterisation. In
appendix B we show existence of a preferred, unique set of Bondi coordinates associated with
a null hypersurfaceN with a cross-section S. In appendix Cwe show, by quite general consid-
erations, that spacetime Killing vectors provide an obstruction to certain gluing constructions;
see remark 8.3 and section 9 below for further comments on this.

Throughout this work ‘vacuum’ means a solution of the vacuum Einstein equations with a
cosmological constant Λ ∈ R in spacetime dimension n+ 1⩾ 3+ 1.

2. The existence theorem for two null hypersurfaces intersecting transversally

In what follows we will need an existence theorem for the characteristic Cauchy problem,
and the aim of this section is to review a version thereof. This allows us also to introduce our
notations.

Let N be a smooth null hypersurface in an (n+ 1)-dimensional spacetime (M ,g).
Introduce a coordinate system (u,r,xA) in which N = {u= 0} and in which ∂r is tangent
to the null geodesics threading N , and with g(∂r,∂xA)|N = 0.

5
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In this section, for consistency with [20] we write gµν to denote the restriction of gµν to N ,
also referred to as the trace of gµν on N .2 The trace should not be confused with pull-backs:
the pull-back to {u= 0} of a tensor field Auudu2 is zero, while the trace of Auudu2 to {u= 0} is
the tensor field Auu|u=0du2 defined along {u= 0}, which vanishes if and only if Auu|u=0 ≡ 0.

On N let

θ ≡ 1
2
gAB∂rgAB (2.1)

be the divergence scalar, and let

σAB ≡
1
2
∂rgAB−

1
n− 1

θgAB (2.2)

be the trace-free part of 1
2∂rgAB, also known as the shear tensor. The vacuum Raychaudhuri

equation,

∂rθ−κθ+ |σ|2 + θ2

n− 1
= 0 , (2.3)

where

|σ|2 ≡ σA
BσB

A , σA
B ≡ gBCσAC , (2.4)

and

κ= Γrrr|u=0 (2.5)

(see [12, appendix A] for a collection of explicit formulae in adapted coordinates) provides on
N a constraint equation for the family of (n− 1)-dimensional metrics

r 7→ gAB(r,x
C)dxAdxB .

The geometric meaning of κ is that of the connection coefficient of the one-dimensional bundle
of tangents to the null generators of N , viewed as a bundle along each of the generators.
Indeed, under a change of coordinates (r,xA) 7→ (ř(r,xA), x̌A = xA) we have

θ 7→ θ̌ :=
1
2
gAB∂řgAB =

∂r
∂ř

θ , σAB 7→ σ̌AB :=
1
2
∂řgAB−

1
n− 1

θ̌gAB =
∂r
∂ř

σAB , (2.6)

and the Raychaudhuri equation becomes

∂řθ̌− κ̌θ̌+ |σ̌|2 + θ̌2

n− 1
= 0 , (2.7)

with

κ 7→ κ̌=
∂r
∂ř

κ+
∂ř
∂r

∂2r
∂ř2

. (2.8)

The vanishing of κ is equivalent to the requirement that r is an affine parameter along the
generator.

We are ready now to pass to the problem at hand. Consider two smooth hypersurfaces
N and N in an (n+ 1)–dimensional manifold M , with transverse intersection at a smooth
submanifold S. We choose adapted coordinates (u,u,xA) so that N coincides with the set
{u= 0}, while N is given by {u= 0}. We suppose that N = I×S and N = I×S, where

2 However, we will not do this in the remaining sections, hoping that the domains of definition will be clear from the
context. Nevertheless, we will consistently use the boldface symbol g for the spacetime metric defined on open subset
of spacetime, and g (or g in this section) for the metric restricted or induced on submanifolds.
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I and I are intervals of the form [0,ρ) for some ρ ∈ R+ ∪{∞}, possibly with distinct ρ, with
the coordinate u ranging over I and u ranging over I.

We wish for the restriction gµν of the metric functions gµν to the initial surface N ∪N
to arise from a smooth Lorentzian spacetime metric. This will be the case if guu is nowhere
vanishing, if u 7→ gAB(u, ·) is a family of Riemannian metrics on {u}× S⊂ N , similarly for
u 7→ gAB(u, ·) on {u}× S⊂ N , and if gµν is smooth on N and N and continuous across
S≡ N ∩N . The hypothesis that N and N are characteristic translates to

guu
∣∣
N

≡ 0≡ guA
∣∣
N

, guu
∣∣
N

≡ 0≡ guA
∣∣
N

. (2.9)

We therefore impose the following conditions on S:

lim
u→0

gAB|N = lim
u→0

gAB|N , (2.10)

lim
u→0

guu|N = lim
u→0

guu|N , (2.11)

lim
u→0

guA|N = 0 , lim
u→0

guA|N = 0 , (2.12)

lim
u→0

guu|N = 0 , lim
u→0

guu|N = 0 . (2.13)

To avoid ambiguities, wewill denote by κN the function κ associated with the hypersurface
N ; similarly for κN , θN , etc. We choose the time-orientation by requiring that both ∂u and
∂u are future-oriented at S. We have the following [20]:3

Theorem 2.1. Let there be given functions (gµν ,κ) on N ∪N , smooth up-to-boundary on
N and N , such that

gµν |N dxµdxν = guu(du)
2 + 2guududu+ 2guAdudx

A+ gABdx
AdxB , (2.14)

gµν |N dxµdxν = guu(du)
2 + 2guududu+ 2guAdudx

A+ gABdx
AdxB , (2.15)

withN = {u= 0} andN = {u= 0}. Suppose that guu < 0, that (2.10)–(2.13) hold, and that

∂uguu|S = 2
(
∂uguu− guuκN

)
|S

(
⇐⇒ Γuuu|S = κN |S

)
, (2.16)

∂uguu|S = 2
(
∂uguu− guuκN

)
|S

(
⇐⇒ Γuuu|S = κN |S

)
. (2.17)

If the Raychaudhuri equation holds both on N and N , i.e.

−∂uθN +κN θN − |σN |2 − θ2N
n− 1

= 0 on N , (2.18)

−∂uθN +κN θN − |σN |2 −
θ2N
n− 1

= 0 on N , (2.19)

then there exists a smooth metric defined on a neighbourhood of solving the vacuum Einstein
equations to the future of N ∪N and realising the data (gµν ,κ) on N ∪N .

Remark 2.2. The existence of a solution in a one-sided neighborhood of S has been established
in the pioneering work of Rendall [45] in spacetime dimension n+ 1= 4, and in [12] in all
higher dimensions. Our statement points out that a solution exists in a one-sided neighborhood
of N ∪N [9, 22, 23, 39, 46].

3 We take this opportunity to point out two annoying misprints in [20], corrected here: in equation (40a) there the
left-hand side should be g|N2 , and in equation (40b) the left-hand side should be g|N1 .

7
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Remark 2.3. The maximal globally hyperbolic solution is uniquely determined by the data,
up to isometry. This can be seen by first noting that the local solution is defined uniquely,
up to isometry, by the data listed; see [42] for an extensive discussion. Choosing a spacelike
Cauchy hypersurface within the domain of existence of the coordinate solution, one can appeal
to the usual Choquet–Bruhat–Geroch uniqueness theorem for the spacelike Cauchy problem
to conclude. □
Remark 2.4. Rendall [45] requires that κ≡ 0 and that the coordinates are solutions of the
wave equation,□gxµ = 0. The Raychaudhuri equations (2.18) and (2.19) are then solved using
a conformal ansatz gAB = ϕ2γAB, with γAB being freely prescribable on N ∪N subject to
continuity at S. These conditions determine the metric functions gµν in terms of the free data
uniquely up to the choice of

(guu,ϕ,∂uϕ,∂uϕ,ζA)
∣∣
S ,

where ζA is the torsion 1-form defined as follows: Assuming guu|S is negative we set L=√
−2guu ∂u and L =

√
−2guu ∂u along N ∪N , then ζA on S is defined as

ζA :=
1
2
g(∇AL,L)

∣∣
S ≡

1
2
guu(∂uguA− ∂uguA)

∣∣
S . (2.20)

Note that in our formulation of the characteristic initial value problem the torsion covector can
be calculated from the remaining data in theorem 2.1, as needed for Rendall’s version of this
theorem. □

3. Submanifold data

Let M be an (n+ 1)-dimensional manifold. Recall that, for k ∈ N∪{∞} and p ∈ M , the kth
jet jkpA at p of a tensor field A, or of a function A, is the collection of all partial derivatives of
A up to order k at p. We also recall that this notion is coordinate-independent, in an obvious
sense: given a representative of jkpA in some coordinate system, we can determine jkpA in any
other coordinate system by standard calculus formulae.

Let J be a smooth submanifold of M . For k ∈ N∪{∞} we define submanifold data of
order k as the following collection of jets defined along J

Ψ[J ,k] := {jkpgµν ,p ∈ J } , (3.1)

where we further assume that the jets arise by restriction to J of jets of a smooth Lorentzian
metric gµν defined in a neighborhood of J . Equivalently, Ψ[J ,k] are those sections over J
of the bundle of jets which are obtained by calculating the jets of a spacetime metric defined
near J and restricting to J . Or in yet equivalent words: an element of Ψ[J ,k] is obtained by
taking a Lorentzian metric defined in a neighborhood of J , calculating all its derivatives up
to order k, and restricting the resulting fields to J .

We have assumed for simplicity that all the fields occurring in Ψ[J ,k] are smooth, though
one could of course consider more general situations.

It should be clear that an element of Ψ[J ,k] can always be extended to a smooth metric
defined in a neighborhood of J by using a Taylor expansion with a finite number of terms if
k is finite, or by Borel summation [7, 8] if k=∞, with the jets of the extended field inducing
the original jets on J . Such an extension will be called compatible.

Since a field gµν restricted to J already carries information about its derivatives in direc-
tions tangent to J , for k⩾ 1 the new information in Ψ[J ,k] is contained in the derivatives in
directions transverse to J .

