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1 Introduction

At the Large Hadron Collider (LHC) gluon fusion is the most relevant production mecha-
nism for Higgs physics in single-Higgs production, gg → H, and pair production, gg → HH,
and plays an important role in the production of a Higgs boson in association with a Z
boson, gg → ZH. Precise predictions for such processes are necessary in order to measure
the properties of the Higgs boson accurately. Since the Higgs boson is a colorless parti-
cle, these processes are all loop-induced and mediated by a heavy particle, mainly the top
quark. As known since more than twenty years, QCD corrections to the Born result are
very large and the perturbative expansion converges slowly (see for example [1, 2]). This
implies that the knowledge of the higher-order QCD corrections is very important. How-
ever, the evaluation of these corrections is extremely challenging already at next-to-leading
order (NLO), since it requires the computation of two-loop diagrams.

In this paper we are going to consider the virtual corrections to Higgs production via
gluon fusion at the NLO level. In general, the degree of difficulty in the evaluation of
loop diagrams grows with the number of energy scales present in the diagram. In the
case of single-Higgs production the relevant diagrams feature a triangular topology and,
consequently, depend upon only two scales, namely the Higgs mass, mH , and the top mass,1

mt. In this case, the functional dependence of the result upon the top mass can be expressed
in terms of one single variable, m2

H/m
2
t . Due to this “simplified” one-scale situation, exact

analytic results for the NLO corrections are available since many years [3–6].
In the case of processes with two particles in the final state the situation is more compli-

cated. Indeed these processes receive contributions not only from triangle diagrams, which
can be calculated adapting the exact analytic results obtained for single-Higgs production,
but also from box-topology diagrams. In pair production, gg → HH, the box diagrams de-
pend upon four scales, namely ŝ, t̂, mt,mH , where ŝ, t̂, and û are the Mandelstam variables
which satisfy the condition

ŝ+ t̂+ û = 2m2
H . (1.1)

1All the quarks but the top are assumed to be massless.
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Concerning associated production, gg → ZH, a fifth energy scale is present, i.e. the mass
of the Z vector boson, mZ .

Exact analytic results for two-loop box diagrams with several energy scales cannot be
derived with the present computational technology. Instead, usually two different strategies
are followed in order to evaluate the two-loop box contribution in Higgs production via
gluon fusion. a) A fully numerical exact evaluation [7–11]. b) An approximate analytic
evaluation that takes advantage of hierarchies among the various energy scales present in
the diagrams, in order to reduce the number of scales in the problem. Thus, its validity is
restricted to specific regions of the phase space. The method used is based on the expansion
of the diagrams in terms of ratios of small energy scales vs. large energy scales, in order to
obtain a result that retains an exact dependence upon the large energy scales. Concerning
the small ones, in order to simplify further the evaluation, expansions in term of ratios
between small energy scales is often used.

The former strategy, although accurate, is very demanding from a computational point
of view, requiring a high degree of optimization in order to obtain a result in a “reasonable”,
although usually quite long, computer time. Furthermore, this approach is not very flexible
with respect to the modification of the input parameters.

Strategy b) provides accurate results valid in specific regions of the phase space without
requiring heavy computational work, i.e. in a short computer time. Examples of this
approach of evaluating the two-loop box contribution are:

i) The infinite-top-mass limit [12, 13] refined by the inclusion of powers in the large
top-mass expansion (LME) [14–17]. Here, mt is assumed to be the large energy scale
while ŝ, t̂, mH , and in associated production also mZ , are considered to be the small
ones. Thus, the validity of this approach is restricted to phase-space regions where
ŝ/(4m2

t ) ≤ 1. The advantage of this approximation are the rather simple results,
which can be expressed in terms of rational functions and logarithms of the kind
log(m2

t /ŝ).

ii) The evaluation via an expansion in the transverse momentum, pT , of the final-state
particles [18, 19]. Here, ŝ and mt are assumed to be the large energy scale while
mH , mZ and pT , that can be traded for t̂, are considered to be the small ones.
The validity of this approach is restricted to phase-space regions where |t̂|/(4m2

t ) .
1. The analytical complexity of this approach is higher than in i), as generalised
polylogarithms and two elliptic integrals occur in the final results. The evaluation of
the latter can be easily performed using the results of ref. [20].

