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Abstract

We establish several results on gluing/embedding/extending geometric struc-
tures in vacuum spacetimes with a cosmological constant in any spacetime
dimensions d > 4, with emphasis on characteristic data. A useful tool is
provided by the notion of submanifold-data of order k. As an application
of our methods we prove that vacuum Cauchy data on a spacelike Cauchy
surface with boundary can always be extended to vacuum data defined beyond
the boundary.
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1. Introduction

In a recent series of pioneering papers, Aretakis et al [1-3] presented a gluing construction
for characteristic initial data for four-dimensional vacuum Einstein equations. The purpose of
this paper is to show that related gluing constructions can be done using a spacelike gluing
a la Corvino [25]. While the construction in [1-3] uses the structure of the four-dimensional
Einstein equations in a substantial way, our approach applies to any dimensions. As a bonus,
we allow a non-vanishing cosmological constant. The resulting spacetimes are essentially
identical, but the intermediate steps are different.

As such, the general relativistic gluing problem can be viewed as the following question:
given two spacetimes, solutions of vacuum Einstein equations, can one find a third one where
non-trivial subsets of each of the original spacetimes are isometrically included?

A version of this can be formulated at the level of spacelike Cauchy data: consider a man-
ifold ¥ and two vacuum initial data sets (X, g1,K;) and (X,,g2,K>) defined on overlapping
subsets 3; and Y, of X. Can one find a vacuum data set (g, K) on Y which coincides with
the original ones away from the overlap, or away from a small neighborhood of the com-
mon boundary? A positive answer to this has first been given by Corvino [25] in a restricted
setting, and generalised in [17, 26]; see [11, 14] for further references. The problem is well
understood for data sets which are not-too-far-away from each other in the overlap: the gluing
can be performed if the spacetimes (.#},g;) and (.#>,g,), obtained by evolving (¥,g1,K;)
and (¥, g2,K>), have no Killing vectors near the overlapping region. Equivalently, the set of
Killing initial data on the overlap is trivial.

Note that a gluing of overlapping spacelike initial data leads to a gluing of spacetimes in
the following sense: the domains of dependence of X; \ X, and 3, \ X, within the spacetime
obtained by evolving the data on ¥, are isometric to the corresponding domains of dependence
in the original spacetimes (.#},g;) and (.#,,g>), see figure 1(a).

An essentially identical construction applies with >; and ¥, lying on opposite sides of a
common boundary, 0%, = 0%, see figure 1(b).
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(a) Gluing overlapping spacelike initial data sets.
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(b) Gluing touching spacelike initial data sets.

Figure 1. Spacelike gluings. The metric is smooth and vacuum everywhere, identical to
the original one in the left (yellow) and right (green) regions, the metric in the middle
(violet) region interpolates smoothly between the original ones.

One is then led to the question, whether something similar can be done using null initial
data'. For instance, consider a smooth hypersurface .#” and two characteristic data sets on
overlapping subsets .41 and .45 of 4. Suppose that the data on both A4 C .# and A5 C 4,
arise by restriction from vacuum spacetimes (.#),g;) and (.#>,g,). Can one find a vacuum
spacetime (. ,g), with 4" C ., so that the data on .4, arising by restriction from g, coincide
with the original ones away from the overlapping region?

! Classic works concerned with characteristic spacetime gluing include [4, 35, 37]. While [4, 35] focus on lightlike
shells, the point of our constructions is to avoid occurrence of such shells.
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Figure 2. Gluing construction of [2].

Here the situation is somewhat different, as a well-posed characteristic initial-value problem
requires either two transverse initial-data surfaces .#” and .4 (not to be confused with the
hypersurfaces .4{ and .45 considered above and in what follows, which are included in a
single smooth hypersurface .4/”), or a light cone. This makes it clear that an answer in terms
of characteristic initial data on a single smooth hypersurface is not possible. However, given
k € N, one can complement the characteristic initial data on .47 and .45 with information about
k derivatives of the metric in directions transverse to .#] and .#5; such transverse derivatives
can be obtained by solving transport equations (i.e. ODE’s along the generators) on .41 and .45
from data on cross-sections S; C . and S, C .#, after some gauge choices have been made.
Denoting by W[.41, k| a set of characteristic data on . 4] together with transverse derivatives up
to order k € NU {00}, and by ¥[.43,k]| the set of such data on .43, one can ask whether there
exist data W[4 k] on .4” which coincide with the original data on the overlap region.

Explicit parameterisations of the data W[.4#" k] are presented in sections 4, 5, and in
appendix A. The question of optimal differentiability conditions of the fields parameterising
W[4, k] is delicate, and for simplicity we will require the existence of local coordinate systems
near .4 in which all the functions parameterising ¥[.4", k] are smooth on .4".

In their landmark work, Aretakis, Czimek and Rodnianski have given a positive answer
to the following variation of the gluing question, in a near-Minkowskian setting, illustrated
in figure 2. Namely, supposing that W[_47, k] are close to W[.45,k| on the overlap region, one
asks:

Question 1.1. Do there exist characteristic data \II[J%, k] on a null hypersurface N3, obtained
by slightly moving .45 in (.#5,8), and characteristic data \I/[Q/T/7 k], on a null hypersurface
N connecting A1 \ 45 and JVZ, which coincide with W[_4] \ .A43,k] on A1 \ .45 and with the
data W[5, k] on A3?

Aretakis et al [1-3] assume that .4 has the topology of a light cone in four-dimensional
Minkowski spacetime and that kK =2. The overlap is taken to be far away from the tip of the

light cone, so that regularity issues at the tip are irrelevant. They show that there exists a ten-
parameter family of obstructions to the gluing. In the case where the data ¥[.43,2] arise from
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a null hypersurface in a Kerr space-time, they show that one can get rid of the obstructions by
adjusting the mass and angular momentum of the Kerr metric. In [28] a striking extension of
the method is presented, where the obstructions are reduced to a single one, namely a lower
bound on the mass of the Kerr extension.

In[1] itis also shown how to make a Corvino-type spacelike gluing using the characteristic
gluing.

The aim of this work is to show that spacelike gluings can be used to construct space-
times with properties similar to those resulting from the construction of [2]. In the approach
described here the hypersurface .4, of question 1.1 is again obtained by moving slightly .45
within (.#,g,), but we give up the requirement that .4; and ,/172 are subsets of the same
smooth null hypersurface in the final spacetime. Indeed, in our construction the null hypersur-
face extending smoothly .#] in the new spacetime is obtained by moving N5 in an auxiliary,
suitably constructed, nearby vacuum metric; see figure 11 below. Our method does not provide
a null gluing, but a variation thereof; hence the title of this paper.

A useful tool in this context is provided by submanifold data of order k, introduced in
section 3. We provide a simple parameterisation of vacuum characteristic data on null hyper-
surfaces and on submanifolds of codimension-two in section 4 using coordinate systems intro-
duced by Moncrief and Isenberg [44]. A second such parameterisation is provided in section 5
using Bondi coordinates. In section 6 we use a ‘hand-crank construction’ to show that vacuum
characteristic initial data, or vacuum spacelike data on a submanifold of codimension 2, of any
order can be realised by embedding as an interior submanifold of a smooth vacuum space-
time. As Corollaries we obtain that any spacelike general relativistic vacuum Cauchy data on
a manifold with smooth boundary can be extended to a larger vacuum initial data set, where
the original boundary becomes an interior submanifold (cf theorem 6.4 below; compare [5,
10, 27, 41, 48, 49] for similar results under restrictive conditions), and that any vacuum data
U[{p},k| at a point p can be realised by a vacuum metric (cf corollary 6.7). In section 7 we use
a ‘Fledermaus construction’ to show that vacuum characteristic initial data on two transversely
intersecting hypersurfaces can likewise be realised by embedding as an interior submanifold
with corner of a smooth vacuum spacetime. In section 8 we show how to carry out a variation
of the characteristic gluing using spacelike gluing. We apply this result in section 9 to glue two
sets of cross-section data, one of them arising from the Kerr family. In appendix A we show
how the sphere data of [2] relate to our codimension-two data in Bondi parameterisation. In
appendix B we show existence of a preferred, unique set of Bondi coordinates associated with
anull hypersurface .4 with a cross-section S. In appendix C we show, by quite general consid-
erations, that spacetime Killing vectors provide an obstruction to certain gluing constructions;
see remark 8.3 and section 9 below for further comments on this.

Throughout this work ‘vacuum’ means a solution of the vacuum Einstein equations with a
cosmological constant A € R in spacetime dimensionn+ 1 > 3+ 1.

2. The existence theorem for two null hypersurfaces intersecting transversally

In what follows we will need an existence theorem for the characteristic Cauchy problem,
and the aim of this section is to review a version thereof. This allows us also to introduce our
notations.

Let .4 be a smooth null hypersurface in an (n+ 1)-dimensional spacetime (.#,g).
Introduce a coordinate system (u,r,x*) in which .4 = {u = 0} and in which 9, is tangent
to the null geodesics threading .4, and with g(9,,04 )|+ = 0.
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In this section, for consistency with [20] we write g to denote the restriction of g,,,, to .4,
also referred to as the trace of g, on A .2 The trace should not be confused with pull-backs:
the pull-back to {u = 0} of a tensor field A, du” is zero, while the trace of A,,,du” to {u = 0} is
the tensor field A, |,—odu? defined along {u = 0}, which vanishes if and only if A, |,—0 = 0.

On A let

1

0= 5gABargAB 2.1
be the divergence scalar, and let
1._ 1
OAB = EargABf ﬁegAB (22)

be the trace-free part of %&gA - also known as the shear tensor. The vacuum Raychaudhuri
equation,

8,9—59+|U|2+%=0, (2.3)
where

o> = 04805, 04 =550uc, (2.4)
and

K =Thlu=o 2.5)

(see [12, appendix A] for a collection of explicit formulae in adapted coordinates) provides on
A a constraint equation for the family of (n — 1)-dimensional metrics

rs EAB(r,xC)dxAde .

