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Abstract

We perform a direct calculation of the gluon momentum fraction of the nucleon using maximally

twisted mass fermion ensembles with Nf = 2 + 1 + 1 flavors at a pion mass of about 370MeV and

a lattice spacing of a ≈ 0.082 fm and with Nf = 2 flavors at the physical pion mass and a lattice

spacing of a ≈ 0.093 fm. In the definition of the gluon operator we employ stout smearing to

obtain a statistically significant result for the bare matrix elements. In addition, we perform a

lattice perturbative calculation including 2 levels of stout smearing to carry out the mixing and the

renormalization of the quark and gluon operators. We find, after conversion to the MS scheme at

a scale of 2GeV: 〈x〉
R
g =0.284(23)(23) for pion mass of about 370MeV and 〈x〉

R
g =0.283(23)(15) for

the physical pion mass.

1 Introduction

The lattice calculation of moments of quark distribution functions has matured very much in the
last years, as can be seen in the reviews of [1, 2], for instance. In order to include disconnected singlet
contributions, present works employ large statistics [3, 4] and even computations for nucleon observables
directly at the physical value of the pion mass are being performed [5].

For these moments, a complete non-perturbative renormalization program has been developed and
applied in practice. Furthermore, first attempts to compute the quark distributions directly on the
lattice have recently been initiated [6, 7, 8]. All these activities by lattice groups working on nucleon
structure open the exciting prospect that lattice calculations will eventually provide precise results for
various nucleon moments, charges and form factors with high statistics and systematic effects under
control.

While the computations concerning the quark distribution functions are approaching a satisfactory
situation, the case of the gluon contributions is much less advanced. In fact, presently only a few
quenched results for the gluon momentum fraction (GMF) exist1 [10, 11, 12, 13]. This is a rather
unfortunate situation since the analysis of phenomenological PDF data [14] suggests that at a scale of
6.25 GeV2 for instance, all the quarks only contribute a fraction of about 60 percent to the total nucleon
momentum. This implies that gluons carry an essential part of the nucleon momentum, in order to
satisfy the sum rule

∑

q

〈x〉q + 〈x〉g = 1 . (1)

1
There has been a recent paper addressing the gluon spin contribution in the nucleon [9].
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Moreover, the phenomenological estimates of 〈x〉g have a significantly larger uncertainty than the cor-
responding quark moments. The GMF will also be an important input for the computation of the gluon
contribution to the nucleon spin.

In this work we perform a calculation of the lowest moment 〈x〉g of the gluon distribution function
fg(x) using lattice QCD within the maximally twisted mass formulation [15, 16]. We will use gluon field
configurations at a pion mass of about 370MeV but also at the physical pion mass.

The key to obtain results for the GMF is a combination of high statistics, the use of smeared
operators (cf. [17]) and the application of a suitable renormalization scheme that takes the mixing of
the gluon operator with the corresponding quark singlet operator into account. The last step is presently
done perturbatively but could be extended non-perturbatively in the future. We will see that employing
these steps will allow us to provide a quantitative result for 〈x〉g with dynamical quarks for the first
time. A first account of our results have been discussed in [18].

2 Theoretical setup

The gluon momentum fraction of a nucleon state 〈P | with 4-momentum Pµ can be extracted from
matrix elements of the gluonic QCD energy momentum tensor, see e.g. [19]

〈P |T {µν}g |P 〉 = 2〈x〉gP
{µP ν} , (2)

where the normalization 〈P |P 〉 = 2E is used and {· · · } represents symmetrization and subtraction of
the trace. EN is the energy of the nucleon. The gluonic energy momentum tensor itself is defined as

T {µν}g =
1

4
gµνGαβG

αβ −GµσGν
σ, (3)

where Gµν = T aGa
µν is the field strength tensor. Here and in the following equations there is an implicit

trace over the color indices of the field strength tensor and later also the plaquette term.
Based on the conventions used in [10], we construct the gluon operator2