iii) The evaluation via a high-energy (HE) expansion [21–23]. Here ŝ, t̂ are assumed to
be the large energy scale while mt, mH and mZ , with mt � mH , mZ , are considered
to be the small ones. The validity of this approach is restricted to phase-space
regions where |t̂|/(4m2

t ) & 1. The HE expansion leads to analytic results that can be
expressed in terms of harmonic polylogarithms.

iv) The evaluation via an expansion in terms of small external masses [24–26]. Here
ŝ, t̂, mt are assumed to be the large energy scale whilemH andmZ are considered to be
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the small ones. This approach basically covers the entire phase space of the considered
processes. However, since the reduction of scales in this approach is minimal, one ends
up with the evaluation of Master Integrals (MIs) that are much more complicated
than those appearing in the i)–iii) cases. As a consequence the evaluation of the box
contribution in any point of the phase space requires a longer computer time than in
the approaches i)–iii).

As an alternative approach, refs. [27, 28] proposed to reconstruct the full result from
its LME version, supplemented by the non-analytic part of the diagrams near the top
threshold, via a conformal mapping and Padé approximants.

In this paper we propose an alternative way to derive the full top-mass dependence
in Higgs production via gluon fusion, based on the merging of the pT expansion in ii)
with the HE expansion in iii) that individually are valid in complementary regions of the
phase space. Since the numerical evaluations of the two expansions are quite fast from a
computational point of view, our proposal allows a fast evaluation of the virtual corrections
to Higgs production via gluon fusion that is accurate in the entire phase space.

The key point of our analysis is to extend the fixed-order results both in the pT ex-
pansion [18, 19] and in the HE expansion [22, 23] up to or beyond their border of validity,
i.e. t̂ ' 4m2

t , in order to merge the two analytic approximations. This is done by con-
structing a [1/1] Padé approximant for the pT -result and a [6/6] Padé approximant for the
HE-result. We point out that the extension of the HE expansion via Padé approximants
has been already considered in refs. [22, 23].

The paper is organized as follows. In section 2 we introduce the different expansions
as well as the method for combining them. In section 3 we validate the method at LO
both at the level of form factors and at the level of the partonic cross section, with a focus
on the gg → HH process. In section 4 we present the merging of the two expansions at
NLO. In order to show the flexibility of our approach with respect to the modification of
the input parameters, in the same section we present the result for the two-loop virtual
contribution in gg → HH and gg → ZH for two different choices of the top quark mass,
namely the on-shell and the MS mass. Finally, we conclude in section 5.

2 Method

We start by considering the process g(p1) g(p2) → 3(−p3) 4(−p4), where 3 and 4 are two
neutral2 particles with massesm3 andm4, respectively. Taking all momenta to be incoming,
the partonic Mandelstam variables are

ŝ = (p1 + p2)2, t̂ = (p1 + p3)2, û = (p2 + p3)2, (2.1)

and the transverse momentum pT of the final-state particles can be written as

p2
T = t̂û−m2

3m
2
4

ŝ
. (2.2)

2Dealing with neutral particles in the final state implies the absence of mixed top-bottom diagrams, as
they would appear e.g. in gg →W+W− production, for which the proposed method cannot be straightfor-
wardly applied.
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As suggested in refs. [18, 19], if the amplitude of the process is written in terms of
(anti)symmetric form factors with respect to the exchange t̂ ↔ û, then it is sufficient
to discuss only the forward contribution to the cross section. Therefore, in the following
we will always assume that |t̂| ≤ |û| and that

t̂ = −1
2

(
ŝ−m2

3 −m2
4 −

√
λ(ŝ,m2

3,m
2
4)− 4ŝ p2

T

)
, (2.3)

where λ(a, b, c) = a2 + b2 + c2 − 2ab− 2ac− 2bc is the Källén function.
In the forward regime, the validity of both the pT and HE expansions is limited by the

condition
|t̂| ' 4m2

t , (2.4)

i.e. for any fixed value of ŝ, the pT expansion provides reliable results when |t̂| . 4m2
t while

the HE expansion is accurate for |t̂| & 4m2
t , if the fixed ŝ > 4m2

t . However, we find that
in the vicinity of the point |t̂| = 4m2

t the fixed-order results in the pT expansion and in
the HE expansion are both divergent (see figure 1). As a consequence, a straightforward
combination of the pT -expanded and the HE-expanded results cannot allow for an accurate
description of the above region, and this fact prevents a full coverage of the phase space.
We point out that this situation does not change substantially when higher orders in both
the expansions are computed.