The geometric meaning of « is that of the connection coefficient of the one-dimensional bundle
of tangents to the null generators of .4, viewed as a bundle along each of the generators.
Indeed, under a change of coordinates (r,x4) — (#(r,x),# = x*) we have

P T or . 1, _ | B or
O 0:= EgABaigAB = 679’ OAB > OAB = Eaf‘gAB - ﬁagAB = 57048 (2.6)
and the Raychaudhuri equation becomes
o < 62
8;9—R9+|(7|2+—1=0, 2.7)
n—
with
or or 0*r
S R=—Kk+t—75- 2.8
PR T aron @9
The vanishing of « is equivalent to the requirement that r is an affine parameter along the
generator.

We are ready now to pass to the problem at hand. Consider two smooth hypersurfaces
A and A in an (n+ 1)—dimensional manifold .2, with transverse intersection at a smooth
submanifold S. We choose adapted coordinates (u,u,x*) so that .4 coincides with the set
{u =0}, while ./ is given by {u =0}. We suppose that .#"=1x S and 4 =1x S, where

2 However, we will not do this in the remaining sections, hoping that the domains of definition will be clear from the
context. Nevertheless, we will consistently use the boldface symbol g for the spacetime metric defined on open subset
of spacetime, and g (or g in this section) for the metric restricted or induced on submanifolds.
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I and [ are intervals of the form [0, p) for some p € RT U {co}, possibly with distinct p, with
the coordinate u ranging over [ and u ranging over I.

We wish for the restriction g, of the metric functions g,,,, to the initial surface NUN
to arise from a smooth Lorentzian spacetime metric. This will be the case if g, is nowhere
vanishing, if u — g,5(u,-) is a family of Riemannian metrics on {u} x S C ./, similarly for
u—gap(u,-) on {u} xS C A, and if g, is smooth on .4#" and 4" and continuous across
S =" N . The hypothesis that .4 and .4~ are characteristic translates to

guu|iEOEgMA|ia ggg|A/EOEgEA‘/V (29)
We therefore impose the following conditions on S:

limgag| y = lim gap| s, (2.10)

u—0 u—0

lim guu|JV = lim guu|JV s 2.11)

u—0 "~ u—0"

limguly = 0, limguly =0, (2.12)

u—0 u—0 "~ T

lim guu|,/V =0, Ilim guu|k/V =0. (2.13)

u—0 u—0

To avoid ambiguities, we will denote by _4 the function x associated with the hypersurface
A; similarly for x_y, 6_y, etc. We choose the time-orientation by requiring that both d, and
0, are future-oriented at S. We have the following [20]:3

Theorem 2.1. Let there be given functions (glw,/f) on N UN, smooth up-to-boundary on
N and N, such that

g |y dxtdx” =g, (du)* +2g,,dudu + 23, dudx* + g, zdx'dx®, (2.14)
8| dxtdx” =3, ,(du)® + 28, dudu + 23, dudx* + g, pdr*dx® (2.15)
with A = {u=0} and A = {u = 0}. Suppose that g,,, < 0, that (2.10)~(2.13) hold, and that

DuBuuls = 2(0u8uu — Zuulin)Is ( = ILls= les) ; (2.16)
OuBuuls = 2(0u8y — Buutin) s ( = Tuls= HMS) ~ (2.17)
If the Raychaudhuri equation holds both on A and N, i.e.

92
—00.4 +EyOy —|ou|? — ”l =0on.N, (2.18)

u "

0%y
—auew+we,y—|aw\2—;1 =0on.A, (2.19)

N T RO N "

then there exists a smooth metric defined on a neighbourhood of solving the vacuum Einstein
equations to the future of U A and realising the data (g,,,,,x) on N UN.

Remark 2.2. The existence of a solution in a one-sided neighborhood of S has been established
in the pioneering work of Rendall [45] in spacetime dimension n+ 1 =4, and in [12] in all
higher dimensions. Our statement points out that a solution exists in a one-sided neighborhood
of /U9, 22,23, 309, 46].

3 We take this opportunity to point out two annoying misprints in [20], corrected here: in equation (40a) there the
left-hand side should be g|n,, and in equation (40b) the left-hand side should be g|, .

7
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Remark 2.3. The maximal globally hyperbolic solution is uniquely determined by the data,
up to isometry. This can be seen by first noting that the local solution is defined uniquely,
up to isometry, by the data listed; see [42] for an extensive discussion. Choosing a spacelike
Cauchy hypersurface within the domain of existence of the coordinate solution, one can appeal
to the usual Choquet—Bruhat—Geroch uniqueness theorem for the spacelike Cauchy problem
to conclude. U

Remark 2.4. Rendall [45] requires that x = 0 and that the coordinates are solutions of the
wave equation, [,x* = 0. The Raychaudhuri equations (2.18) and (2.19) are then solved using
a conformal ansatz g, = ¢>y4p, With y4p being freely prescribable on .4 U4 subject to
continuity at S. These conditions determine the metric functions g, in terms of the free data
uniquely up to the choice of

(guy ¢7 au¢a agd)a CA) |s )

where (4 is the torsion 1-form defined as follows: Assuming g,,|s is negative we set L =
v—2g" 0, and L = +/—2g" 0, along A" U, then (4 on S is defined as

1 1
= Eg(vAL»L)’s = ng(ﬁ,,gﬂA - azguA)|s‘ (220)

Note that in our formulation of the characteristic initial value problem the torsion covector can
be calculated from the remaining data in theorem 2.1, as needed for Rendall’s version of this
theorem. O

3. Submanifold data

Let .# be an (n + 1)-dimensional manifold. Recall that, for k € NU {cc} and p € .#, the kth
jet j,’jA at p of a tensor field A, or of a function A, is the collection of all partial derivatives of
A up to order k at p. We also recall that this notion is coordinate-independent, in an obvious
sense: given a representative of jl'ﬁA in some coordinate system, we can determine j,’jA in any
other coordinate system by standard calculus formulae.

Let J be a smooth submanifold of .#. For k € NU {co} we define submanifold data of
order k as the following collection of jets defined along J

V[T k| = {jf;g;va €J}, 3.1

where we further assume that the jets arise by restriction to 7 of jets of a smooth Lorentzian
metric g, defined in a neighborhood of 7. Equivalently, U[7,k| are those sections over J
of the bundle of jets which are obtained by calculating the jets of a spacetime metric defined
near J and restricting to 7. Or in yet equivalent words: an element of W[ 7, k] is obtained by
taking a Lorentzian metric defined in a neighborhood of 7, calculating all its derivatives up
to order k, and restricting the resulting fields to 7.

We have assumed for simplicity that all the fields occurring in W[ 7, k| are smooth, though
one could of course consider more general situations.

It should be clear that an element of ¥[.7,k] can always be extended to a smooth metric
defined in a neighborhood of J by using a Taylor expansion with a finite number of terms if
k is finite, or by Borel summation [7, 8] if k = oo, with the jets of the extended field inducing
the original jets on [J. Such an extension will be called compatible.

Since a field g,,,, restricted to J already carries information about its derivatives in direc-
tions tangent to 7, for k > 1 the new information in W[ 7, k] is contained in the derivatives in
directions transverse to 7.
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As a special case consider a hypersurface .. An equivalent definition of W[, k] is obtained
by choosing a smooth vector field X defined in a neighborhood of ¥, transverse to X, and
setting

U4 = ((%0'gw) ) (3.2)

0<i<k
Given another smooth vector field Y transverse to X2, the collection (((‘,fy)"gw) |Z) can
0<i<k
be rewritten in terms of (((fx)’ gw) |E) , and vice-versa.
0<i<k

We will say that U[7, k] is spacelike if only metrics g,,,, with spacelike pull-back to J are
allowed in (3.1), similarly for timelike, characteristic, etc.

The submanifold data ¥[J,k] will be called vacuum if the derivatives of the metric up
to order k satisfy the restrictions arising from the vacuum Einstein equations, including the
equations obtained by differentiating the vacuum Einstein equations in transverse directions.
The structure of the set of vacuum jets is best understood by choosing preferred coordinates.
For example, in normal coordinates at a point p the first derivatives of the metric vanish and the
second derivatives are uniquely determined by the Riemann tensor at p. In these coordinates the
set of vacuum jets of second order is a subspace determined by a set of simple linear equations.

As another example, let X be again of codimension-one, and for k > 2 consider the set of
vacuum data U[X, k] such that g, induces a Riemannian metric on 3. Then every element
of WU[X, k| can be equivalently described by the usual vacuum general relativistic initial data
fields (g, K), where g is a Riemannian metric on X, K represents the extrinsic curvature tensor
of X, with (g, K) satisfying the (spacelike) constraint equations. Indeed, one can then introduce
e.g. harmonic coordinates for g,,,,, and algebraically determine all transverse derivatives of g,,,,
on Y. in terms of (g, K) and their tangential derivatives. In this case the introduction of the index
k is clearly an overkill. However, we will see examples where each k adds further information.

As a further example, consider two hypersurfaces .#” and .4 in .# intersecting transvers-
ally at a joint boundary

S=A4NA,

and consider vacuum submanifold data W[4 U 4" k] such that .#” and .4 are characteristic
for g,,,,, with the null directions along .#” and .4 being orthogonal to S. Set

[N k] = {jrga.jyk.p €N}, (3.3)

where g4pdx*dx® is the tensor field induced on .4 by g, dx*dx”, with & as in (2.5) (trans-
forming as in (2.8)), and with the data satisfying the Raychaudhuri equation and its transverse
derivatives up to order k. The collection (3.3) will be referred to as reduced characteristic

data of order k on A", It follows from remark 2.4 that, for k > 1, vacuum characteristic data
WA U k] can be replaced by a set

B[N ,0]UD[A,0]UTS,1] (3.4)

together with the compatibility conditions and constraints described in theorem 2.1. This last
theorem also shows that every vacuum set W[4 U 4 k| can be realised as the boundary of
a manifold-with-boundary-with-corner carrying a smooth vacuum metric. Here the index & is
again an overkill for k > 1.