Oµν = 2Tr[GµσGνσ] (4)

which contains the vector OAi and scalar OB operators

OAi = Oi4 and OB = O44 −
1

3
Ojj . (5)

With Eq. (2) the matrix elements of these operators can be directly related to the GMF as

〈P |OAi|P 〉 = i4ENPi〈x〉g (6)

〈P |OB |P 〉 = (−4E2
N −

2

3
P

2)〈x〉g . (7)

Eq. (6) indicates that in order to extract the GMF from matrix elements of OA, a non-zero momentum
for the nucleon fields is required, whereas the kinematic factor for the operator OB stays finite for zero
momentum. Thus, for zero momentum the form factor can be extracted as

〈P |OB |P 〉

〈P |P 〉
= −2mN 〈x〉g . (8)

Earlier calculations, see e.g. [20, 21], showed that employing a non-zero momentum in the definition
of the operator corresponding to the first moment of the quark distribution leads to a significantly
enhanced signal-to-noise ratio. We therefore have chosen the operator OB for the current calculation.
We nevertheless plan a test also of the operator OA in the future.

2
A factor of -2 was added in order to match the correct decomposition of the Energy-Momentum Tensor.

2



Utilizing Eq. (4), the operator OB can be expressed in terms of the field strength tensor as

OB = −
4

3





∑

j<k

G2
jk −

∑

i

G2
4i



 . (9)

This expression can now be transfered to the lattice definition of the GMF using the operator OB

through plaquette terms,

OB = −
4

9

β

a4





∑

i

Re(Ui4)−
∑

i<j

Re(Uij)



 . (10)

The operator in Eq. (10) involves two terms which are very similar in magnitude and have to be sub-
tracted. This points to the expectation that in order to obtain a precise result a high statistics and an
estimate of the correlation between these two terms are required.

3 Lattice calculation

In [18] we discussed the approach of employing the Feynman-Hellmann theorem to compute the gluon
momentum fraction. We demonstrated that using the Feynman-Hellmann theorem is in principle feasible
but it would require a substantial effort to obtain accurate results. Thus, we instead follow the path of
using the direct computation of the left-hand side of Eq. (8). This amounts to computing the ratio of a
three- and a two-point correlation function

〈x〉g
t<τ<t

′

= −
1

2mN

C3pt(t, τ, t′;P = 0)

C2pt(t, t′;P = 0)
. (11)

The space-time points (x, t), (x′, t′), (y,τ) denote the sink, source and operator insertion, respectively.
For the GMF, the relevant three-point function is the expectation value of two nucleon fields and

the operator OB from Eq. (5), the two-point function is defined in the usual way

C3pt(t, τ, t′;P = 0) =
∑

x,y

Γ+ 〈N(x)OB(y)N(x′)
〉

, (12)

C2pt(t, t′;P = 0) =
∑

x

Γ+ 〈N(x)N(x′)
〉

, (13)

where Γ+ = 1+γ4

2 is the parity plus projector and the standard definition for the nucleon interpolating
fields is used (cf. [5]). A schematic picture of the structure of the three-point function is shown in Fig. 1.
Because there are no quark fields in the operator, the three-point function can be written as the expecta-
tion value of a product of a nucleon two-point function with a gauge link dependent operator. Generally,
we call this a disconnected correlation function. Consequently, already existing two-point functions can
be re-used while only the gluon operator has to be calculated on the very same configurations with a
relatively small computational effort. In order to have an improved signal-to-noise ratio, we subtract
the vacuum expectation value of OB from the ratio, although strictly speaking this is not necessary
since the expectation value of OB vanishes.

4 Lattice setup

Our first benchmark calculation is based on 2298 gluon field configurations on a 323×64 lattice from an
ETMC (European Twisted Mass Collaboration) production ensemble [22] labeled B55.32. It features
Nf = 2 + 1 + 1 flavors of maximally twisted mass fermions, i.e. two mass degenerate light quarks and
non-degenerate strange and charm quarks. The ensemble has a bare coupling corresponding to β = 1.95,

3



O(y, τ)

N(x
′

, t
′

) N(x, t)

Figure 1: Schematic picture of Wick contractions for the three-point functions with a disconnected gluon loop.

