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tion of Ang II effects suppresses GLUT1 and cellular glucose 

uptake. GLUT1-mediated glucose flux leads to metabolism 

of glucose via glycolysis, with induction of DAG, PKC, TGF-β 1 , 

CTGF and VEGF. VEGF in turn triggers both GLUT1 and matrix 

synthesis. New roles for GLUT1-mTOR and GLUT1-mechano-

growth factor interactions in diabetic glomerulosclerosis 

have also recently been suggested. Recent mouse models 

confirmed roles for GLUT1 in vivo in stimulating glomerular 

growth factor expression, growth factor receptors and de-

velopment of glomerulosclerosis. GLUT1 may therefore act 

in concert with cytokines and growth factors to induce dia-

betic glomerulosclerosis. Further clarification of the path-

ways involved may prove useful for the therapy of diabetic 

nephropathy. New directions for investigation are discussed. 

 Copyright © 2013 S. Karger AG, Basel 

 Introduction 

 Diabetic nephropathy is the leading cause of end-stage 
kidney failure in the United States  [1] . The disease is char-
acterized by the accumulation of extracellular matrix pro-
tein in the mesangial space with mesangial expansion, 
thickening of the glomerular and tubular basement mem-
branes, and tubulointerstitial fibrosis  [2, 3] .
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 Abstract 

 Diabetic glomerulosclerosis is characterized by accumula-

tion of extracellular matrix proteins, mesangial expansion, 

and tubulointerstitial fibrosis. Hyperglycemia accelerates 

development of the disease, a direct result of increased in-

tracellular glucose availability. The facilitative glucose trans-

porter GLUT1 mediates mesangial cell glucose flux which 

leads to activation of signaling cascades favoring glomeru-

losclerosis, including pathways mediated by angiotensin II 

(Ang II), transforming growth factor β (TGF-β), connective 

tissue growth factor (CTGF), and vascular endothelial growth 

factor (VEGF). Ang II has both hemodynamic and metabolic 

effects directly inducing GLUT1 and/or matrix protein syn-

thesis through diacyl glycerol (DAG) or protein kinase C 

(PKC) induction, mesangial cell stretch, and/or through 

transactivation of the epidermal growth factor receptor, the 

platelet-derived growth factor receptor, and the insulin-like 

growth factor-1 receptor, all of which may stimulate GLUT1 

synthesis via an ERK-mediated pathway. Conversely, inhibi-
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  The exact pathogenesis of diabetic nephropathy is un-
known; however, hyperglycemia has been shown to ac-
celerate the development of clinical nephropathy in the 
Diabetes Control and Complications Trial (DCCT)  [4, 5] . 
In this regard, the DCCT and the United Kingdom Pro-
spective Diabetes Study (UKPDS) demonstrated a clear 
link between hyperglycemia and the development of mi-
crovascular complications  [4, 5] . In addition, the treat-
ment of diabetics with pancreatic transplantation and 
normalization of serum glucose levels has been associated 
with regression of diabetic glomerular disease  [6] .

  Hyperglycemia has also been shown to drive the pro-
duction or expression of many factors associated with the 
development of diabetic nephropathy, including angio-
tensin II (Ang II), transforming growth factor β (TGF-β), 
connective tissue growth factor (CTGF) and vascular en-
dothelial growth factor (VEGF)  [7] . This suggests that in-
creased intracellular glucose availability may represent an 
important proximal stimulus in the development of fi-
brosis by activating these mediators.

  At the cellular level, hyperglycemia generates inces-
sant metabolic pressure for the activation of glucose-de-
pendent biochemical and enzymatic pathways. In the 
kidney, the facilitative glucose transporter GLUT1 is a 
primary gatekeeper of this process by regulating glucose 
movement into the cell. Furthermore, in the glomerular 
mesangial cell the expression of GLUT1 is the rate-limit-
ing step for glucose flux and utilization  [8] . At the level of 
the organism, all of the above processes are highly inte-
grated. To address these events in vivo, several novel 
transgenic mouse models have helped to advance our un-
derstanding of the role of GLUT1 in the development of 
glomerulosclerosis and nephropathy  [9–11] .