It is sensible to enquire about the minimum value of k which makes sense in the context
of Einstein equations. A first guess would be to take k > 2, since the equations are well posed
in a classical sense when k > 2. However, some of the equations have a constraint charac-
ter, involving two derivatives in tangential directions but only one in transverse directions. In

9
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view of our hypothesis, that all the fields are smooth in tangential directions, an appropriate
condition appears to be k > 1.
In the next sections we will:

1. Provide a simpler description of vacuum characteristic data ®[.4",k].

2. Show that a class of vacuum characteristic data ®[.4", k] can be realised by a hypersurface
inside a smooth vacuum spacetime.

3. Show that vacuum spacelike data U[S, k] on a submanifold S of codimension two can be
realised by a submanifold inside a smooth vacuum spacetime.

4. The Isenberg—Moncrief parameterisation

A smooth submanifold S of a smooth null hypersurface A4~ C .# will be called a cross-section
of 4 if every generator of .4 intersects S precisely once. The aim of this section is to provide
a simpler description of characteristic data of order k on a hypersurface .4#” with cross-section
S, using coordinates which are often referred to as Gaussian null coordinates. As these coordin-
ates have been introduced by Moncrief and Isenberg [44], we will refer to them as Isenberg—
Moncrief coordinates; IM for short. In these coordinates the metric reads*

g, dx” =2 (—du + uadr + uBadx*) dr + gagde* dx®. 4.1

We let .4 be the hypersurface {u =0}, with r being a coordinate along the generators
of .#". The Einstein equations for the metric (4.1), in all dimensions, can be found in [34,
appendix Al, after replacing the coordinates (u,r) of [34] with our (r, —u).

There are actually two choices for ./ in the coordinates (4.1): as {r =0} or as {u =0},
since both these hypersurfaces are null for the metric (4.1). The reader is warned that our
choice here leads unfortunately to confusions with the usual notation u for a coordinate whose
level sets are null, as is the case for Bondi coordinates: we emphasise that the zero-level set of
u here is null, but the remaining level sets are not, in general. On the other hand all the level
sets of r are null for a metric of the form (4.1).

One can always adjust the Isenberg—Moncrief coordinates so that « vanishes on .4, but
this might not be convenient in general and will not be assumed in this section.

We shall write 8 := g48 85 and 3 - 8 := g*8 348, where g"? is the inverse metric to g4z.

In the coordinate system as in (4.1) the key data on .4/ are (gap,) subject to the
Raychaudhuri equation, which for the metric (4.1) reads

1 1 1
0=—58"0gas+ 88" (0,8a8)0rgcp + 5 &P 0,88 (4.2)
2 4 2 %
(see [34, appendix A], equation (77) with their r = 0). We will refer to the pair (gag, «) as the
Isenberg—Moncrief data on 4. Note that if 0 = % 280,845 has no zeros on .4/, the field a can
be determined algebraically in terms of g4z and derivatives of g4 tangential to .4” using (4.2).

Remark 4.1. It might be of interest to clarify how the Isenberg—Moncrief parameterisa-
tion (4.1) of the metric fits with theorem 2.1. Either by a direct calculation, or by compar-
ing (2.18) with (4.2) one finds

4Our r is the same as Isenberg—-Moncrief’s ¢ and our u is the negative of Isenberg—Moncrief’s x3, see [44,
equation (2.8)].
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04|J1/ =R . (4.3)
The constraint (2.17) is trivially satisfied, while (2.16) reads
OZ|S =Ry, (44)

consistently with (4.3). O

In Isenberg—Moncrief coordinates the following holds:

1. The equation R,4| 4 =0 provides a linear ODE for 34 along the generators of .4; as
already mentioned, such ODEs will be referred to as transport equations along ./ . Indeed,
in vacuum it holds that [34, equation (79)]

OerA

1 1
= —Dya+ EarﬁA + Z/BAchargBC — D (8% 0rgm1c)

1
o [ (D500 + 0.0+ 200,50
- 0,(uBa) - {—u (B - B) + 20,0}

—2D4(0u) + 0u(B°Drgca) +2u" 0, (2 B°Diafip))
- %chauch x {(uﬂ - B—20)0,(uBs)
+ 2D — 3°0,8ca — 2uB Dy By }
— 20, (Ba) — 2u(8u)0uf3a — D { 87 0u(upa) }
+ 2gCDDDD[A Be) — §%€(0uB8)0r8ca
— 850, (uBp) x { — (up - B—20)0u8ca — DcPa
— Bed(uBn) + uBch dugea |

+85(ugca) x {28p0u(uc) + 2Dpo+ 0,35 — 2u3° Dy By }} ; 4.5)

where Dy is the covariant derivative operator associated with the metric g45. This equation
at u =0, together with 34|s and the IM data, determines 54 uniquely along .#". Note that
only the first line of the right-hand side survives on .4/, but we reproduce the relevant
Einstein equations here and below in whole as the overall features of the remaining terms
in the equations are relevant for the induction argument below.
Equations (5.10)—(5.13), together with the equations obtained by differentiating (5.10)—

(5.13) transversally to .4, will be referred to as the transport equations along N .

2. The vacuum equation Rag| y = —%AgAB provides a linear transport equation for
0.gas- Indeed, we have [34, equation (82)]

1
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1
Rap = 0,0,848 + 0,848 + Rap — D4 Bp) — EﬁAﬂB
1
— 8" (0ugp(a) Orgpyc + 1 {(¢°0rgcp)Ougas + (8" 0ugcp)0r8an }

- g x | —2a02gap + Dc(B0ugan)
1
+ E(gCDaugCD) {(up-B—20)8uga5 + 2D Bp) }
- Z(aua)augAB + u”! {&4(”2/3 : 5)}8143143
+up - B8 +20,{Dap)}
+2B40uBp) + u(9uB4) 0B + uB" B (0ugar) Ougnr
—2B{80u(uBa) } Ougr)c — 28" (DpBa) ugr)c

— 8P B B—20a)(0ugca)Ougsp | - (4.6)

where R4p is the Ricci tensor associated with g4p. This equation at u =0, together with
0u8ass and the field 84| 4 determined in point 1., defines now uniquely 9,845/ s -
3. The equation R,,|_» = —2(';%31)/\, where [34, equation (78)]

1 1 1 1
R, = —20,a+ ZgCAgBD<argCD)6MgAB - EgABauargAB - 504 gABaugAB + EﬁAﬁA

-+ g X | — 2850[ — %gABaugAB . {28,,04 — ﬂDau(MﬂD)}

+ 80,85 + 0.,{ %0 (uBp) } + &' Da(9uB5) | . 4.7

determines now algebraically 9,«/| 4, as well as any derivative of 9,/ 4 in directions tan-
gential to 4",

4. The transverse derivative J,04|_+, as well as the derivatives of 0,5, + tangential to .4,
are now obtained from the equation R4 | 4 = 0, where [34, equation (81)]

1 1
Ry = —ZﬁAchauch —0ufa+ EﬁBaugAB —Dps (8%0ugp)c)

1
+ g X | — 05 B+ O (B%0ugas) + 5(8@@8@) (—0uBa + B°0ugas) | - (4.3)

One can now consider the equations obtained by successively applying 8, > 1, to (4.6)—(4.8)
to determine all transverse derivatives of g4 on .4 by first order linear transport equations,
whose solutions are determined uniquely by their initial or final data, and all transverse deriv-
atives of v and B4 on .4 from linear algebraic equations.

We have therefore proved:

Proposition 4.2. In the Isenberg—Moncrief coordinate system the reduced vacuum character-
istic data ®[.N k| of (3.3) can be replaced by the following collection of fields:

Oy [ A k] = {(8£gAB,a,BA)O<j<k on S and (gag, ) on N}, 4.9

with (gag,«) subject to the constraint equation (4.2). Moreover the fields («,4) are not
needed in (4.9) if k=0, as they appear multiplied by u in the metric. ([

12
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We will refer to this set of data as Isenberg—Moncrief vacuum characteristic data of
order k.
The above also shows:

Proposition 4.3. Let S be of codimension-two and k € NU {co}. Then:

1. Spacelike vacuum data VI[S, k] of (3.1) can be reduced to the following collection of fields
on S in Isenberg—Moncrief coordinates:

Uim[S, k] := (9:0),8a, v, Ba)ositi<k » (4.10)

with («, Ba) not needed if k= 0.

2. LetS; and S, be two cross-sections of a null hypersurface A with vacuum data V[S,, k] and
U(Sy, k] induced by vacuum characteristic data U[A k. Then U[S,, k] can be determined
uniquely in terms of V[Sy,k| and U[4",0] by solving linear transport equations along the
generators of N, or by solving linear algebraic equations on A ; and vice-versa.

Proof.

1. This can be seen directly by repeating the proof of proposition 4.2. Alternatively, let g,,,,
be any Lorentzian metric near S compatible with U[S, k]. Denote by .4 either of the null
hypersurfaces orthogonal to S, and by .4 the other one. Use the data induced by g,,,, to
solve the vacuum Einstein equations to the future of .4 U _4". Introduce Isenberg—Moncrief
coordinates so that .#” = {u = 0}. The result follows now from proposition 4.2.