Nf β L/a, T/a csw κ aµ mPS a measurements
[MeV] [fm]

B55.32 2+1+1 1.95 32,64 0 0.161236 0.0055 370 0.082 34470
cA2.09.48 2 2.1 48,96 1.57551 0.13729 0.0009 130 0.093 209400

Table 1: Parameters of two different gauge ensembles that are used in the computation of the GMF. We also

give the number of measurements used for the computation.

which yields a lattice spacing of a ≈ 0.082 fm [23] and the twisted mass parameter aµ = 0.0055, which
corresponds to a pion mass of mPS ≈ 370MeV. For the two-point function, 15 different source positions
are used on each of the 2298 gauge field configurations. This sums up to 34470 measurements, each for
proton, neutron and two different time directions.

We also include a second ensemble obtained at the physical value of the pion mass [24], which is
labeled cA2.09.48. Here Nf = 2 flavors of maximally twisted mass fermions are employed, together

with a clover term with coefficient csw = 1.57551 on a 483×96 lattice. The bare coupling corresponds to
β = 2.1, which leads to a lattice spacing of a ≈ 0.093 fm, set with the nucleon mass [5]. The twisted mass
parameter is set to aµ = 0.0009, which corresponds, within errors, to a setup with physical pion masses.
The analysis is done on 2094 configurations with 100 different source positions each, which amounts
to a total of 209400 measurements. For the quark fields that make up the nucleon interpolating field,
standard smearing methods (Gaussian and APE) were used, which are known to increase the overlap of
the interpolating fields with the nucleon ground state while decreasing the overlap with excited states
and thus improving the results for nucleon spectroscopy and structure, cf. [25] and references therein.

5 Bare results and stout smearing

In our first attempt to compute the GMF directly we applied the gluon operator OB from Eq. (10)
without any additional smearing. However, in this setup we were not able to detect any signal despite
the large statistics of 34470 measurements on the B55.32 ensemble, cf. Tab. 1, see Fig. 2 in [18].

One possible solution to overcome the bad signal-to-noise problem has been suggested in [17], where
the authors propose to use HYP smearing [26] for the gauge links in the gluon operator. However, HYP
smearing is a non-analytic procedure; this fact raises some conceptual issues, and it is also implies that
the perturbative lattice calculation for the desired renormalization functions would be very cumbersome.

Thus, we switch to stout smearing of the gauge links, as introduced in [27]. This is an analytic link
smearing technique where the gauge links are smeared according to

U (n+1)
µ = exp

(

iQ(n)
µ

)

U (n)
µ , (14)

where Qµ is a particular linear combination of perpendicular gauge link staples that are weighted with

4
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Figure 2: Inverse signal-to-noise ratio as a function of the number of stout smearing steps. The ratio shown

here is the average error of plateau values divided by the result of a plateau fit for 10 steps of smearing. All

results are given for a source-sink separation of ts/a = 10. Here the B55.32 ensemble was used, cf. Tab. 1.

the factor3 ω, cf. [27] for details. Here, we use the isotropic four-dimensional scheme and ω is tuned so
that the plaquette reaches a maximal value for a given number of smearing steps.

We tested the effect of stout smearing on the signal-to-noise ratio by applying up to 14 smearing
steps. To this end, we computed the average error of the plateau values for each level of smearing
normalized by the plateau value that was extracted using 10 steps of smearing. The inverse signal-to-
noise ratio as a function of the number of stout smearing steps is shown in Fig. 2.

From the analysis described above it can be observed that indeed with an increasing number of
stout smearing steps the signal-to-noise ratio can be substantially improved. While the improvement
for a smaller number of smearing steps is quite significant, one notices a saturation for a larger number
of steps. For the B55.32 ensemble, 10 steps of stout smearing with the parameter ω = 0.1315 are used.
The results for the effective GMF from this ensemble are shown in Fig. 3.