  GLUT1-facilitated transport of glucose results in the 
activation of signaling cascades favoring glomeruloscle-
rosis  [8, 10–12] . Thus, GLUT1 activity may be a regulator 
of the development of fibrosis in this disease. In support 
of this contention, mesangial cells overexpressing GLUT1 
and cultured in normal glucose exhibit a diabetic pheno-
type with an increase in matrix protein synthesis  [8] . In 
addition, transgenic mice overexpressing GLUT1 devel-
op diabetic glomerulosclerosis and nephropathy despite 
normoglycemia  [10] . Conversely, overexpression of a 
GLUT1 antisense sequence prevented diabetic changes in 
mesangial cells cultured in high glucose  [13] , and in vivo, 
transgenic db mice expressing an antisense sequence to 
glomerular GLUT1 did not develop diabetic glomerulo-
sclerosis despite hyperglycemia  [14] . These data imply a 
regulatory role for GLUT1 in mediating the activation of 
pro-sclerotic events in diabetes, and suggest an addition-

al active rather than a simple facilitative role of the trans-
porter in this process.

  The goal of this review is to assess the evidence sup-
porting GLUT1 as a regulator of the cytokines and growth 
factors promoting diabetic glomerulosclerosis and ne-
phropathy, and explore a new paradigm for GLUT1 in 
mediating the pathogenesis of this disease.

  Facilitative Glucose Transport by GLUT1 and 

Diabetic Nephropathy 

 Enhanced cellular glucose uptake is mediated by the 
facilitative glucose transporter proteins (GLUT), part of 
a super family of SLC (solute carrier) genes  [15] . At least 
14 GLUT transporters have been identified and exhibit a 
broad distribution with tissue-specific regulation  [15] . 
The GLUT proteins are hexose transporters with sub-
strate specificity for glucose, fructose, and/or galactose 
 [15] . Structurally, the GLUT proteins are thought to have 
12 transmembrane domains, with an intracellular loop 
between domains 6 and 7, and, depending on the specific 
transporter, a long glycosylated extracellular loop be-
tween domains 1 and 2 or domains 9 and 10  [15] . The 
mechanisms by which the GLUT proteins transport their 
substrates are not fully defined, but it has been suggested 
that each transporter may have a form of selectivity filter 
at the entrance to the pore created by the protein  [15] .

  In the glomerulus, GLUT1 and GLUT4 are the pri-
mary glucose transporters  [16] , with GLUT1 predomi-
nating in mesangial cells  [17] . Under hyperglycemic con-
ditions typical of the diabetic milieu, mesangial cell 
GLUT1 synthesis and expression is increased and is as-
sociated with enhanced glucose flux  [18] . Similarly, over-
expression of GLUT1 in mesangial cells cultured under 
normal glucose conditions mimics the diabetic state, and 
results in significant increases in both glucose uptake and 
utilization, as well as activation of matrix protein synthe-
sis  [8, 19] . These responses were prevented when an an-
tisense sequence to GLUT1 was overexpressed in mesan-
gial cells cultured in high glucose  [13] . Thus, GLUT1 ex-
pression is the rate-limiting step for the movement of 
glucose into the cell, regardless of the extracellular glu-
cose concentration.

  Increased GLUT1 expression stimulates glucose flux 
and utilization, and thus triggers all downstream respons-
es associated with increases in glucose availability. Fac-
tors known to stimulate the GLUT1 gene include glucose, 
serum, growth factors, hypoxia and hyperosmolarity  [20–
23] . The diverse number of activators of GLUT1 synthesis 
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implies an important role for glucose flux and utilization 
from a variety of environmental stimuli, and suggests that 
GLUT1 may contribute to the regulation of glomerulo-
sclerosis through these pro-sclerotic signaling pathways. 
Clinically, these events could have a direct effect on the 
pathogenesis of both diabetic and nondiabetic forms of 
glomerulosclerosis.