8
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As a special case consider a hypersurfaceΣ. An equivalent definition ofΨ[Σ,k] is obtained
by choosing a smooth vector field X defined in a neighborhood of Σ, transverse to Σ, and
setting

Ψ[Σ,k] :=
((

(LX)
igµν

)∣∣
Σ

)
0⩽i⩽k

. (3.2)

Given another smooth vector field Y transverse toΣ, the collection
((

(LY)
igµν

)∣∣
Σ

)
0⩽i⩽k

can

be rewritten in terms of
((

(LX)
igµν

)∣∣
Σ

)
0⩽i⩽k

, and vice-versa.

We will say that Ψ[J ,k] is spacelike if only metrics gµν with spacelike pull-back to J are
allowed in (3.1), similarly for timelike, characteristic, etc.

The submanifold data Ψ[J ,k] will be called vacuum if the derivatives of the metric up
to order k satisfy the restrictions arising from the vacuum Einstein equations, including the
equations obtained by differentiating the vacuum Einstein equations in transverse directions.
The structure of the set of vacuum jets is best understood by choosing preferred coordinates.
For example, in normal coordinates at a point p the first derivatives of the metric vanish and the
second derivatives are uniquely determined by the Riemann tensor at p. In these coordinates the
set of vacuum jets of second order is a subspace determined by a set of simple linear equations.

As another example, let Σ be again of codimension-one, and for k⩾ 2 consider the set of
vacuum data Ψ[Σ,k] such that gµν induces a Riemannian metric on Σ. Then every element
of Ψ[Σ,k] can be equivalently described by the usual vacuum general relativistic initial data
fields (g,K), where g is a Riemannian metric on Σ, K represents the extrinsic curvature tensor
ofΣ, with (g,K) satisfying the (spacelike) constraint equations. Indeed, one can then introduce
e.g. harmonic coordinates for gµν , and algebraically determine all transverse derivatives of gµν
onΣ in terms of (g,K) and their tangential derivatives. In this case the introduction of the index
k is clearly an overkill. However, we will see examples where each k adds further information.

As a further example, consider two hypersurfaces N and N in M intersecting transvers-
ally at a joint boundary

S= N ∩N ,

and consider vacuum submanifold data Ψ[N ∪N ,k] such that N and N are characteristic
for gµν , with the null directions along N and N being orthogonal to S. Set

Φ[N ,k] = {jkpgAB, jkpκ,p ∈ N } , (3.3)

where gABdxAdxB is the tensor field induced on N by gµνdxµdxν , with κ as in (2.5) (trans-
forming as in (2.8)), and with the data satisfying the Raychaudhuri equation and its transverse
derivatives up to order k. The collection (3.3) will be referred to as reduced characteristic
data of order k on N . It follows from remark 2.4 that, for k⩾ 1, vacuum characteristic data
Ψ[N ∪N ,k] can be replaced by a set

Φ[N ,0]∪Φ[N ,0]∪Ψ[S,1] (3.4)

together with the compatibility conditions and constraints described in theorem 2.1. This last
theorem also shows that every vacuum set Ψ[N ∪N ,k] can be realised as the boundary of
a manifold-with-boundary-with-corner carrying a smooth vacuum metric. Here the index k is
again an overkill for k⩾ 1.

It is sensible to enquire about the minimum value of k which makes sense in the context
of Einstein equations. A first guess would be to take k⩾ 2, since the equations are well posed
in a classical sense when k⩾ 2. However, some of the equations have a constraint charac-
ter, involving two derivatives in tangential directions but only one in transverse directions. In

9
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view of our hypothesis, that all the fields are smooth in tangential directions, an appropriate
condition appears to be k⩾ 1.

In the next sections we will:

1. Provide a simpler description of vacuum characteristic data Φ[N ,k].
2. Show that a class of vacuum characteristic data Φ[N ,k] can be realised by a hypersurface
inside a smooth vacuum spacetime.

3. Show that vacuum spacelike data Ψ[S,k] on a submanifold S of codimension two can be
realised by a submanifold inside a smooth vacuum spacetime.

4. The Isenberg–Moncrief parameterisation

A smooth submanifold S of a smooth null hypersurface N ⊂ M will be called a cross-section
of N if every generator of N intersects S precisely once. The aim of this section is to provide
a simpler description of characteristic data of order k on a hypersurface N with cross-section
S, using coordinates which are often referred to as Gaussian null coordinates. As these coordin-
ates have been introduced by Moncrief and Isenberg [44], we will refer to them as Isenberg–
Moncrief coordinates; IM for short. In these coordinates the metric reads4

gµνdx
µdxν = 2

(
−du+ uαdr+ uβAdx

A)dr+ gABdx
AdxB . (4.1)

We let N be the hypersurface {u= 0}, with r being a coordinate along the generators
of N . The Einstein equations for the metric (4.1), in all dimensions, can be found in [34,
appendix A], after replacing the coordinates (u,r) of [34] with our (r,−u).

There are actually two choices for N in the coordinates (4.1): as {r= 0} or as {u= 0},
since both these hypersurfaces are null for the metric (4.1). The reader is warned that our
choice here leads unfortunately to confusions with the usual notation u for a coordinate whose
level sets are null, as is the case for Bondi coordinates: we emphasise that the zero-level set of
u here is null, but the remaining level sets are not, in general. On the other hand all the level
sets of r are null for a metric of the form (4.1).

One can always adjust the Isenberg–Moncrief coordinates so that α vanishes on N , but
this might not be convenient in general and will not be assumed in this section.

We shall write βA := gABβB and β ·β := gABβAβB, where gAB is the inverse metric to gAB.
In the coordinate system as in (4.1) the key data on N are (gAB,α) subject to the

Raychaudhuri equation, which for the metric (4.1) reads

0=

(
−1

2
gAB∂2

r gAB+
1
4
gCAgBD(∂rgAB)∂rgCD+

1
2
α gAB∂rgAB

)∣∣∣∣
N

(4.2)

(see [34, appendix A], equation (77) with their r= 0). We will refer to the pair (gAB,α) as the
Isenberg–Moncrief data onN . Note that if θ ≡ 1

2g
AB∂rgAB has no zeros on N , the field α can

be determined algebraically in terms of gAB and derivatives of gAB tangential to N using (4.2).

Remark 4.1. It might be of interest to clarify how the Isenberg–Moncrief parameterisa-
tion (4.1) of the metric fits with theorem 2.1. Either by a direct calculation, or by compar-
ing (2.18) with (4.2) one finds

4 Our r is the same as Isenberg–Moncrief’s t and our u is the negative of Isenberg–Moncrief’s x3, see [44,
equation (2.8)].
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α|N = κN . (4.3)

The constraint (2.17) is trivially satisfied, while (2.16) reads

α|S = κN , (4.4)

consistently with (4.3). □

In Isenberg–Moncrief coordinates the following holds:

1. The equation RrA|N = 0 provides a linear ODE for βA along the generators of N ; as
already mentioned, such ODEs will be referred to as transport equations alongN . Indeed,
in vacuum it holds that [34, equation (79)]

0= RrA

=−DAα+
1
2
∂rβA+

1
4
βAg

BC∂rgBC−D[A(g
BC∂rgB]C)

+
u
2
×
[
1
2
(gBC∂rgBC)∂uβA+ ∂r∂uβA+ 2α∂uβA

+ ∂u(uβA) ·
{
−u−1∂u(u

2β ·β)+ 2∂uα
}

− 2DA(∂uα)+ ∂u(β
C∂rgCA)+ 2u−1∂u

(
u2βDD[AβD]

)
− 1

2
gBC∂ugBC×

{
(uβ ·β− 2α)∂u(uβA)

+ 2DAα−βC∂rgCA− 2uβFD[AβF]

}
− 2∂u(αβA)− 2u(∂uα)∂uβA−DB

{
βB∂u(uβA)

}
+ 2gCDDDD[AβC] − gBC(∂uβB)∂rgCA

− gBC∂u(uβB)×
{
− (uβ ·β− 2α)∂ugCA−DCβA

−βC∂u(uβA)+ uβCβ
E∂ugEA

}
+ gBC(∂ugCA)×

{
2βB∂u(uα)+ 2DBα+ ∂uβB− 2uβDD[BβD]

}]
, (4.5)

where DA is the covariant derivative operator associated with the metric gAB. This equation
at u= 0, together with βA|S and the IM data, determines βA uniquely along N . Note that
only the first line of the right-hand side survives on N , but we reproduce the relevant
Einstein equations here and below in whole as the overall features of the remaining terms
in the equations are relevant for the induction argument below.

Equations (5.10)–(5.13), together with the equations obtained by differentiating (5.10)–
(5.13) transversally to N , will be referred to as the transport equations along N .

2. The vacuum equation RAB|N =− n+3
2(n−1)ΛgAB provides a linear transport equation for

∂ugAB. Indeed, we have [34, equation (82)]

11
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RAB = ∂r∂ugAB+α∂ugAB+RAB−D(AβB) −
1
2
βAβB

− gCD
(
∂ugD(A

)
∂rgB)C+

1
4

{
(gCD∂rgCD)∂ugAB+(gCD∂ugCD)∂rgAB

}
− u

2
×
[
− 2α∂2

ugAB+DC(β
C∂ugAB)

+
1
2
(gCD∂ugCD)

{
(uβ ·β− 2α)∂ugAB+ 2D(AβB)

}
− 2(∂uα)∂ugAB+ u−1{∂u(u2β ·β)}∂ugAB
+ uβ ·β∂2

ugAB+ 2∂u{D(AβB)}
+ 2β(A∂uβB) + u(∂uβA)∂uβB+ uβEβF(∂ugAE)∂ugBF

− 2βC
{
∂u(uβ(A)

}
∂ugB)C− 2gCD

(
DDβ(A

)
∂ugB)C

− gCD(uβ ·β− 2α)(∂ugCA)∂ugBD

]
, (4.6)

where RAB is the Ricci tensor associated with gAB. This equation at u= 0, together with
∂ugAB|S and the field βA|N determined in point 1., defines now uniquely ∂ugAB|N .