Alternatively, the convergence of the expanded results can be improved by considering
the respective Padé approximants. Indeed, starting from a given Taylor expansion of an
exact function f(x) around x = 0 up to the first r terms

f(x) '
r−1∑
k=0

ckx
k, (2.5)

it is possible to construct the associated Padé approximant, defined as

[m/n](x) = p0 + p1x+ · · ·+ pmx
m

1 + q1x+ . . . qnxn
, (2.6)

provided that m + n + 1 = r. Specifically, by Taylor-expanding the r.h.s. of eq. (2.6), the
{pi, qj} coefficients of the Padé approximant can be written in terms of the ck ones known
from eq. (2.5), by solving a system of linear equations. Usually, [m/n] Padé approximants
such that m = n give the best improvement in the convergence of the original Taylor
expansion, and we consider only these combinations in our study. In the pT -expanded
results, at NLO, only the first three terms in eq. (2.5) are known and therefore we are
limited to construct a [1/1] Padé approximant (we will refer to this as the pT -Padé). Instead
the availability of many terms in the HE-expansion results allows to consider several [n/n]
approximants (defined as HE-Padé).

When calculating the pT -Padé, care is to be taken in the treatment of the expansion
parameters. As discussed in refs. [18, 19], not only the pT but also the masses of the external
particles are understood as small parameters. Since these are all treated on the same footing
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with respect to the large scales set by ŝ and mt, we can write the general expression for a
pT -expanded form factor F in the amplitude in terms of a scaling parameter x

F (x) =
2∑

N=0
xN

∑
i+j+k=N

cijk (p2
T )i(m2

3)j(∆m)k ≡
2∑

N=0
xNcN (2.7)

where m3 is interpreted as mH and mZ for gg → HH and gg → ZH, respectively, and
∆m = (m2

4−m2
3)/2 is included only for the ZH case (see ref. [19]). Starting from eq. (2.7) we

can then obtain the corresponding [1/1] Padé approximant with respect to the limit x→ 0

[1/1](x) = p0 + p1x

1 + q1x
, (2.8)

with
p0 = c0 p1 = c1 −

c0c2
c1

q1 = −c2
c1
,

and subsequently set x = 1 in eq. (2.8).
We want to clarify a possible source of ambiguity concerning the limit of validity of

the pT expansion. Indeed, while in the previous works we suggested that this expansion is
valid for p2

T . 4m2
t , as the comparison at LO between the pT -expanded and exact result

seems to indicate, in this paper we follow a more conservative approach and we consider
as limit of validity for the pT expansion |t̂| . 4m2

t . Additionally, we checked that the same
complementarity for the pT and HE expansions can be observed when choosing p2

T = 4m2
t

as limit of validity.
We now discuss the procedure adopted to construct the Padé approximants from the

HE expansion. Following the prescription of ref. [29] (see also [30, 31]), we initially arrange
the various orders F (i) of the HE expansion for a given form factor as follows

F (x) = F (0) +
L∑
l=1

(
F (2l−1)m

(2l−1)
t + F (2l)m

(2l)
t

)
xl =

L∑
l=0

dlx
l, (2.9)

where orders related to odd powers of mt are grouped with the orders related to the next
even power. Then, we construct [n/n] approximants in x with 2n = L from eq. (2.9)
using the analytic expressions available in [32, 33], and setting x = 1. We remark that
our Padé approximants are obtained in a fully symbolic way, whereas in refs. [29, 30] all
the kinematical quantities are fixed to the respective numerical values before the Padés
are constructed in x. Furthermore, in comparison to refs. [23, 29], we only studied [n/n]
HE-Padés up to n = 6. In those references Padés with n > 6 were also considered in order
to extrapolate the results in the region |t̂| < 4m2

t , for a fixed ŝ, and characterize the relative
uncertainties of different [m/n] Padés. In our case, because the region |t̂| < 4m2

t , is more
accurately described by the results of the pT expansion, we find that a [6/6] HE-Padé is
more than enough to perform the merging with the pT -result and, at the same time, to
describe accurately the high-energy region.