It can be seen that through the application of stout smearing a statistically significant result for
the plateau values is obtained. In order to analyze the influence of excited states on the plateau value,
we combine results for several source-sink separations ts = t − t′ and operator insertions τ . Often, a
strong excited state influence is present if the plateau values differ for different source sink separations.
For the case of the GMF and within the present statistical error, we cannot detect any significant
dependence. Our final result of the bare GMF is extracted from a combined plateau fit to several
source-sink separations. The result for the corresponding bare GMF can be found in Eq. (15). Here only
statistical errors are given.

The results for the second ensemble with a physical value of the pion mass are presented in Fig. 4.
In this case we applied 20 steps of stout smearing with ω = 0.1315. Again, there is no evidence of a
large influence of excited states within the statistics employed here. For the ensemble at the physical
point, we extract the value of the GMF from a combined plateau fit to the shown values and give the
result for the bare GMF in Eq. (15).

B55.32 : 〈x〉bare
g = 0.290(23)

cA2.09.48 : 〈x〉bare
g = 0.318(24) (15)

3
This parameter is called ρ in the original work, but in recent works and also here it is labeled as ω.
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6 Renormalization - Final results

Yet another challenge regarding the computation of the physical value of the gluon momentum fraction
is the fact that the lattice result has to be renormalized. Since the gluon operator is a flavor singlet
operator, it will certainly mix with others, the quark singlet operator, for instance. In total, mixing with
operators that are gauge invariant, BRS-variations, or vanish by the gluon equations of motion (e.o.m)
[28] also appears. Due to this mixing appropriate renormalization conditions require computation of
more than one matrix elements, in order to extract the renormalization factors from a non-perturbative
lattice calculation. This places additional difficulties compared to the renormalization procedure for
other operators that are relevant for nucleon structure [29]. Consequently, a different approach has
to be found, and in the framework of this paper we employ a one-loop perturbative renormalization
procedure. In this section we briefly describe the setup of the calculation and final results needed to
renormalize the GMF. Complete results will appear in a following publication [30].

The basis of operators that mix with each other (to one-loop) is (see, e.g., [31])

Oµν
1 = 2Tr

[

G{µρGν}ρ
]

(16)

Oµν
2 = ψ̄ γ{µD

↔ ν}ψ (17)

Oµν
3 =

1

α

[

(∂µAν + ∂νAµ) (∂ρAρ)−
1

2
δµν (∂

ρAρ)
2
]

+ ghost terms (18)

Oµν
4 =

1

α

[

− (∂µAν + ∂νAµ) (∂ρAρ)−
1

2
δµνA

ρ∂ρ∂σAσ
]

+ ghost terms (19)

Oµν
5 = Aν δS

δAµ +Aµ δS

δAν −
1

2
δµν

∑

ρ

Aρ δS

δAρ (20)

where D
↔

= (
→

D −
←

D )/2. Oµν
1 is the gluon operator under study, Oµν

2 is the corresponding quark
operator, Oµν

3 and Oµν
4 are BRS variation (they only differ by a total derivative) and Oµν

5 vanishes
by the equations of motion. The ghost parts of operators Oµν

3 and Oµν
4 are irrelevant for this one-loop

computation and are not presented here.
From this point forward we concentrate on the singlet case, µ = ν, and we drop the Lorentz indices,

that is: Oi ≡ Oµµ
i (i = 1, · · · , 5). Furthermore, we indicate by O1 the combination resulting OB , in

order to have the correct mixing coefficients. To identify and extract the multiplicative renormaliza-
tion function of the gluon operator O1, one must construct a mixing matrix with elements that are
appropriate Green’s functions of the above operators. However, mixing with O3 - O4 vanishes at 1-loop
level and the matrix elements of the operator O5 between physical states vanish; the mixing matrix
simplifies considerably. In particular, the only Feynman diagrams that enter our one-loop calculation
are those of the operators O1 and O2, within external quarks and gluons. As we are interested in the
renormalization of the operator O1 only, we present the relevant Feynman diagrams in Figs. 5 - 6.