3. The equation Rur|N =− n+3
2(n−1)Λ, where [34, equation (78)]

Rur =−2∂uα+
1
4
gCAgBD(∂rgCD)∂ugAB−

1
2
gAB∂u∂rgAB−

1
2
α gAB∂ugAB+

1
2
βAβA

+
u
2
×
[
− 2∂2

uα− 1
2
gAB∂ugAB ·

{
2∂uα−βD∂u(uβD)

}
+βB∂uβB+ ∂u{βB∂u(uβB)}+ gABDA(∂uβB)

]
, (4.7)

determines now algebraically ∂uα|N , as well as any derivative of ∂uα|N in directions tan-
gential to N .

4. The transverse derivative ∂uβA|N , as well as the derivatives of ∂uβA|N tangential to N ,
are now obtained from the equation RuA|N = 0, where [34, equation (81)]

RuA =−1
4
βAg

BC∂ugBC− ∂uβA+
1
2
βB∂ugAB−D[A

(
gBC∂ugB]C

)
+
u
2
×
[
− ∂2

uβA+ ∂u
(
βB∂ugAB

)
+

1
2
(gCD∂ugCD)

(
−∂uβA+βB∂ugAB

)]
. (4.8)

One can now consider the equations obtained by successively applying ∂iu, i⩾ 1, to (4.6)–(4.8)
to determine all transverse derivatives of gAB on N by first order linear transport equations,
whose solutions are determined uniquely by their initial or final data, and all transverse deriv-
atives of α and βA on N from linear algebraic equations.

We have therefore proved:

Proposition 4.2. In the Isenberg–Moncrief coordinate system the reduced vacuum character-
istic data Φ[N ,k] of (3.3) can be replaced by the following collection of fields:

ΦIM[N ,k] := {(∂ j
ugAB,α,βA)0⩽ j⩽k on S and (gAB,α) on N } , (4.9)

with (gAB,α) subject to the constraint equation (4.2). Moreover the fields (α,βA) are not
needed in (4.9) if k= 0, as they appear multiplied by u in the metric. □

12
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We will refer to this set of data as Isenberg–Moncrief vacuum characteristic data of
order k.

The above also shows:

Proposition 4.3. Let S be of codimension-two and k ∈ N∪{∞}. Then:

1. Spacelike vacuum data Ψ[S,k] of (3.1) can be reduced to the following collection of fields
on S in Isenberg–Moncrief coordinates:

ΨIM[S,k] := (∂ir∂
j
ugAB,α,βA)0⩽i+j⩽k , (4.10)

with (α,βA) not needed if k= 0.
2. Let S1 and S2 be two cross-sections of a null hypersurfaceN with vacuum dataΨ[S1,k] and

Ψ[S2,k] induced by vacuum characteristic data Ψ[N ,k]. Then Ψ[S2,k] can be determined
uniquely in terms of Ψ[S1,k] and Ψ[N ,0] by solving linear transport equations along the
generators of N , or by solving linear algebraic equations on N ; and vice-versa.

Proof.

1. This can be seen directly by repeating the proof of proposition 4.2. Alternatively, let gµν
be any Lorentzian metric near S compatible with Ψ[S,k]. Denote by N either of the null
hypersurfaces orthogonal to S, and by N the other one. Use the data induced by gµν to
solve the vacuumEinstein equations to the future ofN ∪N . Introduce Isenberg–Moncrief
coordinates so that N = {u= 0}. The result follows now from proposition 4.2.

2. It suffices to prove the result in Isenberg–Moncrief coordinates. In these we have just shown
that one can reduceΨ[S1,k] toΨIM[S1,k] andΨ[S2,k] toΨIM[S2,k], withΨIM[S2,k] determ-
ined uniquely in terms ofΨIM[S2,k] andΨ[N ,0] by solving linear transport equations along
the generators of N and by solving linear algebraic equations on N , as desired.

5. The Bondi parameterisation

A parameterisation of the metric which has often been used in the literature, in spacetime-
dimension equal to four, is that of Bondi et al (see e.g. [6, 30, 31, 40, 47]),

g≡ gαβdxαdxβ

=−V
r
e2βdu2 − 2e2βdudr+ r2γAB

(
dxA−UAdu

)(
dxB−UBdu

)
, (5.1)

together with the conditions

∂r detγAB = ∂u detγAB = 0 . (5.2)

A coordinate system satisfying (5.2) exists on N with N = {u= 0} if and only if the expan-
sion scalar of N has no zeros. We show in appendix B, in all spacetime dimensions n+ 1⩾ 3,
that given a cross-section S of a smooth null hypersurface N with θ > 0, there exists a unique
Bondi coordinate system near N in which

u|N = 0, r|S = 1, θ|S = n− 1, V|S =− 2θ
n− 1

and β|S = 0= U A|S. (5.3)

Here θ is the null mean curvature of S associated with ∂r, and θ is the null mean curvature
of S associated with the null vectors, say Ľ, orthogonal to S and transverse to {u= 0} at S,
normalised so that g(Ľ,∂r)|S =−1.

13



Class. Quantum Grav. 40 (2023) 165009 P T Chruściel and W Cong

Remark 5.1. Some comments concerning theorem 2.1 and the Bondi form of the metric (5.1)
are in order. Suppose that θN 6= 0 in theorem 2.1. We can then introduce on N an area
coordinate r (compare appendix B), and use the Bondi parameterisation of the metric on N .
So we take u|N = r, and we emphasise that (2.15) will not hold in general when u there is
taken to be the Bondi area coordinate. Thus the Bondi form of the metric is assumed to hold
on N but not necessarily away from N .5

Using the Bondi parameterisation on N we have

u|N = r , θN =
n− 1
r

, σAB =
r2

2
∂rγAB|N . (5.4)

The constraint equation (2.18) can be solved for κN :

κN =
r

4(n− 1)
γACγBD(∂rγAB)(∂rγCD)

∣∣
N

. (5.5)

Equations (2.16) and (5.5) provide then a constraint on S:[
2∂rβ+

e−2β

2
∂uguu

]∣∣∣
S
= κN |S =

r
4(n− 1)

γACγBD(∂rγAB)(∂rγCD)
∣∣
S . (5.6)

Once the vacuum equations have been solved, κN coincides with Γ
u
uu restricted to N :

κN = 2∂rβ+
e−2β

2
∂uguu . (5.7)

Hence the vacuum Raychaudhuri equation (2.18) becomes

2∂rβ+
e−2β

2
∂uguu︸ ︷︷ ︸= r

4(n− 1)
γACγBD(∂rγAB)(∂rγCD)

∣∣∣
N

. (5.8)

This is consistent with (5.10) below, since the underbraced term is zero when u is taken to be
the area coordinate r and the Bondi form of the metric is assumed in a neighborhood of N .

In the notation of (5.1), cross-section data can be defined as follows. Let S be a cross-section
of N . Let k ∈ N∪{∞} be the number of transverse derivatives of the metric that we want to
control at S. Using the Bondi parameterisation of the metric, we define the Bondi cross-section
data of order k as the collection of fields

ΨBo[S,k] := (∂ir∂
j
uγAB|S, ∂ j

uβ|S, ∂ j
uU

A|S, ∂rUA|S, V|S)0⩽i+j⩽k . (5.9)

As already pointed out, for simplicity we assume that all the fields in (5.9) are smooth. We note
that a finite sufficiently large degree of differentiability, typically different for distinct fields,
would suffice for most purposes; this can be determined by chasing the number of derivatives
needed in the relevant equations.

In appendix A we show how the sphere data of [2] relate to the Bondi ones.
We will refer to the Bondi field γAB|N as free Bondi data on N .
Note that the data ΨBo[S,k] contain more fields than the Isenberg–Moncrief data ΨIM[S,k]

of (4.10). This is related to the residual freedom remaining in Bondi coordinates; compare
proposition B.3, appendix B.

5 One could be tempted to think that those of the Bondi-parameterised Einstein equations which do not contain ∂u-
derivatives of the metric can be used as they are onN , but this is not the case: for instance, the Raychaudhuri equation
(compare (5.8)) contains a term which involves ∂u-derivatives of the metric and which vanishes if the Bondi form of
the metric holds in a neighborhood of N , and which does not vanish in a general coordinate system.
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To continue, suppose that we are given Bondi cross-section data of order k and a field γAB
on N . We assume that the field γAB and its ∂jr-derivatives with 0⩽ j⩽ k, when restricted
to S, coincide with the Bondi cross-section fields ∂jrγAB|S; such data sets will be said to be
compatible. Then (see [40] in spacetime-dimension four):

1. Using the equation

0=
r

2(n− 1)
Grr = ∂rβ− r

8(n− 1)
γACγBD(∂rγAB)(∂rγCD) (5.10)

we can determine ∂rβ|S. Further, integrating (5.10), the value β|S and the field γAB on N
can be used to determine ∂rβ on N , and hence all radial derivatives ∂irβ|S.

2. The fields UA|S and ∂rUA|S are used to obtain UA|N by integrating

0= 2rn−1GrA

= ∂r
[
rn+1e−2βγAB(∂rU

B)
]
− 2r2(n−1)∂r

( 1
rn−1

DAβ
)
+ rn−1γEFDE(∂rγAF) .

(5.11)

Further, the radial derivatives ∂irU
A|S can be algebraically determined in terms of ∂irγAB|S.

We note thatUA can be set to zero on S by a refinement of the coordinates, but this restriction
is not convenient when interpolating between cross-section data, and will therefore not be
assumed.

3. The function V|S is needed to integrate the equation

2Λr2 = r2e−2β(2Gur+ 2UAGrA−V/rGrr)

= R[γ]− 2γAB
[
DADBβ+(DAβ)(DBβ)

]
+

e−2β

r2(n−2)
DA

[
∂r(r

2(n−1)UA)
]

− 1
2
r4e−4βγAB(∂rU

A)(∂rU
B)− (n− 1)

rn−3
e−2β∂r(r

n−3V) , (5.12)

obtaining thus V|N by integration. Further, all radial derivatives ∂i rV|S can be determ-
ined algebraically in terms of the already-known fields by inductively r-differentiating this
equation.