2. It suffices to prove the result in Isenberg—Moncrief coordinates. In these we have just shown
that one can reduce ¥[S;, k] to U\ [Sy, k] and W[S,, k] to Wpp[S2, k], with Upy[S2, k] determ-
ined uniquely in terms of Wy [Sy, k] and W[4, 0] by solving linear transport equations along
the generators of .4#” and by solving linear algebraic equations on .4, as desired. O

5. The Bondi parameterisation

A parameterisation of the metric which has often been used in the literature, in spacetime-
dimension equal to four, is that of Bondi ez al (see e.g. [6, 30, 31, 40, 47]),
g = gapdr*dy’
= —L:ewdu2 —26*Pdudr + rZVAB (dxA — UAdu) (de — UBdu> , (5.1
together with the conditions
Ordetysp = O, detyapg =0. (5.2)

A coordinate system satisfying (5.2) exists on .4” with .#” = {u = 0} if and only if the expan-
sion scalar of .4 has no zeros. We show in appendix B, in all spacetime dimensions n + 1 > 3,
that given a cross-section S of a smooth null hypersurface .4~ with 6 > 0, there exists a unique
Bondi coordinate system near .4” in which

260
uly=0,rs=1,0s=n—1,Vlg=— — and Bls =0=%"s. (5.3)
n—
Here 6 is the null mean curvature of S associated with 9,, and 6 is the null mean curvature
of S associated with the null vectors, say L, orthogonal to S and transverse to {u =0} at S,
normalised so that g(L,d,)|s = —1.
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Remark 5.1. Some comments concerning theorem 2.1 and the Bondi form of the metric (5.1)
are in order. Suppose that 6_y # 0 in theorem 2.1. We can then introduce on .4 an area
coordinate r (compare appendix B), and use the Bondi parameterisation of the metric on ./".
So we take u| 4 = r, and we emphasise that (2.15) will not hold in general when u there is
taken to be the Bondi area coordinate. Thus the Bondi form of the metric is assumed to hold
on .4/ but not necessarily away from .4
Using the Bondi parameterisation on .4~ we have
n—1

uly =r, 0y = pal OB =5 YAB| A - 5.4

The constraint equation (2.18) can be solved for x_y :

MT’;UVAC’YBD(ar’YAB)(ar'YCD) |y (5.5

Equations (2.16) and (5.5) provide then a constraint on S:

Ry =

e 2 r
20,8+ 5-Bugua | = ko ls = 77" (Omn) Dreo) g (56
{ B+ 7 OuBuul| Kyls 4(n71)7A VPP (0,7a8) (Orven)|g - (5.6)
Once the vacuum equations have been solved, x_s coincides with Fﬁl restricted to A4:
e
Ky =208+ T(‘)ugu. 5.7
Hence the vacuum Raychaudhuri equation (2.18) becomes
20,84 Trgn = A AP(03a8) Orc0) (5.8)
T > u8uu = 4(71 — 1) Y " YAB rYCD % . .
————

This is consistent with (5.10) below, since the underbraced term is zero when u is taken to be
the area coordinate r and the Bondi form of the metric is assumed in a neighborhood of .4".

In the notation of (5.1), cross-section data can be defined as follows. Let S be a cross-section
of A . Let k € NU {00} be the number of transverse derivatives of the metric that we want to
control at S. Using the Bondi parameterisation of the metric, we define the Bondi cross-section
data of order k as the collection of fields

Upo[S, k] := (0.07 apls, 01,Bs, 04U s, 0,U|s, Vs )o<iti<k - (5.9

As already pointed out, for simplicity we assume that all the fields in (5.9) are smooth. We note
that a finite sufficiently large degree of differentiability, typically different for distinct fields,
would suffice for most purposes; this can be determined by chasing the number of derivatives
needed in the relevant equations.

In appendix A we show how the sphere data of [2] relate to the Bondi ones.

We will refer to the Bondi field yap| 4 as free Bondi data on A .

Note that the data Up,[S, k] contain more fields than the Isenberg—Moncrief data Wpy[S, k]
of (4.10). This is related to the residual freedom remaining in Bondi coordinates; compare
proposition B.3, appendix B.

5 One could be tempted to think that those of the Bondi-parameterised Einstein equations which do not contain 9,-
derivatives of the metric can be used as they are on .4, but this is not the case: for instance, the Raychaudhuri equation
(compare (5.8)) contains a term which involves 9,-derivatives of the metric and which vanishes if the Bondi form of
the metric holds in a neighborhood of .4, and which does not vanish in a general coordinate system.

14
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To continue, suppose that we are given Bondi cross-section data of order k and a field yap
on /. We assume that the field v4p and its 8£-der_ivatives with 0 < j < k, when restricted
to S, coincide with the Bondi cross-section fields BHAB\S; such data sets will be said to be
compatible. Then (see [40] in spacetime-dimension four):

1. Using the equation

0= Q(Tr_l) Grr =0, — 8(nr_ 0 AP (D148) (Orven) (5.10)

we can determine O,0|s. Further, integrating (5.10), the value §|s and the field y45 on A"
can be used to determine 9,3 on .4, and hence all radial derivatives 9! 3]s.
2. The fields U*|s and 8,U"|s are used to obtain U"|_4 by integrating

0=2""'Gnx
1
=0, [;’L"’le_zﬁyAB(a,UB)} - 212("_1)&(FDA5) + " Y Dg(07ar) -
(5.11)

Further, the radial derivatives 9:U” |s can be algebraically determined in terms of 0’~43|s.
We note that Uy, can be set to zero on S by a refinement of the coordinates, but this restriction
is not convenient when interpolating between cross-section data, and will therefore not be
assumed.

3. The function Vg is needed to integrate the equation

207 = Pe (26, + 20" Gya — V/rGyy)
=R[y] - 29" [DADBB + (DAB)(DpB) | + rze(i_z) Da 6, (20D UA)}

Ut - U ey, s

rnf3

obtaining thus V| 4 by integration. Further, all radial derivatives ' ,V|s can be determ-
ined algebraically in terms of the already-known fields by inductively r-differentiating this
equation.

4. The field 0,7p|s is needed to integrate

0 = r"=)/2TS[G ]

1 —1 —1
=0, [r(n_])/zau’)’AB - E”("_S)/zvar%s S n R CVIES - n O(r" = 2V)

1 1
+§r(n_3)/2V’YCD3r7AcarWBD - Er(n_l)/zVCD(ar’YBl)aﬂAc + 0w y8pOYacC)

+ r(n75)/2 TS |:62ﬁ72R[7]AB - ZCBDADBCB + r3in’YCADB [ar(rn71 Uc)}

1 2
- §r4e_2ﬁ'7AC'YBD(8rUC)(8rUD) + E(ar’YAB)(DCUC)
+ U Dc(9,748) — * (O yac) vee(DCUE — DEUC) | (5.13)

15
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where the symbol TS denotes the traceless-symmetric part of a tensor with respect to the
metric 45 and where R[y]4p is the Ricci tensor of the metric y4p; note that the TS part of
each of the terms in the box is zero when n = 3. One thus determines J,vag|_+ -

5. The u-derivative of 3 on .4 can be calculated by integrating the equation obtained by u-
differentiating (5.10), after expressing the right-hand side in terms of the fields determined
so far:

00,8 = %(’YACGM’YBD(&’YAB)(@WCD) + ')/AC’VBD(arVAB)(arau’YCD)) . (5.14)

For this we also need the initial value 9,3|s.
6. The equation

—2¢G,4 =0, (5.15)
reads

0, [64/38” (e_“BrZPyAB UB)} + 0,(*va5) 0, U”
= ar |:62’38r (rfyAB UBV62ﬁ> — ZVVar(’YAB UB) + rzUBau’YAB + 26258,48;[6

+ (UBar(rz'yAB) +1 /2%3#&03) 889,6% — 2A2e?P5 U 1 F (5.16)

with
FA = FA (Vl, r8uv, aiguwau'VABa 8A88guz/u araBg;uu aAau'YAB) ) (517)

where {9;} = {0,,04}. This equation allows us to determine algebraically 9,0,U%|s in
terms of the already known fields. The field 9,0, U |s is needed to determine 9,U"| 4 by
integrating in r the u-derivative of equation (5.11). The explicit form of F4 is not very
enlightening and is too long to be usefully displayed here.

7. We can determine algebraically 0,V either on S or on .4 from the Einstein equation (G, +

Ag,m)|t/1/ =0:

n—1
ErE
where ‘- --’ stands for an explicit expression in all fields already known on .4, and which
is too long to be usefully displayed here.

Guu = O+, (5.18)

One can inductively repeat the procedure above using the equations obtained by differentiating
Einstein equations with respect to #. One thus obtains a hierarchical system of ODEs in r, or
algebraic equations for the transverse derivatives of 9, and V, for

(ﬁ? UA7 V7 au/yABa auﬁv 8MUA7 auvv 8371437' (RN} alu(ﬁa a];UAu 85V)7 (519)

which can be integrated or algebraically solved in the order indicated in (5.19).

It might be of some interest to note that there are no obstructions to integrate the transport
equations globally on / x S. Here one should keep in mind that (5.10) is the Raychaudhuri
equation written in terms of the Bondi fields, and the blow-up of solutions of this equation is
at the origin of various incompleteness theorems in general relativity.

Summarising, we have:
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Proposition 5.2. In the Bondi coordinate system (the existence of which requires 6 >0 on
N ) the reduced vacuum characteristic data ®[A k] of (3.3) can be replaced by the following
collection of fields:

(IDBOL/V,](] = {(8{/}%3‘5, a]uﬂ|s, 8£UA\S, 8,UA|S, V|S)0<j<k on S and YAB On JV} . (520)

Equivalently, Einstein equations and smooth cross-section Bondi data (5.9) of order k €
NU {oo}, together with smooth compatible Bondi free data vap on a null hypersurface N,
determine uniquely the metric functions

a;g/w|JV

in Bondi gauge, for all 0 < i < k, through linear transport equations along the generators, or
through linear algebraic equations.

Furthermore, in vacuum, the Bondi data Ug,[S,k] of (5.9) suffice to determine VU[S,k] in
Bondi coordinates. (]

6. The ‘hand-crank construction’

As already pointed out, characteristic initial data on a single null hypersurface do not lead to
a well posed Cauchy problem, i.e. a setup which guarantees both existence and uniqueness
of associated solutions of the field equations. In this section we present a construction which
provides existence of solutions of the vacuum Einstein equations realising the data. A similar
idea can be found in [36].