The most important consequence of the vanishing physical matrix elements of O3 - O5 is that the
ratio shown in Eq. (8) is a linear combination of contributions from only O1 and O2. Note, however,
that to correctly identify the multiplicative renormalization of O1, the operators O3 - O5 must be taken
into account in the perturbative renormalization procedure (see Eq. (30)).

To make contact with phenomenological and experimental data, one needs the renormalization
functions in the MS scheme. One way to extract them is to use an RI-type renormalization prescription
and then apply a conversion factor to the MS scheme. Alternatively, and preferably in our case, one can
avoid intermediate schemes by performing the computation in both dimensional (DR) and lattice (L)
regularizations; one then extracts all relevant renormalization functions by demanding that renormalized
lattice Green functions coincide with the corresponding ones in (DR), in the a → 0 limit (cf. [32] for a
similar application). Let us briefly outline this procedure below.

In cases of operator mixing, renormalized operators are related to the bare ones via ÔR = Ẑ Ô. In
our case Ẑ is a 5× 5 mixing matrix of the form

Ẑ = 1̂ +O(g2) , (21)

7



Figure 5: One-loop Feynman diagrams contributing to the multiplicative renormalization of O1.

Figure 6: One-loop Feynman diagrams contributing to the mixing coefficient in O1 due to O2.

where g is the renormalized coupling constant. In this paper we are interested in the renormalization of
the gluon operator, O1, and we only need to compute the first row of the mixing matrix to one-loop,
which has only two non-zero matrix elements, that is Z11 and Z12. Alternatively, we write

OR
α =

∑

β

ZαβOβ α, β = 1, 2 . (22)

In a more convenient notation, the X-X bare amputated Green’s functions (X = 1(2): corresponds to
a gluon(fermion) field) that can be expressed in terms of the renormalized Green’s functions, that is

〈XOαX〉 = Z−1X

∑

β

(

Z−1
)

αβ
〈XOβX〉R (23)

where ZX is the renormalization function of the fermion/gluon field, defined via

Ψ =
√

ZqΨ
R Aν =

√

ZAA
R
ν (24)

Dimensional Regularization

Next, we present the results in Dimensional Regularization for the amputated Green’s functions
entering the renormalization of the gluon operator, O1. The renormalization functions in the MS scheme
in DR are defined such as to cancel the divergent parts of the matrix elements. The expressions related
to the one-loop renormalization of the gluon operator reduce to

Λ1−loop
11

∣

∣

∣

∣

∣

1/ǫ

= (−zA − z11) Λ
tree
11 − z31Λ

tree
31 − z41Λ

tree
41 − z51Λ

tree
51 (25)

Λ1−loop
12

∣

∣

∣

∣

∣

1/ǫ

= −z12Λ
tree
12 (26)

8



where ΛaX ≡ 〈XOαX〉 and z’s are the one-loop contributions of the corresponding renormalization
functions, that is

ZA = 1 + zA +O(g4) (27)

Zii = 1 + zii +O(g4) (28)

Zij = 0 + zij +O(g4) (29)

It should be noted that, modulo a total derivative, the gluon part of O3 and O4 coincide (Λtree
31 = Λtree

41 )
and, thus we cannot disentangle z31 and z41 from the Green’s functions we study. However, this does
not affect the extraction of z11.

In our one-loop calculation we find:

Λ1−loop,DR
11

∣

∣

∣

∣

∣

1/ǫ

=
g2

16π2

Nc

ǫ

[

Λtree,DR
11

(

−
5

3
−
β

2

)

−
(

Λtree,DR
31 + Λtree,DR

41

)

− 2Λtree,DR
51

]

(30)

Λ1−loop,DR
12

∣

∣

∣

∣

∣

1/ǫ

=
g2

16π2

N2
c − 1

ǫNc

Λtree,DR
22

(

5

3
+ β

)

(31)

By definition, the finite terms of Λ1−loop,DR
ij do not appear in the evaluation of Z1−loop,DR

ij , but they

are key elements in obtaining ZL,MS
ij as explained below.