The pT -Padé and the HE-Padé extend the range of validity of each expansion beyond
its limit. As discussed in the next section, the pT and the HE Padés are accurate enough to
bridge the gap around the phase-space region |t̂| ' 4m2

t . Then, an accurate approximation
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of the exact result for any phase-space point (ŝ, t̂) can be obtained by choosing as switching
point between the Padé-improved expansions any point in the region |t̂| ∼ 4m2

t . For
simplicity we choose to use the pT -Padé when |t̂| < 4m2

t and the HE-Padé when |t̂| ≥ 4m2
t ,

for any fixed value of ŝ. We recall that in our discussion we just consider the forward region
|t̂| ≤ |û|, while the result in the complementary phase-space region is obtained using the
symmetry of our form factors under t̂ ↔ û. Noticing that, when |t̂| ≤ |û|, the maximum
absolute value of t̂ as a function of ŝ is given by |t̂|max = 1/2(ŝ − m2

3 − m2
4) our choice

corresponds to using the pT -Padé up to the partonic energy ŝc = 8m2
t +m2

3 +m2
4. In this

energy region (
√
ŝc ' 500GeV for gg → HH and gg → ZH) at the LHC more than 2/3 of

the hadronic cross section is concentrated.

3 The pT and HE expansions vs the exact results at LO

In this section we assess the reliability of our merging procedure by studying how well the
combination of the pT -Padé and the HE-Padé can reproduce the exact LO results for HH
and ZH production via gluon fusion. For the sake of simplicity, we discuss in detail only
the gg → HH process, but we verified that similar conclusions can be drawn for gg → ZH.

Using the same notation of ref. [16], we recall that the amplitude for gg → HH can
be expressed as

Aµν = Gµ√
2
αS(µR)

2π δabTF ŝ[Aµν1 F1 +Aµν2 F2], (3.1)

where F1 and F2 are the form factors associated to the spin-0 and spin-2 projectors, re-
spectively. Both triangle and box diagrams contribute to F1

F1 = F4
3m2

H

ŝ−m2
H

+ F�, (3.2)

whereas the F2 form factor receives contribution only from boxes. Our goal is to improve
the evaluation of the box contributions, therefore we focus on the discussion of F� and F2.

The LO results for these form factors, denoted as FLO
� and FLO

2 , are shown in figure 1,
for fixed values of the partonic center-of-mass energy. Only large values of ŝ are shown
in figure 1 because for small ŝ values the pT -expanded results are very accurate [18]. The
pT -expanded and HE-expanded results are represented by the blue and purple solid lines,
respectively, and they deviate from the exact result, shown as a solid black line, at |t̂|/4m2

t '
1, as anticipated in the previous section. The light blue dashed line stands for the [1/1]
pT -Padé, while the pink dashed line represents the [6/6] HE-Padé. One can see that the
Padé results show an improved convergence with respect to the fixed-order expansions. The
bottom part of the plots in figure 1 shows the ratio of the expanded and Padé results to the
exact one. Indeed, figure 1(a,b) shows that in the case of FLO

� for |t̂|/4m2
t = 1 the differences

of the Padé results with respect to the exact prediction are negligible. For the F2 form
factor, whose contribution to the cross-section is much smaller than the one of the F1 form
factor, the difference is always below 5%, see figure 1(c,d). We notice that, when comparing
the accuracies of the Padé approximants, larger discrepancies can be attributed to the pT -
Padé. Indeed, being the latter a [1/1] Padé, it is expected to be a less refined approximation
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Figure 1. Modulus of the box form factors contributing to gg → HH at LO, for a fixed value of (a,c)√
ŝ = 0.9TeV and (b,d)

√
ŝ = 2TeV. In the upper part of each plot, the exact prediction (solid black

line) is shown together with the pT and HE expansions (solid blue and purple lines, respectively) and
with the [1/1] pT and [6/6] HE Padé approximants (dashed light blue and pink lines, respectively).
The bottom part of each plot shows the ratio of the above results to the exact prediction.

than the [6/6] HE-Padé. Still, in the case of FLO
� the differences between the two Padé

near |t̂|/4m2
t = 1 are negligible. We also notice that, as ŝ increases, larger values of |t̂| are

allowed by the kinematics, and the relative importance of the HE expansion increases.

The improvement in convergence provided by the Padé approximants is such that
the merging of the two results discussed in the previous section can reproduce the exact
prediction with good accuracy for every value of t̂, for any ŝ. While we refrain from showing
more examples here, we note that we studied the behaviour of all the box contributions
to gg → HH and gg → ZH at several values of ŝ. We explicitly checked that, among
the various possibilities, a [6/6] HE-Padé is more than enough for an accurate merging.
Furthermore, we observed that the value |t̂| = 4m2

t is a good choice as a merging point for
the pT and HE Padé approximants. The high level of accuracy of our merging method can
be observed in figure 2, where the partonic cross section at LO is shown for gg → HH and
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Figure 2. Partonic cross section at LO for (a) gg → HH and (b) gg → ZH. The upper part of
each plot shows the exact prediction (solid line) together with the merging of the pT and HE Padé
approximants (dashed line). The bottom part of each plot shows the ratio of the merged result to
the exact prediction.

gg → ZH. One can see that deviations of the combination of the pT - and HE-Padé with
respect to the exact prediction never exceed 1%.