  Recent developments highlighting a central role for 
GLUT1 in the development of mesangial matrix protein 
accumulation in glomerulosclerosis is further supported 
by three in vivo studies. First, overexpression of GLUT1 
in nondiabetic C57BL6 mice resulted in the development 
of changes consistent with diabetic glomerulosclerosis 
 [10] , and suggests that an increase in GLUT1-mediated 
glucose flux is sufficient to drive pro-sclerotic pathways 
leading to diabetic glomerulosclerosis. Second, nondia-
betic, nephron-deficient Fvb mice develop glomerulo-
sclerosis in conjunction with increased GLUT1 synthesis 
and expression  [10] . This work indicates that stimuli as-
sociated with reduced nephron mass, including glomeru-
lar hypertension with mesangial cell stretch, are sufficient 
to trigger increases in GLUT1 expression. Finally, it has 
been demonstrated in a preliminary report that mesan-
gial mechano-growth factor (MGF), a splice variant of 
insulin-like growth factor-1 (IGF-1) involved in tissue re-
pair and hypertrophy, is increased in glomeruli of dia-
betic mice and in nondiabetic GLUT1 – overexpressing 
transgenic mice  [24] , and is part of a GLUT1-MGF-pos-
itive feedback loop driving mesangial fibronectin synthe-
sis  [25] . In addition, recent data suggest a role for GLUT1-
induced mTOR in mesangial dysfunction and glomerular 
disease in diabetes  [26] . In experiments where GLUT1 
was overexpressed in mesangial cells in the absence of 
high extracellular glucose, glucose flux and mTOR activ-
ity were increased. Increased mTOR activity also leads to 
increased GLUT1 and glucose flux  [26] . These data to-
gether suggested a feed-forward mechanism resulting in 
persistently increased GLUT1 and mTOR activity in dia-
betic glomeruli  [26] .

  Taken together, these data provide compelling evi-
dence for a direct role of GLUT1 in facilitating the devel-
opment of both diabetic and nondiabetic forms of glo-
merulosclerosis and would suggest that GLUT1 may be 
an important proximal regulator in the development of 
this disease. To address this question in the context of 
diabetic glomerulosclerosis, the following sections will 
examine the interactions between GLUT1 and the cyto-
kines and growth factors mediating the development of 
the disease, and seek to define the role of GLUT1 as a po-
tential gatekeeper of the these pathologic pathways.

  Pro-Sclerotic Mediators of Diabetic Nephropathy 

and GLUT1 

 Angiotensin II ( fig. 1 a) 
 Ang II is a vasoactive cytokine mediating its major ef-

fects via the AT1 receptor  [27] . In the kidney, Ang II has 
both hemodynamic and metabolic effects  [28, 29] . In dia-
betes, increased glucose availability may increase Ang II 
levels by stimulating synthesis  [30]  or through vasoactive 
responses to a reduction in glomerular filtration surface 
area  [31] .

  The AT1 receptor is a G-protein-linked receptor inter-
acting with several intracellular signal conduction path-
ways. Through G proteins, the AT1 may trigger second 
messengers including diacyl glycerol (DAG) and reactive 
oxygen species  [27] . DAG is also a product of glucose me-
tabolism and is known to stimulate gene transcription via 
the protein kinase C (PKC) activation pathway  [32] .

  Ang II signaling pathways interact with GLUT1 at sev-
eral levels, providing potential opportunities for GLUT1 
to amplify the pro-sclerotic effects of Ang II. In this re-
gard, DAG production leads to an increase in GLUT1 
gene expression via PKC  [19, 21] . An increase in GLUT1 
expression results in enhanced glucose flux and utiliza-
tion, which triggers production of more DAG and addi-
tional PKC activation. The latter also includes stimula-
tion of extracellular matrix protein synthesis and directly 
promotes the development of sclerosis  [19, 33] . In this 
regard, mesangial cells overexpressing GLUT1 activate 
the PKCα and PKCβ1 isoforms with subsequent increas-
es in the activating protein 1 (AP-1) transcription factor 
 [34] . AP-1 binding to the fibronectin gene resulted in en-
hanced fibronectin synthesis  [34] .

  Ang II has also been shown to trigger GLUT1 gene ex-
pression in association with epidermal growth factor 
 receptor (EGFR) transactivation  [35] . In this pathway, 
EGFR activation may lead to an induction of ERK  [27] , 
which has been shown to induce the GLUT1 gene and 
protein synthesis  [36] . In mesangial cells, Ang II trans-
activation of platelet-derived growth factor receptor 
(PDGFR) and IGF-1 receptor (IGF-1R) may also repre-
sent additional stimuli to ERK activation  [27] .