Let us slightly modify our notation and use the gluon and quark momentum fraction of the nucleon,
〈x〉g and 〈x〉q, which are more relevant for this paper. For demonstration purposes we will represent the
mixing of physical matrix elements as a 2× 2 matrix

(

〈x〉g
∑

q〈x〉q

)

=

(

Z11 Z12

Z21 Z22

)(

〈x〉bare
g

∑

q〈x〉
bare
q

)

. (32)

Thus, the physical result of the gluon momentum fraction can be related to the non-perturbative results
for 〈x〉g and 〈x〉q by

〈x〉Rg = Z11〈x〉g + Z12

∑

q

〈x〉q , (33)

where a certain scheme, e.g. MS, and an energy scale µ have to be chosen. The expressions for Z11 and
Z12 in DR and in the MS scheme are

Z11 = 1 +
g2 Nf

16π2

2

3 ǫ
(34)

Z12 = 0−
g2 Cf

16π2

8

3 ǫ
(35)

where Cf = N
2

c
−1

2N
c

.

Lattice Regularization

To obtain the corresponding lattice results for Zij in the MS scheme we will make use of the DR
results, so that an indermediate RI-type prescription is avoided. Renormalizability of the theory implies
that the difference between the one-loop renormalized and bare Green’s functions is polynomial in the
external momentum (of degree 0, in our case, since no lower dimensional operator mix); this results in an

9



ZL,MS
11 ZL,MS

12

0-stout 1-stout 2-stout 0-stout 1-stout 2-stout
B55.32 0.9481 1.0043 1.0134 0.1720 0.0278 -0.0168

cA2.09.48 0.8985 0.9506 0.9590 0.1120 -0.0070 -0.0436

Table 2: Multiplicative renormalization and mixing coefficient for the gluon operator. Results are given in the

MS scheme at a scale of 2GeV.

appropriate definition of the momentum-independent renormalization functions ZL,MS
ij . More precisely,

for the operators under study we find to one loop

〈AνO1Aν〉
DR,MS − 〈AνO1Aν〉

L =
(

zL,MS
A + zL,MS

11

)

Λtree
11

+
(

zL,MS
31 + zL,MS

41

)

Λtree
31 + zL,MS

51 Λtree
51 (36)

〈ΨO1Ψ〉DR,MS − 〈ΨO1Ψ〉L = zL,MS
12 Λtree

22 (37)

It should be noted that the smearing of the operator modifies its renormalization factor, and thus for
a proper renormalization it is required to apply the same smearing in the perturbative calculation. The
main technical difficulty in such a case is that the smearing leads to extremely lengthy expressions for
the operator’s vertices. For example, the 4-gluon vertex for two smearing steps with general smearing
parameters, ω1 and ω2, contains approximately 335,000 terms. This places severe limitations on the
number of smearing iterations we can apply to the operator. In our computation we extract the vertices
with up to two stout smearing steps with distinct parameters. This allows us to compare values of
the renormalization functions for the single- and doubly-smeared operator. Moreover, the perturbative
calculation is performed for general action parameters, so that the results are applicable for a variety
of gluon/fermion actions.

The general expressions for Z11 and Z12 are complicated 4th-degree polynomials of ω1 and ω2, and
cannot be presented here. Thus, we write them in a compact form, as a function of the quantities

e
(i)
11/12 ≡ e

(i)
11/12(ω1, ω2), which also depend on the gluon action parameters

ZL,MS
11 = 1 +

g2

16π2

(

e
(1)
11

Nc

+ e
(2)
11 Nf −

2Nf

3
log(a2µ̄2)

)

(38)

ZL,MS
12 = 0 +

g2 Cf

16π2

(

e
(1)
12 + e

(2)
12 cSW +

8

3
log(a2µ̄2)

)

. (39)