We have:

Proposition 6.1. Given a smooth vacuum characteristic initial data set [ k], k € NU
{o0}, on a (n+ 1)-dimensional manifold, n > 3, of the form

JV:[Vth]XS, ra<ry,

there exist (many) smooth solutions of the vacuum Einstein equations (M ,g) so that V[N k|
is obtained by restriction to a characteristic hypersurface within M .

Proof. If k < co we can extend W[4, k] to W[4, 00] in any way. Therefore it suffices to
assume that k = oo.

Let us write S for 4" N {r = c}. Let ¥[S,, k| be the cross-section data induced by U[.4, k|
on S,. Let 47, =[0,1] x 8 be a hypersurface on which we prescribe any smooth Isenberg—
Moncrief data (gag, ) compatible with W[S,, ,k]; thus (47, ,gap, ) are characteristic initial
data on the hypersurface .4”, meeting .#” transversally at » = ry towards the future of S, , see
figure 3. By definition of compatibility, all derivatives of (g, ) in directions tangential to
-, and transverse to .4 have to match at S,, with those in W[S, , k], which can be achieved
by Borel summation.

Similarly let 4", = [0, 1] x S be a hypersurface, meeting .#” transversally at S,, towards
the past, on which we give smooth characteristic data compatible with ¥(S,,, k].

We can solve the characteristic Cauchy problem to the future with data on the transvers-
ally intersecting hypersurfaces .4” and .4~ , resulting in a smooth vacuum metric, say g,
defined on J* (4", U.#"). The Einstein equations guarantee that the transport and the algeb-
raic equations in Isenberg—Moncrief coordinates described in section 4 hold on .4". The initial
data for these transport equations at S,, are given by U[S,, ,k]. Uniqueness of solutions of the
transport equations shows that the transverse derivatives of the metric coincide with the ones
listed in W[4 k.
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Figure 3. The ‘hand-crank construction’.

One can likewise solve the characteristic Cauchy problem to the past with data on the trans-
versally intersecting hypersurfaces .4” and 4", , resulting in a vacuum metric, say g _, defined
onJ~ (.4 U4, ). Uniqueness of solutions of the transport equations shows that the transverse
derivatives of the metric coincide with the ones listed in W[4, ].

By construction both piecewise-smooth spacetime metrics agree, together with all trans-
verse derivatives, on .4, and define thus a smooth metric on the union of the original domains
of definition. O

As a corollary of the construction of proposition 6.1 we have:

Corollary 6.2. Let ke NU{oc}, k> 2, and let S C M be of codimension two. For every
spacelike vacuum data set U[S, k| there exists a smooth vacuum Lorentzian metric defined
near S and inducing the data.

Proof. Let 4" =[—1,1] x S, where we identify S with {0} x S. Let U[.4", k| be any charac-
teristic data on .#” compatible with U[S, k] at {0} x S. If k < oo, we complement the data with
higher-derivatives to k = oo in any way. Hence it suffices again to assume that k = co. We can
now apply proposition 6.1 to W[4 k|. O

Remark 6.3. We note that in situations where Cauchy-stability holds but only a neighbor-
hood of A4 N A (instead of .4 U 4") is known to exist (which could be the case for Einstein
equations coupled with some unusual matter fields), one can still establish the claim of corol-
lary 6.2 as follows: There exists ky > 0 so that Cauchy-stability for the characteristic initial
value problem holds in the C*(_#" U _4")-topology on the data. For r; <0 let (4~ 111 8AB> )
be as in the proof of proposition 6.1. We can choose the data to vary continuously in C* as r,
varies. Cauchy stability guarantees that there exists ¢; > 0 so that the solution of the Cauchy
problem with the data W[.4",00] on .4” and the data W[.4" __ ,00] on 4" __ contains a future
neighborhood of S. A similar continuity argument applies to the data on the hypersurfaces
A, with €3 > r; > 0. One thus obtains a smooth vacuum spacetime metric as in figure 3 with
ry = —€] and rh = €j.

A construction in the same spirit allows us to extend vacuum Cauchy data defined on a
manifold with boundary X beyond the boundary, to a larger initial data manifold X, where

18



Class. Quantum Grav. 40 (2023) 165009 P T Chrusciel and W Cong

Figure 4. Extending ¥ to 3.

the boundary of ¥ becomes an interior hypersurface, while satisfying the vacuum general
relativistic constraint equations:

Theorem 6.4. Let Y. be a manifold with boundary 0% carrying smooth-up-to-boundary
vacuum initial data (g, K). There exists a manifold Y. with vacuum data (3,K) and an iso-
metric embedding of (%, g) into (X,8) such that K coincides with K on Y.

Proof. The Cauchy data (X, g,K) induce spacelike vacuum data ¥[93, 0o] on OX. The max-
imal globally hyperbolic development of (X, g,K) induces smooth characteristic data, com-
patible with ¥[0X, oc], on a null boundary emanating from 9% in the direction of the null
normal pointing towards Y, denoted by 021 (X) in figure 4. Choose any characteristic data
W[, 00], compatible with ¥[9Y, oo], on a hypersurface .4 intersecting 0% (X) transvers-
ally at 9%; 4" provides a smooth continuation, to the future, of the hypersurface 92~ (%) of
figure 4. The construction of the proof of proposition 6.1 provides a vacuum metric, say g,
defined in a neighborhood & of .4". The spacelike hypersurface 3 can be extended smoothly
within & across O to a spacelike hypersurface Y. The data induced on Y. by g provide the
desired extension (%, g, K). O

We can also find vacuum metrics which extend vacuum metrics on solid light cones. For this
we need to truncate the cone at finite distance by a spacelike acausal hypersurface X. Consider,
then, smooth characteristic vacuum data on a light cone %), with vertex at p. By [13] there exists
aneighborhood & of p and a smooth vacuum metric g defined on & NJ* (p) which realises the
data. (In space-time dimension four the set & constitutes a full future neighborhood of %,.)
Let 3 C & be any smooth spacelike hypersurface included in J* (p) with smooth compact
boundary on %),:

S$:=0¥=%XN%,.
We denote by %ps the cone %), truncated at S,
€y =€,NJ(S), (6.1)

see figure 5. We have:
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Figure 5. Truncating the light cone of p at 9.

Figure 6. Extending a vacuum metric on a truncated future cone J* (p) NJ ™ (X) to a
neighborhood of (J* (p) NJ™ (X)) \ {p}.

Proposition 6.5. For any smooth characteristic vacuum data on a truncated light cone ‘@S as
above, there exists a smooth vacuum metric realising the data defined in a neighborhood of

€S\ {p}.

see figure 6.

Proof. By theorem 6.4 we can extend 3 beyond its boundary to a new spacelike hypersurface
Y as in figure 6. Solving backwards in time the Cauchy problem with the extended data one
obtains a vacuum metric defined in a neighborhood & of 63\ {p}. O

The question then arises, whether we can always obtain a full neighborhood of €%, as
in figure 7. The problem is, that the domain of existence of g might be shrinking as p is
approached, as seen in figure 6 and made clear by the following considerations:

20
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Figure 7. Extending a vacuum metric on a truncated future cone J* (p) NJ~(X) to a
neighborhood thereof.

By definition of smooth characteristic data near the tip of a light-cone, there exists a smooth
Lorentzian metric inducing the data. After solving the Einstein equations to the future of the
light-cone as in [13] we obtain a smooth metric, say g, defined in a neighborhood of p which
coincides with g in J* (p), and thus is vacuum there. But we have no reason to expect that it
will coincide with g away from J™ (p), nor that it will be vacuum away from J* (p).

As an attempt to address this issue, we will use g-normal coordinates near p to study the
behaviour of g there, keeping in mind that g extends smoothly gl«, in a neighborhood of
‘ﬁps \ {p}; these coordinates are the only reason why we need the metric g.

Let, thus, (£,X) = (t,x') = (x*) be normal coordinates centred at p for the metric g, in these
coordinates the light-cone is given by the equation 7 = |X], and there exists a constant C such
that for |X| < 2¢ we have

€ — M| < C(E+1X7) <5CP, 0,8, < Ct. (6.2)
For any k > 2 for 2 < i < kit holds that
|05, ...aaigw\ <C, (6.3)

where the constant might depend upon k. In what follows we choose some k > n/2 + 1, to
guarantee that the solutions of the spacelike Cauchy problem for the Einstein equations with
datain (g,K) € Hy1 x Hy are in C2.

Let

Y] ={r=c}. (6.4)

By Cauchy stability, for > 0 the intersection ¥, N & of the domain & of definition of the
vacuum metric g contains the set

{|¥| <f(2)}, for some function satisfying f(¢) > r. (6.5)
Replacing f by a smaller function if necessary, we can assume that for # > 0 we have

t<f(r) <2t.