4. The field ∂uγAB|S is needed to integrate

0= r(n−5)/2TS[GAB]

= ∂r

[
r(n−1)/2∂uγAB−

1
2
r(n−3)/2V∂rγAB−

n− 1
4

r(n−5)/2VγAB
]
+
n− 1
4

∂r(r
(n−5)/2V)γAB

+
1
2
r(n−3)/2VγCD∂rγAC∂rγBD−

1
2
r(n−1)/2γCD(∂rγBD∂uγAC+ ∂uγBD∂rγAC)

+ r(n−5)/2TS

[
e2βr2R[γ]AB− 2eβDADBe

β + r3−nγCADB[∂r(r
n−1UC)]

− 1
2
r4e−2βγACγBD(∂rU

C)(∂rU
D)+

r2

2
(∂rγAB)(DCU

C)

+ r2UCDC(∂rγAB)− r2(∂rγAC)γBE(D
CUE−DEUC)

]
, (5.13)
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where the symbol TS denotes the traceless-symmetric part of a tensor with respect to the
metric γAB and where R[γ]AB is the Ricci tensor of the metric γAB; note that the TS part of
each of the terms in the box is zero when n= 3. One thus determines ∂uγAB|N .

5. The u-derivative of β on N can be calculated by integrating the equation obtained by u-
differentiating (5.10), after expressing the right-hand side in terms of the fields determined
so far:

∂r∂uβ =
r
8

(
γAC∂uγ

BD(∂rγAB)(∂rγCD)+ γACγBD(∂rγAB)(∂r∂uγCD)
)
. (5.14)

For this we also need the initial value ∂uβ|S.
6. The equation

−2e2βGuA = 0 , (5.15)

reads

∂r

[
e4β∂u

(
e−4βr2γABU

B
)]

+ ∂r(r
2γAB)∂uU

B

= ∂r

[
e2β∂r

(
rγABU

BVe2β
)
− 2rV∂r(γABU

B)+ r2UB∂uγAB

]
+ 2e2β∂A∂uβ

+
(
UB∂r

(
r2γAB

)
+ 1/2γABr

2∂rU
B
)
e4β∂ue

4β − 2Λr2e2βγABU
B+FA , (5.16)

with

FA = FA
(
n,r,gµν ,∂igµν ,∂uγAB,∂A∂Bgµν ,∂r∂Bgµν ,∂A∂uγAB

)
, (5.17)

where {∂i}= {∂r,∂A}. This equation allows us to determine algebraically ∂r∂uUA|S in
terms of the already known fields. The field ∂r∂uUA|S is needed to determine ∂uUA|N by
integrating in r the u-derivative of equation (5.11). The explicit form of FA is not very
enlightening and is too long to be usefully displayed here.

7. We can determine algebraically ∂uV either on S or on N from the Einstein equation (Guu+
Λguu)|N = 0:

Guu =
n− 1
2r2

∂uV+ · · · , (5.18)

where ‘· · · ’ stands for an explicit expression in all fields already known on N , and which
is too long to be usefully displayed here.

One can inductively repeat the procedure above using the equations obtained by differentiating
Einstein equations with respect to u. One thus obtains a hierarchical system of ODEs in r, or
algebraic equations for the transverse derivatives of ∂rUA and V, for

(β, UA, V, ∂uγAB, ∂uβ, ∂uU
A, ∂uV, ∂

2
uγAB, . . . , ∂

k
uβ, ∂

k
uU

A, ∂kuV) , (5.19)

which can be integrated or algebraically solved in the order indicated in (5.19).
It might be of some interest to note that there are no obstructions to integrate the transport

equations globally on I×S. Here one should keep in mind that (5.10) is the Raychaudhuri
equation written in terms of the Bondi fields, and the blow-up of solutions of this equation is
at the origin of various incompleteness theorems in general relativity.

Summarising, we have:
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Proposition 5.2. In the Bondi coordinate system (the existence of which requires θ > 0 on
N ) the reduced vacuum characteristic dataΦ[N ,k] of (3.3) can be replaced by the following
collection of fields:

ΦBo[N ,k] := {(∂ j
uγAB|S, ∂ j

uβ|S, ∂ j
uU

A|S, ∂rUA|S, V|S)0⩽ j⩽k on S and γAB on N } . (5.20)

Equivalently, Einstein equations and smooth cross-section Bondi data (5.9) of order k ∈
N∪{∞}, together with smooth compatible Bondi free data γAB on a null hypersurface N ,
determine uniquely the metric functions

∂iugµν |N

in Bondi gauge, for all 0⩽ i ⩽ k, through linear transport equations along the generators, or
through linear algebraic equations.
Furthermore, in vacuum, the Bondi data ΨBo[S,k] of (5.9) suffice to determine Ψ[S,k] in

Bondi coordinates. □

6. The ‘hand-crank construction’

As already pointed out, characteristic initial data on a single null hypersurface do not lead to
a well posed Cauchy problem, i.e. a setup which guarantees both existence and uniqueness
of associated solutions of the field equations. In this section we present a construction which
provides existence of solutions of the vacuum Einstein equations realising the data. A similar
idea can be found in [36].

We have:

Proposition 6.1. Given a smooth vacuum characteristic initial data set Ψ[N ,k], k ∈ N∪
{∞}, on a (n+ 1)-dimensional manifold, n⩾ 3, of the form

N = [r1,r2]×S , r1 < r2 ,

there exist (many) smooth solutions of the vacuum Einstein equations (M ,g) so thatΨ[N ,k]
is obtained by restriction to a characteristic hypersurface within M .

Proof. If k<∞ we can extend Ψ[N ,k] to Ψ[N ,∞] in any way. Therefore it suffices to
assume that k=∞.

Let us write Sc for N ∩{r= c}. LetΨ[Sr,k] be the cross-section data induced byΨ[N ,k]
on Sr. Let N r1 = [0,1]×S be a hypersurface on which we prescribe any smooth Isenberg–
Moncrief data (gAB,α) compatible with Ψ[Sr1 ,k]; thus (N r1 ,gAB,α) are characteristic initial
data on the hypersurface N r1 meeting N transversally at r= r1 towards the future of Sr1 , see
figure 3. By definition of compatibility, all derivatives of (gµν ,α) in directions tangential to
N r1 and transverse to N have to match at Sr1 with those in Ψ[Sr1 ,k], which can be achieved
by Borel summation.

Similarly let N r2 = [0,1]×S be a hypersurface, meeting N transversally at Sr2 towards
the past, on which we give smooth characteristic data compatible with Ψ[Sr2 ,k].

We can solve the characteristic Cauchy problem to the future with data on the transvers-
ally intersecting hypersurfaces N and N r1 , resulting in a smooth vacuum metric, say g+,
defined on J+(N r1 ∪N ). The Einstein equations guarantee that the transport and the algeb-
raic equations in Isenberg–Moncrief coordinates described in section 4 hold on N . The initial
data for these transport equations at Sr1 are given by Ψ[Sr1 ,k]. Uniqueness of solutions of the
transport equations shows that the transverse derivatives of the metric coincide with the ones
listed in Ψ[N ,k].
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Figure 3. The ‘hand-crank construction’.

One can likewise solve the characteristic Cauchy problem to the past with data on the trans-
versally intersecting hypersurfaces N and N r2 , resulting in a vacuummetric, say g−, defined
on J−(N ∪N r2). Uniqueness of solutions of the transport equations shows that the transverse
derivatives of the metric coincide with the ones listed in Ψ[N ,k].

By construction both piecewise-smooth spacetime metrics agree, together with all trans-
verse derivatives, on N , and define thus a smooth metric on the union of the original domains
of definition.

As a corollary of the construction of proposition 6.1 we have:

Corollary 6.2. Let k ∈ N∪{∞}, k⩾ 2, and let S⊂ M be of codimension two. For every
spacelike vacuum data set Ψ[S,k] there exists a smooth vacuum Lorentzian metric defined
near S and inducing the data.

Proof. Let N = [−1,1]×S, where we identify S with {0}× S. Let Ψ[N ,k] be any charac-
teristic data on N compatible withΨ[S,k] at {0}× S. If k<∞, we complement the data with
higher-derivatives to k=∞ in any way. Hence it suffices again to assume that k=∞. We can
now apply proposition 6.1 to Ψ[N ,k].

Remark 6.3. We note that in situations where Cauchy-stability holds but only a neighbor-
hood of N ∩N (instead of N ∪N ) is known to exist (which could be the case for Einstein
equations coupled with some unusual matter fields), one can still establish the claim of corol-
lary 6.2 as follows: There exists k0 > 0 so that Cauchy-stability for the characteristic initial
value problem holds in the Ck0(N ∪N )-topology on the data. For r1 ⩽ 0 let (N r1 ,gAB,α)
be as in the proof of proposition 6.1. We can choose the data to vary continuously in Ck0 as r1
varies. Cauchy stability guarantees that there exists ϵ1 > 0 so that the solution of the Cauchy
problem with the dataΨ[N ,∞] on N and the dataΨ[N −ϵ1 ,∞] on N −ϵ1 contains a future
neighborhood of S. A similar continuity argument applies to the data on the hypersurfaces
N r2 with ϵ2 ⩾ r2 > 0. One thus obtains a smooth vacuum spacetime metric as in figure 3 with
r1 =−ϵ1 and r2 = ϵ2.

A construction in the same spirit allows us to extend vacuum Cauchy data defined on a
manifold with boundary Σ beyond the boundary, to a larger initial data manifold Σ̌, where
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Figure 4. Extending Σ to Σ̌.

the boundary of Σ becomes an interior hypersurface, while satisfying the vacuum general
relativistic constraint equations:

Theorem 6.4. Let Σ be a manifold with boundary ∂Σ carrying smooth-up-to-boundary
vacuum initial data (g, K). There exists a manifold Σ̌ with vacuum data (ǧ, Ǩ) and an iso-
metric embedding of (Σ,g) into (Σ̌, ǧ) such that Ǩ coincides with K on Σ.