The computation of the quantities e
(i)
11/12 is the most laborious part of the perturbative work and required

the equivalent of approximately 40 years of computation on a single CPU. This includes, among other
parts, the integration of the internal loop momentum for several lattice sizes and the extrapolation to

the infinite volume limit. The numerical results for the the multiplicative renormalization function, ZMS
11

and the mixing coefficient, ZMS
12 , are given in Tab. 2 in the MS scheme at a scale of 2GeV. The statistical

errors associated with the infinite volume extrapolation are smaller than the accuracy presented in the
table. One can observe that the effect of additional smearing steps tends to become suppressed. This
is due to the polynomial dependence on ω1 and ω2, combined with the fact that their numerical value
is very small. It is expected that the effect of further smearing steps will be smaller than the difference
between the 1- and 2-stout results shown in Tab. 2. Thus, we employ the renormalization factors using
the 2-stout results to renormalize the matrix element presented in Section 5.

According to Eq. (33) the bare quark momentum fraction enters the renormalization prescription of
the gluon momentum fraction, and using the bare results computed in [25, 5]

B55.32 : 〈x〉u+d = 0.586(22)

cA2.09.48 : 〈x〉u+d = 0.488(13) (40)
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we find the following values for the renormalized gluon momentum fraction in the MS at µ = 2GeV

B55.32 : 〈x〉Rg = 0.284(23)(23)

cA2.09.48 : 〈x〉Rg = 0.283(23)(15) (41)

The numbers in the first parenthesis correspond to the statistical error, while in the second is the
systematic resulting from the difference between the single- and doubly- smeared results; this is within
the statistical errors.

Taking into account the disconnected quark contribution has little effect on 〈x〉Rg due to the small
disconnected contributions and the mild mixing we find by including stout smearing in the calculation.
Complete results on the quark and gluon momentum fraction will appear in a separate publication.

7 Conclusion and outlook

In this paper we applied the direct method to compute the average momentum fraction of the gluon
and the singlet, light quark contribution in the nucleon, 〈x〉g and 〈x〉q, respectively. In order to obtain
statistically significant results for the involved, purely disconnected 3-point functions, several steps of
stout smearing to the gauge links that enter the operator were employed. Nevertheless, a substantial
amount of measurements was needed to obtain a good signal with an about 10% statistical error.

We computed the average momentum fraction for two gauge field ensembles. The first has Nf=2+1+1
flavors representing the first two quark generations at a pion mass of about 370 MeV with 34470 mea-
surements. The second ensemble has been for Nf=2, mass degenerate up and down quarks at the
physical value of the pion mass, with 204900 measurements. The number of measurements for the two
cases allowed us to obtain statistically significant values for the bare matrix elements (see Eq. (15)).

Since the required gluon operator is a singlet operator, it mixes with the corresponding singlet quark
operator. As a consequence, the renormalization of the gluon operator is highly non-trivial since this
mixing has to be taken into account. To this end, we have performed a perturbative calculation for the
mixing and the renormalization. This has been done in the dimensional and the lattice regularizations.
Moreover, the stout smearing that we > employed in the lattice computation of the bare matrix >
element had to be taken into account in the perturbative calculation. This led to a very complicated
perturbative calculation which involved several diagrams with O(100000) intermediate expressions. Still,
we could demonstrate that with the inclusion of two stout smearing levels a saturation of the renormal-
ization functions could be observed. The renormalization functions obtained in this manner have been
used for the renormalization of gluon and the corresponding singlet quark moments. The final results
for the so renormalized gluon and quark singlet quantities are summarized in Eq. (40) and Eq. (41).
The values can serve for a comparison with a phenomenological extraction of these quantities from
deep inelastic scattering experiments. Our results also demonstrate that the gluon indeed contributes a
significant amount of the momentum fraction of about 30%.

Our calculations can be extended to evaluate the spin content of the nucleon, a topic we would like
to report on in the future. In addition, the renormalization constants computed here can directly be
used for the renormalization of the corresponding average fractional momenta of the pion.
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