  The vasoactive effects of Ang II may stimulate GLUT1 
synthesis  [29] . In this regard, an increase in GLUT1 ex-
pression has been observed following mesangial cell 
stretch  [11]  and in conjunction with a nephron-deficient 
mouse model with glomerular hypertension and hyper-
perfusion  [11, 37]  and in Milan normotensive rats  [38, 
39] , all of which would be an expected result of Ang II 
vasoactivity  [40] . Furthermore, in 2010, Wang et al.  [11]  
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linked GLUT1 expression and mesangial cell stretch to 
VEGF production and an associated increase in matrix 
protein synthesis, providing an additional conduit for 
Ang II induction of both GLUT1 and matrix protein syn-
thesis. Finally, studies with ramipril in vivo and losartan 
in vitro have indicated that inhibition of angiotensin-

converting enzyme or angiotensin receptor-1 can sup-
press renal cortical GLUT1  [41]  and mesangial glucose 
uptake  [42] , respectively. Ramipril reduced renal cortical 
angiotensin-converting enzyme activity and GLUT1 ex-
pression in diabetic, hypertensive rats  [41] , while losartan 
blunted the effects of high glucose on mesangial cell 
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GLUT1, GLUT4, glucose uptake and fibronectin expres-
sion  [42] . These data suggested potential protective ef-
fects of the drugs via these mechanisms against progres-
sion of diabetic nephropathy.

  Taken together, the above studies demonstrate inter-
actions between Ang II and GLUT1 through both meta-
bolic and mechanical pathways. These events offer sev-
eral examples of Ang II-driven processes that also stim-
ulate GLUT1 synthesis, and thus trigger pro-sclerotic 
pathways resulting from increased glucose flux. In this 
model, GLUT1 may act to amplify the pro-fibrotic effects 
of Ang II, and thus serve as a potential regulator of the 
process.

  Transforming Growth Factor β ( fig. 1 b) 
 TGF-β is a pro-sclerotic cytokine directly involved in 

the pathogenesis of diabetic glomerulosclerosis and inter-
stitial fibrosis  [43] . TGF-β activity is increased by a variety 
of stimuli  [43] , including hyperglycemia  [44] , DAG  [32] , 
Ang II  [45] , and cyclic mesangial cell stretch  [46] . TGF-β 
promotes glomerulosclerosis and interstitial fibrosis by 
stimulating matrix protein synthesis  [44, 47]  and inhibit-
ing degradation  [48] .

  TGF-β signaling is mediated through a receptor com-
plex that activates the Smad protein system  [49] . Smad 
activation results in the assembly of a DNA-binding pro-
tein that can activate matrix protein synthesis, angiogen-
esis, and apoptosis  [50] . TGF-β may also signal through 
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  Fig. 1.  Interactions of GLUT1 with six putative mediators of dia-
betic glomerulosclerosis.  a  Ang II. Hyperglycemia triggers Ang II 
production which induces GLUT1 expression and a GLUT1 am-
plification cascade. Progressive nephron loss from glomeruloscle-
rosis also increases Ang II and GLUT1. Ang II and GLUT1 activa-
tion of PKC also promote glomerulosclerosis through TGF-β-
dependent and -independent pathways.  b  TGF-β. A GLUT1 
amplification loop is augmented by TGF-β production which is in 
turn driven by hyperglycemia and GLUT1 activation of PKC. As 
glomerulosclerosis progresses, mesangial cell stretch also induces 
TGF-β production. The increase in TGF-β stimulates additional 
GLUT1 expression, invoking a GLUT1 amplification cascade. 
 c  CTGF. CTGF is activated by hyperglycemia, TGF-β and an au-
toinduction cascade. In the presence of elevated glucose levels and 