Proof. The Cauchy data (Σ,g,K) induce spacelike vacuum data Ψ[∂Σ,∞] on ∂Σ. The max-
imal globally hyperbolic development of (Σ,g,K) induces smooth characteristic data, com-
patible with Ψ[∂Σ,∞], on a null boundary emanating from ∂Σ in the direction of the null
normal pointing towards Σ, denoted by ∂D+(Σ) in figure 4. Choose any characteristic data
Ψ[N ,∞], compatible with Ψ[∂Σ,∞], on a hypersurface N intersecting ∂D+(Σ) transvers-
ally at ∂Σ; N provides a smooth continuation, to the future, of the hypersurface ∂D−(Σ) of
figure 4. The construction of the proof of proposition 6.1 provides a vacuum metric, say g,
defined in a neighborhood O of N . The spacelike hypersurface Σ can be extended smoothly
within O across ∂Σ to a spacelike hypersurface Σ̌. The data induced on Σ̌ by g provide the
desired extension (Σ̌, ǧ, Ǩ).

We can also find vacuummetrics which extend vacuummetrics on solid light cones. For this
we need to truncate the cone at finite distance by a spacelike acausal hypersurfaceΣ. Consider,
then, smooth characteristic vacuum data on a light coneCp with vertex at p. By [13] there exists
a neighborhood O of p and a smooth vacuummetric g defined on O ∩ J+(p)which realises the
data. (In space-time dimension four the set O constitutes a full future neighborhood of Cp.)
Let Σ⊂ O be any smooth spacelike hypersurface included in J+(p) with smooth compact
boundary on Cp:

S := ∂Σ= Σ∩Cp .

We denote by C S
p the cone Cp truncated at S,

C S
p := Cp ∩ J−(S) , (6.1)

see figure 5. We have:
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Figure 5. Truncating the light cone of p at ∂Σ.

Figure 6. Extending a vacuum metric on a truncated future cone J+(p)∩ J−(Σ) to a
neighborhood of (J+(p)∩ J−(Σ)) \ {p}.

Proposition 6.5. For any smooth characteristic vacuum data on a truncated light cone C S
p as

above, there exists a smooth vacuum metric realising the data defined in a neighborhood of

C S
p \ {p} ,

see figure 6.

Proof. By theorem 6.4 we can extend Σ beyond its boundary to a new spacelike hypersurface
Σ̌ as in figure 6. Solving backwards in time the Cauchy problem with the extended data one
obtains a vacuum metric defined in a neighborhood O of C S

p \ {p}.

The question then arises, whether we can always obtain a full neighborhood of C S
p , as

in figure 7. The problem is, that the domain of existence of g might be shrinking as p is
approached, as seen in figure 6 and made clear by the following considerations:
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Figure 7. Extending a vacuum metric on a truncated future cone J+(p)∩ J−(Σ) to a
neighborhood thereof.

By definition of smooth characteristic data near the tip of a light-cone, there exists a smooth
Lorentzian metric inducing the data. After solving the Einstein equations to the future of the
light-cone as in [13] we obtain a smooth metric, say ĝ, defined in a neighborhood of p which
coincides with g in J+(p), and thus is vacuum there. But we have no reason to expect that it
will coincide with g away from J+(p), nor that it will be vacuum away from J+(p).

As an attempt to address this issue, we will use ĝ-normal coordinates near p to study the
behaviour of g there, keeping in mind that ĝ extends smoothly g|Cp in a neighborhood of
C S
p \ {p}; these coordinates are the only reason why we need the metric ĝ.
Let, thus, (t, x⃗)≡ (t,xi)≡ (xµ) be normal coordinates centred at p for the metric ĝ, in these

coordinates the light-cone is given by the equation t= |⃗x|, and there exists a constant C such
that for |⃗x|⩽ 2t we have

|ĝµν − ηµν |⩽ C(t2 + |⃗x|2)⩽ 5Ct2 , |∂σĝµν |⩽ Ct . (6.2)

For any k⩾ 2 for 2⩽ i⩽ k it holds that

|∂σ1 · · ·∂σi ĝµν |⩽ C , (6.3)

where the constant might depend upon k. In what follows we choose some k> n/2+ 1, to
guarantee that the solutions of the spacelike Cauchy problem for the Einstein equations with
data in (g,K) ∈ Hk+1 ×Hk are in C2.

Let

Σc[x] = {t= c} . (6.4)

By Cauchy stability, for t> 0 the intersection Σt ∩O of the domain O of definition of the
vacuum metric g contains the set

{|⃗x|⩽ f(t)} , for some function satisfying f(t)> t. (6.5)

Replacing f by a smaller function if necessary, we can assume that for t> 0 we have

t< f(t)⩽ 2t .
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Passing to a smaller function f again if necessary, smoothness of g implies that on the set
{|⃗x|⩽ f(t)} we will have

|gµν − ηµν |⩽ 10Ct2 , |∂σgµν |⩽ 2Ct , (6.6)

as well as, for 2⩽ ℓ⩽ k ,

|∂σ1 · · ·∂σℓ
gµν |⩽ 2C . (6.7)

Finally, again making f smaller if necessary we can assume that the function f is continuous
and increasing.

For small s> 0, say s⩽ s0 < 1/2 for some s0 smaller than the injectivity radius, consider
the scaling map

(τ, y⃗)≡ (y0, y⃗)≡ (yµ) 7→ (t, x⃗)≡ (xµ) := (syµ) . (6.8)

Using (6.8) we obtain a family of scaled metrics, solutions of vacuum Einstein equations with
cosmological constant Λs := s2Λ:

g[s]µν(yα) = gµν(syα) . (6.9)

Set

Σc[y] := {τ = c} ,

then on Σ1[y] the metric g[s] is defined on a set containing the coordinate ball

B[s] := {|⃗y|⩽ f(s)/s} , with the radius satisfying 1< f(s)/s⩽ 2.

Let (B[s],g[s],K[s]) be the Cauchy data induced by g[s] on

{τ = 1, |⃗y|⩽ f(s)/s} ⊂ Σ1[y] .

It follows from (6.6) and (6.7) that for y⃗ ∈ B[s] we have

|g[s]ij− δij|⩽ 10Cs2 , |∂yℓg[s]ij|⩽ 2Cs2 , |K[s]ij|⩽ C ′s2 , (6.10)

for some constant C
′
, and that for 2⩽ ℓ⩽ k it holds that

|∂yi1 · · ·∂yiℓgij|⩽ 2Csℓ ⩽ 2Cs2 . (6.11)

Hence the Cauchy data set (B[s],g[s],K[s]) tends, in Hk+1(B[s])×Hk(B[s]) norm, as s tends to
zero, to the Minkowskian one, (B(1), δij,0), where B(1) is the unit coordinate ball centered at
the origin in Rn. Standard hyperbolic estimates imply that

1. the boundary of the maximal past globally hyperbolic development of the data
(B[s],g[s],K[s]) is generated by null geodesics normal to ∂B[s], and

2. on the past domain of dependence of the data, say D−[s] we have

|∂yα1 · · ·∂yαℓ

(
g[s]µν − ηµν

)
|⩽ Čs2 , (6.12)

for some constant Č.
3. Furthermore, the maximal past globally hyperbolic development of (B[s],g[s],K[s])

approaches the Minkowskian past domain of dependence as s→ 0 in the sense that is made
clear by the following: every generator xµ(t) of ∂D−[s] starting at a point p ∈ Sn−1 ⊂ ∂B[s]
lies a distance not further than

C̃s2 , (6.13)
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Figure 8. Extending a vacuum metric on a truncated future cone J+(p)∩ J−(Σ ′) to a
neighborhood of J+(p)∩ J−(Σ ′).

for some constant C̃, from the generator of the Minkowskian past domain of dependence of
{τ = 1, y⃗ ∈ B[s]} issued from the same point p on ∂B[s]. Therefore

∂D [s]⊂ {|⃗y|⩾ s−1f(s)− 1− C̃s2} . (6.14)

Now, in the scaled-back original coordinates the Minkowskian past domain of dependence of
the set

{t= s, |⃗x|⩽ f(s)}

is a truncated solid cone with vertex at (s− f(s), 0⃗), and note that s− f(s)< 0. Next, it follows
from (6.14) that the boundary of the set {t= 0}∩D−[s] lies inside the set

{|⃗x|⩾ f(s)− s− C̃s3} .

Hence {t= 0}∩D−[s] will contain a neighborhood of the origin whenever

liminf
s→0

f(s)− s
s3

=∞ . (6.15)

Whether or not (6.15) holds in general is not clear. However, we claim that (6.15) is satisfied
if the truncating section S of J̇+(p) in (6.1) is close enough to p:

Proposition 6.6. If S is close enough to p, there exists a metric as in proposition 6.5 which is
defined in a neighborhood of C S

p as in figure 8.

Proof. We continue to use ǧ-normal coordinates.We can carry out the hand-crank construction
as in figure 4, with Σ there being the unit y⃗–coordinates ball within Σ1[y], and with N in
figure 4 being the part of J̇+(0) betweenΣ1[y] andΣ2[y], with the transverse free data chosen to
tend to the Minkowskian ones there as O(s2) in any finite Sobolev norm. Given any k1 ∈ N we
can find k> k1 in (6.3) large enough so that the extended solution on the green region of figure 4
tends to theMinkowski metric there, inCk1 norm, asO(s2). This shows that for small enough s,
say s⩽ š, the vacuum initial data on the unit y⃗–coordinate ball withinΣ1[y] can be extended to
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{τ = 1, |⃗y|⩽ 2}. It follows that the function f (s) in (6.14) can be chosen to be 2s, so that (6.15)
holds. One obtains a spacetime as in figure 8 with Σ̌ = Σš[x] and Σ ′ = {t= š , |⃗x|⩽ š}.

As a corollary we obtain:

Corollary 6.7. Let k ∈ N∪{∞}. For any vacuum data Ψ[{p},k] at a point p, there exists a
vacuum metric defined in a neighborhood of p realising the data.