4 Merging the pT and HE expansions at NLO

In the previous section we showed that the merging of the pT - and HE-Padé can accurately
reproduce the exact LO prediction. In this section we present the merging of the NLO
pT -expanded and HE-expanded results improved by the respective Padé approximants.

In figure 3 the NLO contributions to F� and F2 are shown.3 The relative behaviour of
the various approximations is analogous to what we observed at LO. For low values of |t̂|
the fixed-order and Padé-improved pT -expanded results agree well. Increasing the value of
|t̂| up to the merging region, |t̂| ∼ 4m2

t , the pT -Padé becomes close to the Padé-improved
HE expansion. For values above |t̂| = 4m2

t the pT and HE Padé approximants show small
deviations as expected. The NLO study shows the same qualitative behaviour as the LO
one. This makes us confident that the proposed merging procedure works well also at NLO.

We now compare our evaluation of the virtual corrections for the di-Higgs production
process4 with the numerical result provided as a grid in ref. [34]. This reference summarizes
the work of ref. [29], where the numerical calculation in exact top-mass dependence of ref. [8]
was supplemented by the result in the HE expansion of ref. [22]. The comparison is done
on the quantity

∆σ̂virt =
∫ t̂+

t̂−

αs
32π2

1
ŝ2Vfindt̂, (4.1)

3FNLO
� and FNLO

2 are the form factors as defined in eq. (3.1) but do not contain the double triangle
diagrams that can be expressed in terms of products of one-loop integrals and as such are computed
analytically in exact top-mass dependence [16].

4We note that for ZH production no public code including the results of the full computation [11] is
currently available. Hence we refrain from making any comparisons for ZH production.
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Figure 3. Modulus of the box form factors contributing to gg → HH at NLO, for a fixed value of
(a,c)

√
ŝ = 0.9TeV and (b,d)

√
ŝ = 2TeV. The pT and HE expansions are shown as solid blue and

purple lines, respectively, while the [1,1] pT - and [6,6] HE-Padé are shown as dashed light blue and
pink lines, respectively.

where the finite part of the virtual corrections Vfin is defined as in ref. [27]. The results
are shown in figure 4. We note that Vfin depends on the choice of the IR subtraction,
this is why in the lower panel of figure 4 the difference between the expanded results and
the numerical grid of ref. [29] is shown (divided by the Born result), a quantity that is
independent of the IR subtraction term. The grid of ref. [34] shows very good agreement
with our results at every invariant mass, except for the first few bins at low MHH . The
reason is a large uncertainty of the numerical grid on the low MHH bins, that are described
by only a few points in the numerical grid due to their small contribution to the total cross
section. For moderate and largeMHH we observe differences below 1% in the ratio between
our results and the ones of ref. [29]. We confirm these findings by comparing our results
for Vfin with the values given in the grid [34] for various points at fixed (MHH , t̂). We
find a good agreement, as can be inferred from table 1 for some representative values. We
notice that in the region where both expansions perform less well we see differences of a
few percent, although the latter will be reduced in ∆σ̂virt due to the integration over t̂.
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Figure 4. Upper panel: ∆σ̂virt using the numerical grid provided in ref. [29] (dark blue line) and
our combination of HE expansion and small pT expansion (light blue dashed line). The lower panel
shows the absolute value of the difference between the two results, normalized to the partonic LO
cross section.

MHH [GeV] t̂ [GeV2] VPade
fin Vgrid

fin

280.9 −7.783 · 103 9.548 · 10−6 9.410 · 10−6

411.4 −6.627 · 104 4.520 · 10−4 4.510 · 10−4

586.96 −6.925 · 104 4.930 · 10−4 4.943 · 10−4

716.55 −1.816 · 105 4.430 · 10−4 4.298 · 10−4

1048.93 −2.133 · 105 2.952 · 10−4 3.104 · 10−4

1855.32 −1.678 · 106 2.497 · 10−4 2.498 · 10−4

Table 1. Comparison of various numerical values of Vfin taken from the grid of ref. [34] with our
Padé construction.