mesangial cell stretch, GLUT1 is activated and increases CTGF 
expression through TGF-β.  d  VEGF. Hyperglycemia and GLUT1 
induce VEGF synthesis, which in turn activates a GLUT1 amplifi-
cation loop. VEGF expression is also increased in glomeruloscle-
rotic kidneys.  e  EGFR. Elevated glucose levels induce Ang II which, 
through G-protein-linked PKC activation, releases membrane-
bound EGF and HB-EGF. These ligands bind the EGFR which 
activates tyrosine kinase and, along with free EGF and HB-EGF, 
triggers GLUT1 synthesis and the GLUT1 cascade.  f  PDGF. PDGF 
expression is increased in diabetic glomerulosclerosis and triggers 
matrix protein synthesis through a tyrosine kinase-mediated path-
way. PDGF also invokes a GLUT1 amplification loop by stimulat-
ing GLUT1 synthesis. Solid lines depict effects directly related to 
GLUT1 and a given mediator. 
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Smad-independent pathways and activate mitogen-acti-
vated protein kinase (MAPK) which can regulate cell pro-
liferation  [51] .

  TGF-β activation of MAPK may trigger GLUT1 syn-
thesis  [52, 53] . In this regard, adipocytes mutated to con-
stitutively express MAPK were shown to increase GLUT1 
but not GLUT4 expression  [53] . Transcriptional activa-
tor protein-1 may be a target of the MAPK system, 
and associate with the four, 12-O-tetradecanoylphorbol-
13-acetate-response elements present in the GLUT1 gene, 
and thus trigger GLUT1 synthesis  [52] .

  MAPK induction of GLUT1 and the associated in-
crease in glucose transport would be expected to increase 
DAG levels. In mesangial cells, TGF-β activation of 
GLUT1 results in an increase in glucose flux  [54]  with in-
duction of the DAG-PKC pathway  [8] . The increase in 
PKC leads to further stimulation of TGF-β synthesis  [32]  
and may effectively define a DAG-mediated amplifica-
tion loop between GLUT1 and TGF-β. In this regard, 
GLUT1 induction of TGF-β was observed in whole glom-
eruli from transgenic mice overexpressing-GLUT1, but it 
remains unknown which cells in the glomerulus are re-
sponsible for this effect  [10] .

  The development of glomerulosclerosis results in loss 
of filtration surface area, glomerular hypertension and 
mesangial cell stretch. Mesangial cell stretch activates 
both GLUT1 and TGF-β  [11, 46]  and may reactivate or 
bolster the above amplification cycle. Taken together, 
TGF-β may trigger GLUT1 through MAPK and/or me-
sangial cell stretch. GLUT1 activation, through increased 
glucose flux in turn drives additional TGF-β synthesis 
via DAG and PKC. The pro-sclerotic effects of TGF-β 
and their subsequent amplification by GLUT1-mediated 
pathways may thus contribute to the development and 
progression of glomerulosclerosis.

  Connective Tissue Growth Factor ( fig. 1 c) 
 CTGF is a pro-sclerotic cytokine and a member of the 

CCN gene family  [55] . CTGF is induced by TGF-β and 
promotes matrix protein synthesis  [56, 57] . In this regard, 
it is an important mediator of matrix accumulation in 
glomerulosclerosis  [58] . Gene and protein expression of 
CTGF are increased in fibrotic tissues  [55]  and glomeru-
lar CTGF gene expression has been shown to be increased 
in diabetic rats  [58] . Mediators of CTGF gene or protein 
expression include TGF-β  [57] , elevated glucose  [58, 59] , 
mechanical strain  [58]  and an autoinduction pathway 
 [58] . 

  Increased glucose availability increases mesangial cell 
CTGF via a TGF-β-dependent pathway  [60] . This implies 

that upregulation of GLUT1, through an increase in glu-
cose flux, may result in an increase in CTGF by stimulat-
ing TGF-β, suggesting a potential role for GLUT1 in this 
activation loop. The mechanism by which mechanical 
strain may stimulate CTGF is unclear; however, GLUT1 
induction and/or increases in TGF-β may underlie the 
process  [11, 46] . These data suggest a potential amplifi-
cation loop between GLUT1 and CTGF via TGF-β-
dependent pathways, but the relationship remains to be 
defined.