Proof. By definition, there exists a smooth Lorentzian metric g̊ inducing Ψ[{p},k]; we
emphasise that we do not assume that g̊ is vacuum. Denote by J+(p; g̊) the causal future of
p in g̊, and by Cp the light cone of g̊ emanating from p. Let g̊ABdxAdxB be the tensor field of
signature (0,+, . . . ,+) obtained by restricting g̊ on Cp. By [13] there exists a neighborhood O
of p and a smooth vacuum metric g defined on

O ∩ J+(p; g̊) = O ∩ J+(p;g) ,

with Cp being the light cone of g, and with g inducing on Cp the same degenerate tensor as g̊.
It follows that the data induced at p by g coincide with those induced by g̊, i.e. Ψ[{p},k]. The
result follows by proposition 6.6.

7. The ‘Fledermaus construction’

We have shown in section 6 how to find a vacuum metric which realises vacuum characteristic
data Ψ[N ,k] on a hypersurface as an interior submanifold. Here we describe a construction
which realises vacuum characteristic data on two transverse vacuum characteristic hypersur-
faces N ∪N as an interior submanifold with corner in a vacuum spacetime. This should
be contrasted with theorem 2.1, which realises the data as the boundary of a spacetime with
boundary-with-corner. Not unexpectedly, the resulting metric is only uniquely defined to the
future of N ∪N . Indeed, in this section we use a ‘Fledermaus construction’ to show:

Proposition 7.1. Consider a smooth vacuum initial data on two hypersurfaces

N[0,1] ≈ [0,1]×S and N [0,1] ≈ [0,1]×S

meeting transversally at a compact submanifold S. There exists a smooth solution of vacuum
Einstein equations gwhich is defined in a neighbourhood ofN[0,1] ∪N [0,1] and which realises
the data.

Remark 7.2. The metric constructed in proposition 7.1 is uniquely determined by the charac-
teristic data on the hypersurface N̂ [0,1] ∪N [0,1] ∪N[0,1] ∪ N̂

[0,1]
of figure 9.

Proof. Let us denote by gT, where ‘T’ stands for ‘top’, the smooth solution of the vacuum
Einstein equations obtained by solving the characteristic Cauchy problem to the future of
N[0,1] ∪N [0,1] with the given data. The solution induces a set of spacelike vacuum dataΨ[S,k]
with k=∞ on S and sets of characteristic vacuum dataΨ[N[0,1],k] andΨ[N [0,1],k] on N[0,1]

and N [0,1], again with k=∞.
We view N[0,1] as a subset of a smooth hypersurface

N = [−1,1]×S ,

and we view S as the subset {r= 0} of N . We denote by Sr the cross-section {r}× S. For
r⩾ 0 the metric gT induces smooth spacelike vacuum data Ψ[Sr,k] with k=∞ on Sr.
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Figure 9. The ‘Fledermaus construction’ to embed characteristic initial data on two
transverse hypersurfaces in a vacuum spacetime.

Similarly we view N [0,1] as a subset of a smooth hypersurface

N = [−1,1]×S ,

with cross-sections {r}× S⊂ N denoted by Sr, and with induced vacuum data Ψ[Sr,k] for
r> 0.

Let

N̂ [0,1] := [0,1]×S1

be a null hypersurface meeting N transversally at S1 towards the past; see figure 9. We choose
any Isenberg–Moncrief fields (gAB,α) on N̂ [0,1] compatible with Ψ[S1,k] and we solve the

characteristic Cauchy problem to the past with data on N̂ [0,1] ∪N [0,1]. One thus obtains
a vacuum metric, say gL, where L stands for ‘left’, on the left wing of the Fledermaus .
Uniqueness of solutions of transport equations for the transverse derivatives of themetric along
N [0,1] implies that the metric gL extends smoothly gT across N [0,1]. The intersection of the
domain of existence of gL with N[−1,0] contains the hypersurface

N[−ϵ,0] := [−ϵ,0]×S⊂ N ,

which will be made-use of shortly.
A similar construction provides a smooth vacuum metric gR on the right wing of the

Fledermaus, extending smoothly gT across N [−1,0], with domain of existence containing a
hypersurface

N [−ϵ,0] := [−ϵ,0]×S⊂ N .

The three metrics gL, gT and gR match smoothly at N[0,1] ∪N [0,1], in particular also at S.
Let gB be obtained by solving the characteristic Cauchy problem to the past with data on

N[−ϵ,0] ∪N [−ϵ,0]. From what has been said so far it should be clear that the four metrics gL,
gT, gR and gB match smoothly wherever more than one is defined, and provide the desired
smooth vacuum metric g defined on a neighborhood of N[0,1] ∪N [0,1].
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8. Null hypersurfaces and spacelike gluing

It is well known [25, 43] that the existence of Killing vectors near a spacelike Cauchy surface
provides an obstruction to the Corvino–Schoen approach to spacelike gluing; see, however,
[28]. More precisely, there is an obstruction to the gluing construction based on the impli-
cit function theorem involving the adjoint of the linearised constraint operator. We show in
appendix C that an identical obstruction arises in the characteristic gluing.

In fact, the obstruction arising from Killing vectors is a local one: We shall say that there
are no local Killing vectors near S if the Killing vector equation has only trivial solutions on
all sufficiently small neighborhoods of S. Formally: every neighborhood of S contains another
neighborhood of S on which only trivial solutions of the Killing equations exist.

It might be of some interest to note that, given a submanifold J of M of any dimension
and type, the notion of absence of local Killing vectors can be defined in terms of submanifold
data Ψ[J ,k] of order k⩾ 1, For this, note that the Killing equations at J ,

(∇µXν +∇νXµ)|J = 0 , (8.1)

and their derivatives in both transverse and tangential directions to J , up to order k, evaluated
at J (e.g. (8.1) together with

∇µ∇νXρ|J = RσµνρX
σ

when k= 2), can be viewed as an overdetermined set of equations for the jets of order k over
J of a vector field X. We will say that there are no local Killing vectors at J if there exists
k⩾ 1 such that these equations have only the trivial solution. Standard arguments show that
the absence of local Killing vectors at J implies that every metric near J compatible with
Ψ[J ,k] will have no local Killing vectors near J .

We have:

Theorem 8.1. Consider two smooth vacuum metrics g1 and g2 on M and let N ⊂ M be a
hypersurface inM which is null both for g1 and g2. Let S⊂ N be a compact cross-section of
N and suppose that there are no local Killing vectors near S for g1. If g1 and g2 are sufficiently
close to each other near S in C5-topology, then there exists a smooth vacuum metric g on M
and a null hypersurface Ñ2 inM with spacelike boundary ∂Ñ2, with Ñ2 near toN \ J−(S)
(cf figure 11), so that

1. g coincides with g1 on J+(N ) \ J+(S), and
2. g coincides with g2 on J−(Ñ2) \ J−(∂Ñ2).

In particular g induces the original vacuum data Ψ[N ∩ J−(S),k] induced by g1 on N ∩
J−(S) for any k ∈ N, with the data Ψ[N ∩ J+(S),k] induced by g on N ∩ J+(S) being close
to the data induced by g2 there, and with the dataΨ[Ñ ,k] induced by g on Ñ coinciding with
the data induced by g2 there.

Remark 8.2. In theorem 8.1 it suffices to assume that the metric g1 is defined to the future of
N and g2 is defined to the past of N , as in figure 10.

Remark 8.3. In the spacelike gluing the obstruction arising from Killing vectors can be cir-
cumvented by gluing to a family of initial data which carries a set of compensating parameters;
the gluing construction chooses a member of the family. There is an obvious version of the-
orem 8.1 in such a situation, whenever a family of metrics with compensating parameters is
available; compare section 9 below. In particular one has a similar result for gluing a vacuum
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Figure 10. Before the gluing of metrics with nearby characteristic data along a null
hypersurface N .

metric g1 with a member g2 of the Kerr, Kerr–de Sitter, or Kerr Anti-de Sitter family. Note that
the condition of nearness to a member of the Kerr-(A)dS family is more severe, as compared
to the Λ = 0 case, in the following sense: nearness to Kerr can be achieved by receding in
spacelike directions for a large class of asymptotically Minkowskian initial data sets, while no
such construction is known when Λ 6= 0. Compare [18, 24, 33].

Proof. We can choose spacelike hypersurfaces Σ1 and Σ2 as in figure 10 so that the vacuum
Cauchy data (Σ1,g1,K1) and (Σ2,g2,K2), induced by the respective spacetime metrics g1 and
g2, are near to each other in a neighborhood of S in a C5 ⊕C4 topology. By [17, section 8.6]
the data (Σ1,g1,K1) and (Σ2,g2,K2) can be smoothly glued together to a smooth vacuum
data set (Σ1 ∪Σ2,g,K), so that (g,K) coincides with the original Cauchy data except for a
small neighborhood O ⊂ Σ2 of S. Solving the Cauchy problem with these data one obtains
the desired spacetime, see figure 11. The hypersurface Ñ2 is taken to be ∂D+(Σ̃2), where
Σ̃2 =Σ2 \O .

9. Gluing cross-section data to Kerr data

We turn our attention now to the question addressed in [2], of gluing two sets of cross-
section data, one of them arising from the Kerr family. For definiteness we consider the four-
dimensional case withΛ = 0, an identical construction applies for Myers–Perry metrics, or for
their Λ-equivalents.

Thus, in spacetime dimension four, let (M ,g) be the Schwarzschild metric with non-zero
mass parameter.We consider a null hypersurfaceN in (M ,g)with two disjoint cross-sections
S1 and S2, say S2 ⊂ J+(S1). On S1 we are given spacelike vacuum data Ψ[S1,k] distinct from
but close to the data induced by g. On S2 we consider the family of data Ψ[S2,k] arising by
restriction from all Kerr metrics. The goal is to find null hypersurface data which interpolate

27



Class. Quantum Grav. 40 (2023) 165009 P T Chruściel and W Cong

Figure 11. After the gluing, zoom to the gluing region; Σ̃2 is Σ2 \O .

betweenΨ[S1,k] and a sufficiently small perturbation of one of theΨ[S2,k]’s in a way such that
we can carry out the spacetime gluing of theorem 8.1. The result will be a spacetime metric
which coincides with a Kerr metric in the right-wedge D(Σ̃2) of figure 11. The difficulty is to
arrange smallness of the perturbation of a large number of transverse derivatives of the metric
at S2.