Finally, we show that our merging approach is flexible with respect to the modification
of the input parameters by computing the virtual corrections for various renormalisation
schemes of the top quark mass. It was noted in refs. [9, 10] that the di-Higgs production
process suffers from a large uncertainty associated to the renormalisation scheme of the
top quark mass. In particular, an uncertainty on the NLO cross section between +4% and
−18% [35] is related to the change from the on-shell renormalisation scheme to the MS
scheme for the top mass, with the latter evaluated at different values of the renormalisation
scale (mt, MHH and MHH/4). The results presented so far have been calculated using the
on-shell scheme for the top mass, however the form factors in the MS scheme can be
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obtained by simply shifting our result according to:

FNLO,MS
i = FNLO,OS

i − 1
4
∂FLO

i

∂m2
t

∆m2
t

(4.2)

with i = ∆,�, 2 and

∆m2
t

= 2m2
tCF

[
−4 + 3 log

(
m2
t

µ2

)]
. (4.3)

Notice that the numerical values for the top quark mass have to be adjusted to their
MS values, which we evaluate following refs. [36, 37]. Since the LO results are available
analytically, we can first build the Padé approximants of the pT - or HE-expanded FNLO,OS

i

form factors and then calculate the shift to the MS scheme using the full LO form factors
in eq. (4.2). Alternatively, we can use the expanded LO form factors to perform the shift
in eq. (4.2) order by order in the pT -expanded and the HE-expanded results, and then
build Padé approximants on the FNLO,MS

i form factors. The difference between these two
approaches turns out to be well below the 0.5 permille level everywhere except near the
top-mass threshold where the difference is at the percent level. For the gg → ZH process,
the shift to the MS scheme can be applied in analogy to eq. (4.2) on the associated form
factors.5 For the triangle contributions we always use the results available in full top-mass
dependence.

We present our results in figure 5. We observe that indeed the ∆σ̂virt show a non-
negligible dependence on the renormalisation scheme for the top quark mass. This holds
true both for gg → HH and for gg → ZH. In particular, for gg → ZH we see a shift of the
maximal value of the differential ∆σ̂virt, which is associated to the lower top quark mass
value. This may point to a significant uncertainty related to the top-mass scheme also in the
case of gg → ZH. We notice, however, that the effects observed in figure 5 are likely to be
partially compensated by similar modifications in the LO cross section and by the inclusion
of the real-emission corrections at NLO. Therefore, we use figure 5 only as an illustration of
the flexibility of the merging method discussed in this paper, and we leave a full assessment
of the effects due the change of the top-mass renormalisation scheme to a future work. For
the same reason we refrain from providing a full comparison with ref. [35] for gg → HH.

5 Conclusion

In this paper, we combined an expansion in small pT with a HE expansion for the processes
gg → HH and gg → ZH and we showed that this combination leads to results that describe
the whole phase space of the considered processes with high accuracy.

The expansion in small pT is valid for |t̂| . 4m2
t , while the HE expansion is valid for

|t̂| & 4m2
t and ŝ > 4m2

t . For a successful combination of the two expansion methods, we
extended the validity range of both expansions making use of simple Padé approximants.
This allowed us to describe also the region |t̂| ' 4m2

t very accurately.
We verified our method first at LO, where exact analytic results are available. At the

level of the differential partonic cross section, the difference with the results in exact top
5The ∆σ̂virt for gg → ZH was defined as in ref. [19].
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Figure 5. The integrated virtual corrections in different renormalisation schemes for the top quark
mass for (a) gg → HH and (b) gg → ZH. The dashed lines show ∆σ̂virt in the MS scheme using
the top quark mass evaluated at different choices of the renormalisation scale, while the black solid
line shows the on-shell result.

quark mass dependence never exceeded 1% for any of the MHH bins. In a second step, we
compared our results with a numerical grid containing the results of a computation in exact
top quark mass dependence for the gg → HH process [29]. Also at NLO we could verify the
good numerical accuracy of our approach, observing differences below 1% for the invariant
mass bins where the numerical accuracy of the grid is assumed to be sufficiently high.

We have also shown that in our analytic calculation the top quark mass renormalisation
scheme can be easily changed. This shows the great flexibility of our analytic approach
with respect to the numerical one. With a running time of well below 1 s per phase-space
point our results can be well implemented in a fast and versatile Monte Carlo program.
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