21
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Passing to a smaller function f again if necessary, smoothness of g implies that on the set
{|%] <f(r)} we will have

& — M| < 10CP, |08, | < 2Ct, (6.6)
aswell as, for2 </ <k,
00, 0o 8| < 2C. 6.7)

Finally, again making f smaller if necessary we can assume that the function f is continuous

and increasing.
For small s > 0, say s < so < 1/2 for some sy smaller than the injectivity radius, consider

the scaling map
(3 =09 = (") = (65 = () = (). (6.8)

Using (6.8) we obtain a family of scaled metrics, solutions of vacuum Einstein equations with
cosmological constant A, := s?A:

g[s]/w (ya) = g;u/(sya) . (6.9)
Set

then on X [y] the metric g[s] is defined on a set containing the coordinate ball
Bls] :={|¥| <f(s)/s}, with the radius satisfying 1 < f{s)/s < 2.
Let (B[s],gls],K]s]) be the Cauchy data induced by g[s] on
[r = L <f)/s} © Sibsl.
It follows from (6.6) and (6.7) that for y € B[s| we have
|g[s]j — 04 < 10Cs?,  [Dyegls]y| <2Cs*,  |K[s]y| < C's?, (6.10)
for some constant C,, and that for 2 < ¢ < k it holds that

|0y -+ Oy 8] < 2Cs* < 2Cs°. (6.11)

Hence the Cauchy data set (B[s], g[s], K[s]) tends, in Hy(B[s]) x Hi(B[s]) norm, as s tends to
zero, to the Minkowskian one, (B(1),6;,0), where B(1) is the unit coordinate ball centered at
the origin in R”. Standard hyperbolic estimates imply that

1. the boundary of the maximal past globally hyperbolic development of the data
(B[s],g[s],K[s]) is generated by null geodesics normal to OB][s], and
2. on the past domain of dependence of the data, say 2~ [s] we have

|Oyorr -+ Oyerr (&[5 — My ) | < C57, (6.12)

for some constant C.

3. Furthermore, the maximal past globally hyperbolic development of (B[s],g[s],K][s])
approaches the Minkowskian past domain of dependence as s — 0 in the sense that is made
clear by the following: every generator x* () of 92~ [s] starting at a point p € §"~! C OB[s]
lies a distance not further than

Cs?, (6.13)
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Figure 8. Extending a vacuum metric on a truncated future cone J (p) NJ ™~ (%’) to a
neighborhood of J* (p) NJ~ (Z).

for some constant C, from the generator of the Minkowskian past domain of dependence of
{7 =1,¥ € BJs]} issued from the same point p on OB[s]. Therefore

0P[s] C {|§] = s 'f(s) =1 —Cs*}. (6.14)

Now, in the scaled-back original coordinates the Minkowskian past domain of dependence of
the set

{1=1s,%] <fls)}

is a truncated solid cone with vertex at (s — f{ss),0), and note that s — f(s) < 0. Next, it follows
from (6.14) that the boundary of the set {t =0} N 2~ [s] lies inside the set

{|x] > f(s) —s — Cs*}.
Hence {t =0} N 2~ [s] will contain a neighborhood of the origin whenever

liminf/ (S)3_  — 0. (6.15)

s—0 S

Whether or not (6.15) holds ip general is not clear. However, we claim that (6.15) is satisfied
if the truncating section S of J* (p) in (6.1) is close enough to p:

Proposition 6.6. If S is close enough to p, there exists a metric as in proposition 6.5 which is
defined in a neighborhood of‘(o”ps as in figure 8.

Proof. We continue to use g-normal coordinates. We can carry out the hand-crank construction
as in figure 4, with X there being the unit y¥—coordinates ball within 3 [y], and with .4 in
figure 4 being the part of J* (0) between X1 [y] and X, [y], with the transverse free data chosen to
tend to the Minkowskian ones there as O(s?) in any finite Sobolev norm. Given any k; € N we
can find k > k; in (6.3) large enough so that the extended solution on the green region of figure 4
tends to the Minkowski metric there, in C*; norm, as O(s?). This shows that for small enough s,
say s < 3§, the vacuum initial data on the unit j~coordinate ball within 3 [y] can be extended to
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{r =1,y < 2}. It follows that the function f(s) in (6.14) can be chosen to be 2s, so that (6.15)
holds. One obtains a spacetime as in figure 8 with ¥ = ¥i[x] and &/ = {r=75, [¥] <5}. O

As a corollary we obtain:

Corollary 6.7. Let k € NU {oo}. For any vacuum data V[{p},k| at a point p, there exists a
vacuum metric defined in a neighborhood of p realising the data.

Proof. By definition, there exists a smooth Lorentzian metric g inducing V[{p},k|; we
emphasise that we do not assume that g is vacuum. Denote by J* (p;g) the causal future of
p in g, and by 6, the light cone of g emanating from p. Let g4pdx*dx® be the tensor field of
signature (0,+,...,+) obtained by restricting g on %,,. By [13] there exists a neighborhood &
of p and a smooth vacuum metric g defined on

onJt(p:g)=0nJt (pig),

with €, being the light cone of g, and with g inducing on 4, the same degenerate tensor as g.
It follows that the data induced at p by g coincide with those induced by g, i.e. U[{p},k]. The
result follows by proposition 6.6. O

7. The ‘Fledermaus construction’

We have shown in section 6 how to find a vacuum metric which realises vacuum characteristic
data W[4, k] on a hypersurface as an interior submanifold. Here we describe a construction
which realises vacuum characteristic data on two transverse vacuum characteristic hypersur-
faces A U as an interior submanifold with corner in a vacuum spacetime. This should
be contrasted with theorem 2.1, which realises the data as the boundary of a spacetime with
boundary-with-corner. Not unexpectedly, the resulting metric is only uniquely defined to the
future of 4" U 4. Indeed, in this section we use a ‘Fledermaus construction’ to show:

Proposition 7.1. Consider a smooth vacuum initial data on two hypersurfaces
e/i/[ol] [Ol]xSandJV[Ol [Ol]XS

meeting transversally at a compact submanifold S. There exists a smooth solution of vacuum
Einstein equations g which is defined in a neighbourhood of N}y 11U A~ [0,1] and which realises
the data.

Remark 7.2. The metric constructed in proposition 7.1 is umquely determined by the charac-
teristic data on the hypersurface N, 0,11 YA 1017 UAoa U N o] of figure 9.

Proof. Let us denote by gr, where ‘T’ stands for ‘top’, the smooth solution of the vacuum
Einstein equations obtained by solving the characteristic Cauchy problem to the future of
Mo,y U A po,1) with the given data. The solution induces a set of spacelike vacuum data ¥ S, k]
with k = oo on S and sets of characteristic vacuum data W[4y 1),4] and W[A7 1y 11,k] on Ao 1
and A" 1), again with k = oo.

We view 4 1] as a subset of a smooth hypersurface

N =[-1,1] xS,

and we view S as the subset {r =0} of .#". We denote by S, the cross-section {r} x S. For
r > 0 the metric gr induces smooth spacelike vacuum data U[S,, k] with k = co on S,.
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Figure 9. The ‘Fledermaus construction’ to embed characteristic initial data on two
transverse hypersurfaces in a vacuum spacetime.

Similarly we view A4~ [0,1] as a subset of a smooth hypersurface
A =[-1,1] xS,

with cross-sections {r} x S C .4 denoted by S,, and with induced vacuum data U[S,, k] for
r>0.
Let

=/1A/[0,1] :=10,1] xS,

be a null hypersurface meeting .4 transversally at S, towards the past; see figure 9. We choose
any Isenberg—Moncrief fields (gap, ) on .47y ;) compatible with W[S, k] and we solve the

characteristic Cauchy problem to the past with data on A7y ;) U4~ 0,1]- One thus obtains
a vacuum metric, say gp, where L stands for ‘left’, on the left wing of the Fledermaus .
Uniqueness of solutions of transport equations for the transverse derivatives of the metric along
A (0,1 implies that the metric g, extends smoothly gr across 4" ;;. The intersection of the
domain of existence of g, with .4{_ o) contains the hypersurface

NM_eo) i =[-6,0] xS C A,

which will be made-use of shortly.

A similar construction provides a smooth vacuum metric gg on the right wing of the
Fledermaus, extending smoothly gr across .4~ (—1,0)> With domain of existence containing a
hypersurface

’/V[fe,O] = [—6,0] X SCJ

The three metrics g, gr and gr match smoothly at 4fy 1) U4 }, in particular also at S.
Let gg be obtained by solving the characteristic Cauchy problem to the past with data on
NMeeo) UL [ o)- From what has been said so far it should be clear that the four metrics g,
gr, gr and gg match smoothly wherever more than one is defined, and provide the desired
smooth vacuum metric g defined on a neighborhood of A 11 U A ;. O
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8. Null hypersurfaces and spacelike gluing

It is well known [25, 43] that the existence of Killing vectors near a spacelike Cauchy surface
provides an obstruction to the Corvino—Schoen approach to spacelike gluing; see, however,
[28]. More precisely, there is an obstruction to the gluing construction based on the impli-
cit function theorem involving the adjoint of the linearised constraint operator. We show in
appendix C that an identical obstruction arises in the characteristic gluing.

In fact, the obstruction arising from Killing vectors is a local one: We shall say that there
are no local Killing vectors near S if the Killing vector equation has only trivial solutions on
all sufficiently small neighborhoods of S. Formally: every neighborhood of S contains another
neighborhood of S on which only trivial solutions of the Killing equations exist.

It might be of some interest to note that, given a submanifold 7 of .# of any dimension
and type, the notion of absence of local Killing vectors can be defined in terms of submanifold
data W[, k] of order k > 1, For this, note that the Killing equations at 7,

(VX +V,X,)| 7 =0, (8.1)

and their derivatives in both transverse and tangential directions to 7, up to order k, evaluated
at J (e.g. (8.1) together with

VHVVX,, |J - RU/LVPXG

when k =2), can be viewed as an overdetermined set of equations for the jets of order k over
J of a vector field X. We will say that there are no local Killing vectors at J if there exists
k > 1 such that these equations have only the trivial solution. Standard arguments show that
the absence of local Killing vectors at (7 implies that every metric near J compatible with
U[7,k| will have no local Killing vectors near 7.

We have:

Theorem 8.1. Consider two smooth vacuum metrics g and g, on M and let N C .MH be a
hypersurface in .# which is null both for g, and g;. Let S C A be a compact cross-section of
N and suppose that there are no local Killing vectors near S for g;. If g, and g, are sufficiently
close to each other near S in C°-topology, then there exists a smooth vacuum metric g on .M
and a null hypersurface N3 in M with spacelike boundary 0.3, with N5 near to N\ J~(S)
(cf figure 11), so that

1. g coincides with g on J*(A)\ J*(S), and
2. g coincides with gy on J=(N3) \ J~ (8.43).