Now, there exists k0 <∞ such that characteristic data Ψ[N ,k0] which are ε-close to the
data induced by gwill lead, through the construction of proposition 6.1, to a metric g1 which is
ε-close inC5-topology to the metric g. The dimension-dependent number k0 can be determined
in principle by chasing losses of differentiability through all the steps of the construction. Here
one uses straightforward estimates for a hierarchical system of ODEs, where at each step a
linear ODE is solved for a new field in terms of the already-determined ones.

So let ϵ be a measure of the deviation of the data Ψ[S1,k0] from those induced by g.
A brute-force gluing proceeds as follows: We choose a member of the Kerr family such

that Ψ[S2,k0] is ϵ-close to the data induced by g, and has the same linearly conserved radial
charges as Ψ[S1,k0]. We find any smoothly interpolating free data on J+(S1)∩ J−(S2)⊂ N
which deviate from the Schwarzschild data by O(ϵ). We use these data in the source terms
of the transport and algebraic equations of section 5, including their transverse derivatives, to
obtain a solution of these equations on J+(S1)∩ J−(S2) which matches Ψ[S2,k0] up to error
terms of order ϵ. If ϵ is sufficiently small, theorem 8.1 applies.

The spacelike-gluing version of the more sophisticated scheme of [2], which appears to be
critical for some applications such as [28], proceeds as follows. The above argument works
in all dimensions, but what follows rests on work which assumes four dimensions; the higher
dimensional case will be addressed elsewhere [16].

It has been shown in [15] how to find linearised Bondi free data hAB so that the metric
γAB+ hAB interpolates betweenΨ[S1,k0] and one of the data setsΨ[S2,k0] at a linearised level.
One can then use these data in the source terms of the transport and algebraic equations of
section 5 to obtain hypersurface data on J+(S1)∩ J−(S2) which match Ψ[S2,k0] to order ϵ2.
The gluing then follows again from theorem 8.1. We note that the improvement from ϵ to ϵ2 is
critical for some applications, such as [28],
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The same arguments apply to metrics which are near to a four-dimensional Birmingham-
Kottler metric with higher genus at infinity and with nonzero mass, where the mass parameter
has to be adjusted to do the gluing, see [15, table 1.1].

We believe that the same scheme can be used to interpolate between data with Λ ∈ R near
Birmingham–Kottler data in any spacetime dimensions n+ 1⩾ 4, we plan to return to this in
the near future. In spacetime dimension four with Λ 6= 0 the linearised analysis of [15] applies
and, in the spherical case, the same argument will lead to the desired conclusion after checking
that the Kerr-(A)dS metrics provide the required family of compensating metrics.

Data availability statement

No new data were created or analysed in this study.

Appendix A. ACR sphere data

Here we calculate the sphere data of [2] of order two in terms of Bondi section data. Given a
cross-section S of N , by which we mean a submanifold of N intersecting all the generators
of N transversally, the field ∂r ≡ L is the field of null normals both to S and N , while L is the
field of null normals to S transverse to N . In typical applications both L and L are chosen to
be future-directed, but the choice is irrelevant for the problem at hand.

In [2] the cross-section S is chosen to be a sphere and the space-time dimension is four:
both assumptions are essential for the analysis there, compare [15].

In Bondi coordinates we can choose

L= ∂r , L= ∂u+UA∂A−
V
2r

∂r . (A.1)

This gives

Ω :=
√
− 1

2g(L,L) =
eβ√
2
. (A.2)

The sphere data of [2] further involve the fields

L̂= L/Ω and L̂= L/Ω.

First, the Ricci coefficients are defined as, for X and Y S-tangent vector fields,

χ(X,Y) = g(∇XL̂, Y) , χ= g(∇XL̂, Y) ,

ζ(X) =
1
2
g(∇XL̂, L̂) , ζ(X) =

1
2
g(∇XL̂, L̂) ,

η = ζ + d logΩ , η =−ζ + d logΩ ,

ω = D logΩ , ω = D logΩ , (A.3)

where D and D respectively denote the projection of the Lie derivative along L and L onto the
tangent space of S. The null curvature components involved in the sphere data are

α(X,Y) = R(X, L̂,Y, L̂) , α(X,Y) = R(X, L̂,Y, L̂). (A.4)

The C2-sphere data of [2] is the collection of fields

(Ω, ��g, Ωtrχ, χ̂, Ωtrχ,χ̂ ,η ,ω, Dω, ω, Dω, α,α) , (A.5)

where tr denotes the trace with respect to the metric ��g on S and the hat ·̂ above a tensor denotes
the traceless part. Leting��∇ denote the covariant derivative of themetric ��g, In Bondi coordinates
the fields (A.5) read
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Ω=
eβ√
2
, ��g= r2γ ,

χAB =
1
Ω
(rγAB+ 1

2 r
2∂rγAB)≡

1
2Ω

∂r(r
2γAB) ,

χ
AB

= −
2γABV− 4��∇(AUB) + r(V∂rγAB− 2r∂uγAB)

2
√
2eβ

, (A.6)

ηA = ∂Aβ− γABr2∂rUB

2e2β
, ω = ∂rβ , Dω = ∂2

r β , ω = UA∂Aβ− V∂rβ
2r

+ ∂uβ , (A.7)

Dω = − UAV∂A∂rβ
r

+ 2UA∂A∂uβ+UA∂AU
B∂Bβ+UAUB∂B∂Aβ− V2∂rβ

4r3
− UA∂AV∂rβ

2r

− V∂Aβ∂rUA

2r
+
V∂rβ∂rV

4r2
+
V2∂2

r β

4r2
− V∂r∂uβ

r
+ ∂Aβ∂uU

A− ∂rβ∂uV
2r

+ ∂2
uβ , (A.8)

αAC =
4γACr∂rβ

e2β
− 2r∂rγAC

e2β
+

2r2∂rβ∂rγAC
e2β

+
γBDr2∂rγAB∂rγCD

2e2β
− r2∂2

r γAC
e2β

, (A.9)

αAC = e−2β

(
r−1V��∇(A∂rUB) − 2��∇(A∂uUB) +

e2β��∇B��∇AV
r

− 2UC
��∇C��∇(AUB)

− V2∂2
r γAB
4

+ rV∂r∂uγAB− r2∂2
uγAB

)
+ α̃AC[r,r

−1,γBD,γ
BD,∂γBD,e

−2β ,∂β,UB,∂UB,V,∂V,∂uγBD,∂uβ] , (A.10)

with a polynomial function α̃AC of the arguments indicated; the explicit formula is not very
enlightening and too long to be usefully displayed. We use ‘∂’ in the arguments of α̃AC to
denote ∂r and ∂A derivatives, with ∂u derivatives indicated explicitly there.

Appendix B. Bondi coordinates anchored at S

The construction of Bondi coordinates in four spacetime dimensions starting from I is well
known [32], and generalises immediately to higher dimensions. We indicate here how to adapt
the construction to our setting, to make clear the freedom involved.

Let S be a cross-section of a smooth, null, connected hypersurface N in an (n+ 1)-
dimensional spacetime (M ,g). Let N be a null hypersurface such that N ∩N = S, with
transverse intersection. (Thus S is spacelike, with both TN and TN orthogonal to TS.) Let x̃A

denote local coordinates on S. We consider, first, Isenberg–Moncrief [44] coordinates (ũ, ũ, x̃C)
around

S= {ũ= 0= ũ} ,

and with the metric taking the form

g=
(
ũαdũ− 2dũ+ 2 ũβAdx̃

A
)
dũ+ gABdx̃

Adx̃B , (B.1)

for some fields α and βA. Here we have denoted by (ũ, ũ, x̃A) the coordinates (u,r,xA) of (4.1),
to avoid confusion with the (u,r,xA) Bondi coordinates that we are about to construct.
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Note that while the x̃A’s are local coordinates, the coordinate functions ũ and ũ are defined
globally in a neighborhood of S. The level sets of the coordinate ũ are null hypersurfaces
and we denote N := {ũ= 0} in this appendix6; we will be constructing Bondi coordin-
ates (u,r,xA) such that N = {u= 0}. The hypersurface N := {ũ= 0} is also null, but not
necessarily so the hypersurfaces ũ 6= 0. The sign of gũũ has been determined by our signature
(−,+, . . . ,+) together with the requirement that ∂ũ and ∂ũ are consistently time-oriented at S,
say future oriented.

In the Isenberg–Moncrief construction one can take the integral curves of ℓ := ∂ũ|N to be
affinely-parameterised future-directed null geodesics (in which case α vanishes on N ), then
the coordinate system above is uniquely defined up to the choice of this last parameterisation.
In order to get rid of this freedom, consider the divergence θ̃ of N defined in (2.1), where we
decorate θ with a tilde to emphasise its dependence upon the coordinate ũ. Under the rescaling
ℓ 7→ f(x̃A)ℓ we have

θ̃ =
1
2
gAB∂ũgAB 7→

f
2gAB∂ũgAB = f θ̃ . (B.2)

Assuming that θ̃ has no zeros on S, we can choose a unique function f > 0 so that, after the
above rescaling has been done, the new function θ̃ satisfies

θ̃|S =±(n− 1) , (B.3)

thus preserving the future-directed character of ℓ, or choose a unique f so that

θ̃|S = (n− 1) (B.4)

if the time-orientation of ℓ is ignored.
The field

µ :=
√

detgAB|S
defines a scalar density on S. We extend µ toN by requiringL∂ũµ|N = 0, and then we extend
it away from N by requiring L∂ũµ= 0. Still denoting by µ the field so extended, since ∂ũ and
∂ũ commute we find that L∂ũL∂ũµ= 0, which further implies

L∂ũµ= L∂ũµ= 0

throughout the domain of definition of the coordinates.
We define a function r= r(ũ, ũ, x̃A) by the formula

r1−n :=
µ√

detgAB
. (B.5)

Note that

r|S = 1 . (B.6)

We wish to replace the coordinates (ũ, ũ, x̃A) by

(u= ũ,r,xA = x̃A) .