In particular g induces the original vacuum data |4 NJ~(S), k] induced by g, on A N
J=(S) for any k € N, with the data W[/ NJ*(S),k] induced by g on N N JT(S) being close
to the data induced by g, there, and with the data \I/[,/T/, k] induced by g on N coinciding with
the data induced by g, there.

Remark 8.2. In theorem 8.1 it suffices to assume that the metric g, is defined to the future of
A and g, is defined to the past of .4/, as in figure 10.

Remark 8.3. In the spacelike gluing the obstruction arising from Killing vectors can be cir-
cumvented by gluing to a family of initial data which carries a set of compensating parameters;
the gluing construction chooses a member of the family. There is an obvious version of the-
orem 8.1 in such a situation, whenever a family of metrics with compensating parameters is
available; compare section 9 below. In particular one has a similar result for gluing a vacuum
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g1 $

2

Figure 10. Before the gluing of metrics with nearby characteristic data along a null
hypersurface /4.

metric g; with a member g, of the Kerr, Kerr—de Sitter, or Kerr Anti-de Sitter family. Note that
the condition of nearness to a member of the Kerr-(A)dS family is more severe, as compared
to the A =0 case, in the following sense: nearness to Kerr can be achieved by receding in
spacelike directions for a large class of asymptotically Minkowskian initial data sets, while no
such construction is known when A # 0. Compare [18, 24, 33].

Proof. We can choose spacelike hypersurfaces 3; and ¥, as in figure 10 so that the vacuum
Cauchy data (X1, g1,K;) and (X5, g2,K>), induced by the respective spacetime metrics g; and
g>, are near to each other in a neighborhood of S in a C°> & C* topology. By [17, section 8.6]
the data (X1,81,K1) and (X,,g2,K>) can be smoothly glued together to a smooth vacuum
data set (X, UX,,g,K), so that (g, K) coincides with the original Cauchy data except for a
small neighborhood & C 3, of S. Solving the Cauchy problem with these data one obtains
the desired spacetime, see figure 11. The hypersurface /172 is taken to be 69+(§32), where
S, =3,\0. O

9. Gluing cross-section data to Kerr data

We turn our attention now to the question addressed in [2], of gluing two sets of cross-
section data, one of them arising from the Kerr family. For definiteness we consider the four-
dimensional case with A = 0, an identical construction applies for Myers—Perry metrics, or for
their A-equivalents.

Thus, in spacetime dimension four, let (.#,g) be the Schwarzschild metric with non-zero
mass parameter. We consider a null hypersurface .4 in (.#, g) with two disjoint cross-sections
S; and S,, say S, C JT(S;). On S; we are given spacelike vacuum data ¥[S;, k| distinct from
but close to the data induced by g. On S, we consider the family of data U[S,, k| arising by
restriction from all Kerr metrics. The goal is to find null hypersurface data which interpolate
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Ny = 0D¥(Z,)

153 ~
2

g D(5)

Figure 11. After the gluing, zoom to the gluing region; ¥ is 3y \O.

between U[S;, k] and a sufficiently small perturbation of one of the U[S;, k]’s in a way such that
we can carry out the spacetime gluing of theorem 8.1. The result will be a spacetime metric
which coincides with a Kerr metric in the right-wedge Z( ¥,) of figure 11. The difficulty is to
arrange smallness of the perturbation of a large number of transverse derivatives of the metric
atS,.

Now, there exists ko < oo such that characteristic data W[4, ko] which are e-close to the
data induced by g will lead, through the construction of proposition 6.1, to a metric g; which is
e-close in C>-topology to the metric g. The dimension-dependent number kq can be determined
in principle by chasing losses of differentiability through all the steps of the construction. Here
one uses straightforward estimates for a hierarchical system of ODEs, where at each step a
linear ODE is solved for a new field in terms of the already-determined ones.

So let € be a measure of the deviation of the data U[S;, k] from those induced by g.

A brute-force gluing proceeds as follows: We choose a member of the Kerr family such
that W[S,, ko] is e-close to the data induced by g, and has the same linearly conserved radial
charges as W[S;,ko]. We find any smoothly interpolating free data on J*(S;) NJ~(Sy) C A
which deviate from the Schwarzschild data by O(e). We use these data in the source terms
of the transport and algebraic equations of section 5, including their transverse derivatives, to
obtain a solution of these equations on J*(S;) NJ~(S;) which matches ¥[S,, ko] up to error
terms of order e. If € is sufficiently small, theorem 8.1 applies.

The spacelike-gluing version of the more sophisticated scheme of [2], which appears to be
critical for some applications such as [28], proceeds as follows. The above argument works
in all dimensions, but what follows rests on work which assumes four dimensions; the higher
dimensional case will be addressed elsewhere [16].

It has been shown in [15] how to find linearised Bondi free data hsp so that the metric
~ap + hap interpolates between W[S;, k] and one of the data sets U[S,, ko] at a linearised level.
One can then use these data in the source terms of the transport and algebraic equations of
section 5 to obtain hypersurface data on J*(S;) NJ~(S;) which match U[S,, ko] to order €.
The gluing then follows again from theorem 8.1. We note that the improvement from ¢ to €2 is
critical for some applications, such as [28],
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The same arguments apply to metrics which are near to a four-dimensional Birmingham-
Kottler metric with higher genus at infinity and with nonzero mass, where the mass parameter
has to be adjusted to do the gluing, see [15, table 1.1].

We believe that the same scheme can be used to interpolate between data with A € R near
Birmingham—Kottler data in any spacetime dimensions n+ 1 > 4, we plan to return to this in
the near future. In spacetime dimension four with A # 0 the linearised analysis of [15] applies
and, in the spherical case, the same argument will lead to the desired conclusion after checking
that the Kerr-(A)dS metrics provide the required family of compensating metrics.

Data availability statement
No new data were created or analysed in this study.
Appendix A. ACR sphere data

Here we calculate the sphere data of [2] of order two in terms of Bondi section data. Given a
cross-section S of N, by which we mean a submanifold of A intersecting all the generators
of N transversally, the field 9, = L is the field of null normals both to S and NV, while L is the
field of null normals to S transverse to A. In typical applications both L and L are chosen to
be future-directed, but the choice is irrelevant for the problem at hand.

In [2] the cross-section S is chosen to be a sphere and the space-time dimension is four:
both assumptions are essential for the analysis there, compare [15].

In Bondi coordinates we can choose

\%
L=20,, ;:auJFUAaA—;a,. (A.1)
This gives
) L = & A2
T _jg( 77)_\/5' ( )

The sphere data of [2] further involve the fields
L=L/Qand L=L/Q.

First, the Ricci coefficients are defined as, for X and Y S-tangent vector fields,

X(X7 Y) = g(vxi‘7 Y)a X= g(vXL7 Y)7
1 PN 1 A &
n=_+dlogQ, 1n=—(+dlog{,
w = Dlogf}, w=Dlog(, (A.3)

where D and D respectively denote the projection of the Lie derivative along L and L onto the
tangent space of S. The null curvature components involved in the sphere data are

o(X,Y)=R(X,L,Y,L), «(X,Y)=R(X,L,Y,L). (A.4)
The C?-sphere data of [2] is the collection of fields
(Qaga QtI'X, )A(a QtrX7Xa77awaDwaQ,@aa,g)y (AS)

where tr denotes the trace with respect to the metric g on S and the hat - above a tensor denotes
the traceless part. Leting ¥ denote the covariant derivative of the metric # In Bondi coordinates
the fields (A.5) read
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0= >
=7 g=rn,
1 1
XAB = Q(V’YAB + %rzar’YAB) = Ear(rZ’YAB) ’
N 2945V — 4V(AUB) + r(VO,yap — 2r0uYaB) (A.6)
XaB 21/2e8 ’ |
B
m=anB- 0 55, Du—28, w=v'os- 2P Las A
228 2r

UAVOL0, V20, U204 VO,
D Y B NN R N A
Voup0,Ur  VO,50,V  V?H? VO,0, 0,80,V
_ Yo5 + ﬁz + gﬁf ﬁ+8AﬁauUA7L+8§ﬁ, (A.8)
2r 4r 4r 2r
ann— Jracr0,8  2r9vac n 2r°0,80ac | V" 0usdep PO ac (A.9)
ACT T8 e28 e28 2e28 e '
_ _ e?? 1%
ape=e <r "W (40, Upy — 25 (40, Ug) + @ —2UN X (4 Up,
V20?
- % + rV,0,va8 — #aﬁm)
+ QAC[rv r ! y YBD ’YBD7 a’yBDa e_Zﬁa 8ﬁa U37 aUBa Va 8Va au’YBD7 auﬁ] ) (A 10)

with a polynomial function &, of the arguments indicated; the explicit formula is not very
enlightening and too long to be usefully displayed. We use ‘0’ in the arguments of &, to
denote O, and J, derivatives, with J, derivatives indicated explicitly there.

Appendix B. Bondi coordinates anchored at S

The construction of Bondi coordinates in four spacetime dimensions starting from .7 is well
known [32], and generalises immediately to higher dimensions. We indicate here how to adapt
the construction to our setting, to make clear the freedom involved.

Let S be a cross-section of a smooth, null, connected hypersurface .4 in an (n+ 1)-
dimensional spacetime (.#,g). Let .4 be a null hypersurface such that A4 N A" =S, with
transverse intersection. (Thus S is spacelike, with both 74" and T.4" orthogonal to 7S.) Let X*
denote local coordinates on S. We consider, first, Isenberg—Moncrief [44] coordinates (i, Q,icc)
around

S={a=0=u},
and with the metric taking the form
g = (kadi—2di+ 2 f4d¥* ) dit + gapd¥*di®, (B.1)

for some fields o and 34. Here we have denoted by (i, it,¥*) the coordinates (u, r,x*) of (4.1),
to avoid confusion with the (u,r,x*) Bondi coordinates that we are about to construct.
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Note that while the ¥*’s are local coordinates, the coordinate functions i and i are defined
globally in a neighborhood of S. The level sets of the coordinate & are null hypersurfaces
and we denote .4 := {it =0} in this appendix’; we will be constructing Bondi coordin-
ates (u,r,x") such that .#" = {u = 0}. The hypersurface .4 := {& = 0} is also null, but not
necessarily so the hypersurfaces & # 0. The sign of gz; has been determined by our signature
(—,+,...,+) together with the requirement that d; and Jj are consistently time-oriented at S,
say future oriented.