Using monotonicity and the implicit function theorem, we see that this is possible on the set
where

0 6= ∂ũr=
r

2(n− 1)
gAB∂ũgAB . (B.7)

6 We caution that this differs from the notation in section 4, where N was chosen to be {ũ= 0}.
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This is directly related to the divergence θ̃ of N :

∂ũr
∣∣∣
N

=
rθ̃

(n− 1)
. (B.8)

We thus obtain a well behaved coordinate system (r,xA) on N , and (u,r,xA) near N , unless
r becomes zero, which happens e.g. at the vertex of a light cone, or unless θ̃ acquires a zero.
Hence we restrict ourselves to the subset of N where r> 0 and |θ̃|> 0.

Similarly to (B.7) we have

∂r
∂ũ

=
r

2(n− 1)
gAB∂ũgAB ≡

rθ̃
(n− 1)

, (B.9)

where θ̃ is the expansion of the level sets of ũ.
We note that the vector field ∂ũ is uniquely determined on S by the requirement that ∂ũ

is orthogonal to TS and satisfies g(∂ũ,∂ũ)|S =−1. Hence θ̃|S is uniquely determined by the
requirement (B.3) and by S, without the need to introduce the null transverse hypersurface N .
The function θ̃|S is sometimes called the null mean curvature of S along ∂ũ.

The change of coordinates (ũ, ũ, x̃A) 7→ (u,r,xA) brings the metric to the form

g= ũαdu2 − 2du(∂uũdu+ ∂rũdr+ ∂Aũdx
A)+ 2 ũβAdx

Adu+ gABdx
AdxB , (B.10)

which can be rewritten using the Bondi parameterisation

g=−V
r
e2βdu2 − 2e2βdudr+ r2γAB

(
dxA−UAdu

)(
dxB−UBdu

)
, (B.11)

where it is assumed that ∂r and ∂u are consistently time-oriented at S.
From (B.4) and (B.7) we find

∂ũr
∣∣∣
S
=±1 (B.12)

if and only if (B.3) holds. Assuming the associated parameterisation of the generators of N
we obtain

∂(r,u,xA)
∂(ũ, ũ, x̃B)

∣∣∣
S
=

 ±1 ∂ũr 0
0 1 0
0 0 δAB

 . (B.13)

Hence

∂(ũ, ũ, x̃B)
∂(r,u,xA)

∣∣∣
S
=

 ±1 ∓∂ũr 0
0 1 0
0 0 δBA

 . (B.14)

This leads to the following form of (B.10) at S

g|S =∓2du(−∂ũrdu+ dr)+ gABdx
AdxB , (B.15)

which together with (B.9), after changing u to −u if necessary, shows that at S it holds

UA|S :=−r−2g(∂u,∂A)
∣∣
S ≡ γABU

B
∣∣
S = 0 , β|S = 0 , V|S =− 2θ̃

n− 1
. (B.16)

Summarising, we have proved:

Proposition B.1. Let N be a null hypersurface with θ > 0 and suppose that N contains
a smooth submanifold S which meets every generator of N transversally and precisely
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once. There exists a unique coordinate system near N in which the metric takes the Bondi
form (B.11) with N = {u= 0} and in which

r|S = 1 , β|S = 0 . (B.17)

In this coordinate system we have

UA|S = 0 , θ̃|S = (n− 1) , V|S =− 2θ̃
n− 1

, (B.18)

where θ̃ is the expansion of {u= 0}with respect to the affinely-normalised geodesic null vector
field ∂ũ, and θ̃ is that of the level sets of ũ with respect to the Isenberg–Moncrief geodesic vector
field ∂ũ. □

The coordinates of proposition B.1 will be referred to as Bondi coordinates adapted to N
anchored at S.

Remark B.2. The proof of proposition B.1 applies word-for-word in spacetimes in which N
is a smooth boundary, or in spacetimes with a boundary consisting of two null hypersurfaces
N and N intersecting at S, in which cases the coordinates are only defined on one side of
N .

Remark B.3. The Isenberg–Moncrief construction can be carried-out using any parameterisa-
tion of the generators ofN , not necessarily affine. Likewise our construction above applies for
any parameterisation of the generators, which shows that there is a lot of residual coordinate
freedom in the Bondi form of the metric near a null hypersurface. This explains in particular
why the Bondi hypersurface data of section 5 have more freedom than the Isenberg–Moncrief
hypersurface data of section 4.

More generally, whether or not (B.3) holds we have

∂(r,u,xA)
∂(ũ, ũ, x̃B)

=

 ∂ũr ∂ũr ∂r
∂x̃B

0 1 0
0 0 δAB

 , (B.19)

so that

∂(ũ, ũ, x̃B)
∂(r,u,xA)

=

 (
∂ũr

)−1 −
(
∂ũr

)−1
∂ũr −

(
∂ũr

)−1
∂x̃Ar

0 1 0
0 0 δBA

 , (B.20)

and (B.10) reads

g= ũαdu2 −
2
[
dr− ∂ũrdu− ∂x̃ArdxA

]
∂ũr

du+ 2 ũβAdx
Adu+ gABdx

AdxB

=
(
ũα+ 2

∂ũr
∂ũr

)
du2 − 2drdu

∂ũr
+ 2

(
ũβA+

∂x̃Ar
∂ũr

)
dudxA+ gABdx

AdxB . (B.21)

This, together with (B.8) and (B.9), after changing u to −u if necessary, shows that

β|N =
1
2
ln
n− 1

rθ̃
, UA|N =− ũ

r2
βA−

(n− 1)

r3θ̃
∂x̃Ar ,

V|N =− 2r2θ̃
n− 1

− ũαr2θ̃
n− 1

+
r2ũ2gABβAβB θ̃

n− 1
+
n− 1

θ̃
gAB∂x̃Ar∂x̃Br . (B.22)
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In particular we see that r= u in theorem 2.1 is possible if and only if

∂x̃Ar
∣∣
S = 0 , θ̃

∣∣
S = 0 . (B.23)

Appendix C. A variational identity

The aim of this appendix is to show that the restriction of spacetime Killing vectors to a hyper-
surface lies in the kernel of the adjoint of the linearisation of the vacuum constraints operator.
This shows in particular that spacetime Killing vectors provide obstructions to characteristic
gluing based on the implicit function theorem.

Let g be a solution of the vacuum Einstein equations with a cosmological constant Λ ∈ R.
Let Σ be a hypersurface of any causal type, possibly with boundary, and let λ 7→ g(λ) be a
family of Lorentzian metrics along Σ depending differentiably on a parameter λ such that
g≡ g(0). The variational operator δ is defined by evaluating ∂

∂λ at λ= 0. We set

Eαβ :=−
√

|g|
16π

(
Gαβ +Λgαβ

)
, (C.1)

παβ :=
1

16π

√
|g| gαβ , (C.2)

Aλ
αβ := Γλ

αβ − δλ(αΓ
κ
β)κ , (C.3)

where Gαβ is the Einstein tensor and Λ the cosmological constant. The following variational
identity has been proved in [19],7 see equation (2.27) there:

(LXA
λ
αβ)δπ

αβ − (LXπ
αβ)δAλ

αβ =−2XµδEλ
µ +XλEαβδgαβ

+
1

16π
∂µ

{
δ
[√

|g|(∇µXλ −∇λXµ)
]
−
√
|g|(∇µδXλ −∇λδXµ)

}
+ ∂µ

{
XλπαβδAµ

αβ −XµπαβδAλ
αβ

}
. (C.4)

Integrating (C.4) over Σ, assuming that the integral converges, and that the metrics g(λ) coin-
cide with g near the boundary of ∂Σ, if any, one findsˆ

Σ

(
(LXA

λ
αβ)δπ

αβ − (LXπ
αβ)δAλ

αβ

)
dSλ =−2

ˆ
Σ

XµδEλ
µdSλ . (C.5)

Let Nλ be any field of conormals to Σ, thus δEλ
µ enters this identity only through the

components δEλ
µNλ. The equations Eλ

µNλ = 0 are the constraint equations on Σ, and (C.5)
expresses thewell-known fact that, for spacelikeΣ’s, the constraint equations provide an action
principle for the Einstein equations. This remains true for characteristic hypersurfaces in view
of (C.5), but is perhaps somewhat less known; compare [29, 38].

The operator δEλ
µNλ is the linearisation of the constraint equations on Σ acting on linear-

ised gravitational initial data on Σ. Integration by parts reexpresses the right-hand side as the
adjoint operator of the linearised constraint equations acting on X.

Now, Killing vectors in space-time annihilate the left-hand side of (C.5). It follows that
Killing vectors of the spacetime metric are in the kernel of this operator, in the following

7 The reader might notice that [19] uses a non-standard convention on the sign of the cosmological constant, opposite
to the one here.
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sense: if X is a vector field satisfying the Killing equations and their first derivatives on N ,
then ˆ

Σ

XµδEλ
µdSλ = 0 (C.6)

for all variations δgµν as described.
It is known, for spacelike Σ’s, that spacetime Killing vectors exhaust the kernel [43]: the

left-hand side of (C.6) vanishes for all variations as above if and only if X is a vector field
satisfying the Killing equations and their first derivatives on N . Our gluing results in this
paper suggest strongly that this remains true for characteristic hypersurfaces, but this remains
to be seen; compare [21].
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[16] Chruściel P T, Cong W and Gray F 2023 Characteristic gluing with Λ 2. Linearised Einstein

equations in higher dimensions (in preparation)
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[18] Chruściel P T and Delay E 2009 Gluing constructions for asymptotically hyperbolic manifolds with

constant scalar curvature Commun. Anal. Geom. 17 343–81
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