In the Isenberg—Moncrief construction one can take the integral curves of ¢ := 9;|_4 to be
affinely-parameterised future-directed null geodesics (in which case « vanishes on .4"), then
the coordinate system above is uniquely defined up to the choice of this last parameterisation.
In order to get rid of this freedom, consider the divergence 6 of 4" defined in (2.1), where we
decorate # with a tilde to emphasise its dependence upon the coordinate u. Under the rescaling
£+ f(7#)¢ we have

1 .
0= EgABanAB HIZgABanAB =f0. (B.2)

Assuming that 6 has no zeros on S, we can choo§e a unique function f > 0 so that, after the
above rescaling has been done, the new function 6 satisfies

fls =+(n—1), (B.3)
thus preserving the future-directed character of ¢, or choose a unique f so that
s =(n—1) (B.4)

if the time-orientation of £ is ignored.

The field
p = +/detgagls

defines a scalar density on S. We extend p to .4 by requiring %, 1| » = 0, and then we extend
itaway from .4 by requiring £, . = 0. Still denoting by y the field so extended, since 9; and
0; commute we find that fagfaﬁ = 0, which further implies

Lo = Lo =0

throughout the domain of definition of the coordinates.
We define a function r = r(it,1,x*) by the formula

1—n H
rotiem . (B.5)
Vdetgap
Note that
rls=1. (B.6)

We wish to replace the coordinates (i, it, ¥ ) by
(u=i,rx* =x").

Using monotonicity and the implicit function theorem, we see that this is possible on the set
where
r

07 %= 50—

80,848 (B.7)

6 We caution that this differs from the notation in section 4, where .#” was chosen to be {ii = 0}.
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This is directly related to the divergence 0 of N:

ro
Or| = ek (B.8)

We thus obtain a well behaved coordinate system (r,x*) on .#", and (u,r,x*) near .4, unless
r becomes zero, which happens e.g. at the vertex of a light cone, or unless 6 acquires a zero.
Hence we restrict ourselves to the subset of .4#” where r >0 and |6| > 0.

Similarly to (B.7) we have

Q_ r
on  2(n—1)

P Ogan = 2 (B.9)
(n—1)
where 6 is the expansion of the level sets of u.

We note that the vector field 0; is uniquely determined on S by the requirement that J;
is orthogonal to TS and satisfies g(0;,0;)|s = —1. Hence 0 |s is uniquely determined by the
requirement (B.3) and by S, without the need to introduce the null transverse hypersurface ./
The function § |s is sometimes called the null mean curvature of S along 0.

The change of coordinates (it,it, ') +— (u, r,x*) brings the metric to the form

g = iadu® — 2du (0,idu + 0,idr + Opindx®) 4 20 fadx* du + gapdxtdx® (B.10)

which can be rewritten using the Bondi parameterisation
14
g = ——cdu? — 2e¥dudr+ Py (dxA . UAdu) (de . UBdu) . ®B.1D

where it is assumed that 0, and J, are consistently time-oriented at S.
From (B.4) and (B.7) we find

=+1 (B.12)

Oqr
— IS

if and only if (B.3) holds. Assuming the associated parameterisation of the generators of .4
we obtain

+1 Or O
)CA u
ofr, ’~3)’ |l o 1 o |. (B.13)
i )ls \ g o o
Hence
-~~~ +1 :F(');,r 0
O, &, A)’ o 1 o |. (B.14)
A(ryu,xt) Is 0 0 &
This leads to the following form of (B.10) at S
gls = F2du (—8rdu + dr) + gapdx*dx? | (B.15)
which together with (B.9), after changing u to —u if necessary, shows that at S it holds
—2 _ B 2Q~
UA‘S =—r g(all7aA)|S:fyABU |S:07 mS:Oa V|S:7}’l—1 (B16)

Summarising, we have proved:

Proposition B.1. Let A be a null hypersurface with 0 > 0 and suppose that . contains
a smooth submanifold S which meets every generator of N transversally and precisely
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once. There exists a unique coordinate system near A in which the metric takes the Bondi
form (B.11) with .4 = {u =0} and in which

rs=1,  pBls=0. (B.17)

In this coordinate system we have
UMls=0, fls=(n-1), Vlg=——- (B.18)
n—

where 0 is the expansion of {u = 0} with respect to the affinely-normalised geodesic null vector
field 0, and 0 is that of the level sets of w with respect to the Isenberg—Moncrief geodesic vector
field ;. (]

The coordinates of proposition B.1 will be referred to as Bondi coordinates adapted to N
anchored at S.

Remark B.2. The proof of proposition B.1 applies word-for-word in spacetimes in which .4
is a smooth boundary, or in spacetimes with a boundary consisting of two null hypersurfaces
A and 4 intersecting at S, in which cases the coordinates are only defined on one side of

N

Remark B.3. The Isenberg—Moncrief construction can be carried-out using any parameterisa-
tion of the generators of 4", not necessarily affine. Likewise our construction above applies for
any parameterisation of the generators, which shows that there is a lot of residual coordinate
freedom in the Bondi form of the metric near a null hypersurface. This explains in particular
why the Bondi hypersurface data of section 5 have more freedom than the Isenberg—Moncrief
hypersurface data of section 4.

More generally, whether or not (B.3) holds we have

3 . Or
8(}’, XA) 35}” aur %8

u
—~= 0 1 0 , (B.19)
a(ﬂ,uva) 0 0 (Sg
so that
-1 -1 -1
o ~,~’)~CB (8@7) —(agr‘) a,ﬂ‘ —(32}”) 8}”‘
W [ o i 0 . (B20)
o 0 0 A
and (B.10) reads
2 [dr — Ozrdu — O rdxA}
g=odu’ — 5 du+ 2 f4dx* du 4 gapdxdx®
ul
_ (ga n 28”)du2 _2drdu 2(@@, n af‘”)dudxf‘ + gapddo®. (B.21)
8Er 827‘ 6{,}"

This, together with (B.8) and (B.9), after changing u to —u if necessary, shows that

1. n—1 u (n—1)
/8|JV = iln ré ) UA|JV - _rizﬁA - r3§ 8.%"”7
i .20 ~2 AB 0 _
Viy=— 270 — iar’y + rig"" 5 0s 0 + n- lgABB;CAr&?Br. (B.22)
n—1 n-1 n—1 0
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In particular we see that r = u in theorem 2.1 is possible if and only if

Ourlg=0, 0];=0. (B.23)

Appendix C. A variational identity

The aim of this appendix is to show that the restriction of spacetime Killing vectors to a hyper-
surface lies in the kernel of the adjoint of the linearisation of the vacuum constraints operator.
This shows in particular that spacetime Killing vectors provide obstructions to characteristic
gluing based on the implicit function theorem.

Let g be a solution of the vacuum Einstein equations with a cosmological constant A € R.
Let 3 be a hypersurface of any causal type, possibly with boundary, and let A — g(\) be a
family of Lorentzian metrics along ¥ depending dlfferentlably on a parameter A such that
g = g(0). The variational operator J is defined by evaluating -2 7y at A=0. We set

£98 = V16|g| (G*F + Ag™) | C.1)
1
aB . 2
7= 1V g| g*” (C.2)
A A TR
Adg=Th5— 0015, (C.3)

where G,z is the Einstein tensor and A the cosmological constant. The following variational
identity has been proved in [19],” see equation (2.27) there:

(LA p)om™? — (LxmP)oAL ;= —2X1GE™ , + X E*Pog,, 4

1
+ 16778#{5[\/|g(V“X’\ =V x| — /gl (VHex> — v&sxu)}
+ 0, {X*waﬂ AL 5 — XM TP A ﬂ} : (C.4)

Integrating (C.4) over 3, assuming that the integral converges, and that the metrics g(\) coin-
cide with g near the boundary of 0%, if any, one finds

/ ((LxAL5)0m*P — (Lym®P)0AN ) dSx = —2 / X15EX ,dS) . (C.5)
P z

Let N, be any field of conormals to 3, thus 6&* . enters this identity only through the
components §E* «INx. The equations &£ A N = 0 are the constraint equations on %, and (C.5)
expresses the well-known fact that, for spacelike >.’s, the constraint equations provide an action
principle for the Einstein equations. This remains true for characteristic hypersurfaces in view
of (C.5), but is perhaps somewhat less known; compare [29, 38].

The operator §&* 1V is the linearisation of the constraint equations on X acting on linear-
ised gravitational initial data on X. Integration by parts reexpresses the right-hand side as the
adjoint operator of the linearised constraint equations acting on X.

Now, Killing vectors in space-time annihilate the left-hand side of (C.5). It follows that
Killing vectors of the spacetime metric are in the kernel of this operator, in the following

7 The reader might notice that [19] uses a non-standard convention on the sign of the cosmological constant, opposite
to the one here.
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sense: if X is a vector field satisfying the Killing equations and their first derivatives on N,
then

/ X+5E*,dSy =0 (C.6)
P

for all variations 6g,,,, as described.

It is known, for spacelike X’s, that spacetime Killing vectors exhaust the kernel [43]: the
left-hand side of (C.6) vanishes for all variations as above if and only if X is a vector field
satisfying the Killing equations and their first derivatives on .4 . Our gluing results in this
paper suggest strongly that this remains true for characteristic hypersurfaces, but this remains
to be seen; compare [21].
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