  Vascular Endothelial Growth Factor ( fig. 1 d) 
 VEGF (same as VEGF-A) is part of a family of VEGF 

proteins which includes VEGF-A, -B, -C, -D and placen-
tal-derived growth factor  [61] . VEGF promotes angio-
genesis, is highly expressed by podocytes, and is impor-
tant in glomerular development  [61–63] . VEGF is ex-
pressed in the adult kidney and has a paracrine role in 
glomerular endothelial cell signaling and fenestration 
formation  [61, 64] . VEGF signaling in diabetic nephrop-
athy appears via the VEGF receptor type 2  [61, 65–67] .

  VEGF may contribute to the pathogenesis of diabetic 
nephropathy  [68–73] . In experimental diabetes, VEGF 
expression is increased in some studies  [68] , while in 
some others it is not  [74, 75] , or demonstrated a protec-
tive effect by deletion of VEGF-A from podocytes  [76] . 
Treatment with antibody to VEGF prevented diabetes-
induced increases in glomerular volume and albuminuria 
 [69] . Using a nitric oxide (NO) knockout mouse, Naka-
gawa  [70]  induced diabetes and showed the development 
of diabetic glomerulosclerosis with elevated VEGF ex-
pression. In these studies, it was proposed that VEGF may 
promote the development of diabetic nephropathy 
through an ‘uncoupling’ with NO  [70] . In this model, 
VEGF triggers NO release, and acts with NO as a trophic 
factor for the endothelium  [70] . NO derived from endo-
thelial cells prevents endothelial cell and smooth muscle 
proliferation, and macrophage infiltration  [70] . In the 
knockout mice, unmitigated VEGF was associated with 
the development of glomerulopathy consistent with dia-
betic glomerulosclerosis  [70, 77] . Taken together, these 
data suggest a role for VEGF in promoting the develop-
ment of diabetic nephropathy, and imply a link with en-
dothelial NO production  [70, 71] .

  GLUT1 overexpression in transduced mesangial cells 
has been associated with increased VEGF gene expression 
 [78] . More recently in nephron-deficient transgenic Fvb 
mice with glomerulosclerosis, mesangial cell and glomer-
ular VEGF expression was increased  [11] . Furthermore, 
in cultured mesangial cells cyclic stretch induced an in-
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crease in GLUT1 expression which preceded an elevation 
in VEGF  [11] . When these cells were treated with VEGF, 
an increase in both GLUT1 and glucose uptake was dem-
onstrated, indicating that VEGF is a potent stimulus to 
GLUT1 synthesis. VEGF also triggered matrix protein 
synthesis in mesangial cells, which was suppressed by an 
antisense sequence to GLUT1  [11] . Data in podocytes are 
consistent with the finding of VEGF-induced matrix ex-
pression  [79, 80] . These data provide compelling evi-
dence for bidirectional stimulation between GLUT1 and 
VEGF, with VEGF induction of matrix protein synthesis 
dependent, at least in part on GLUT1 expression. Taken 
together, these studies, and the work of others, suggest a 
pro-sclerotic role for VEGF in diabetic nephropathy, and 
indicate that GLUT1 may regulate and/or augment some 
facets of VEGF-induced matrix protein synthesis in this 
disease.

  Epidermal Growth Factor and the EGFR ( fig. 1 e) 
 The EGFR is a tyrosine kinase-linked transmembrane 

glycoprotein influencing proliferation, differentiation 
and tumorigenesis  [81] . In addition, the EGFR has been 
shown to regulate cardiac hypertrophy and vascular 
smooth muscle tone  [82, 83] . In diabetes, EGFR signaling 
may modulate vascular wall thickening and the microvas-
cular complications of the disease  [82] . In this regard, vas-
cular wall remodeling in diabetic mice was improved with 
tyrosine kinase inhibition  [82] .

  The EGFR may be activated by several ligands, includ-
ing epidermal growth factor (EGF) and heparin-bound 
EGF (HB-EGF)  [81] . HB-EGF is released from the cell 
surface by enzymatic cleavage  [81] . Ligand binding to G-
protein-linked receptors can also result in EGFR-mediat-
ed responses by triggering the cleavage of surface-bound 
EGFR ligands like HB-EGF  [81]  In this regard, Ang II 
engagement of the AT1 receptor has been shown to in-
duce EGFR responses via this mechanism (see Angioten-
sin II, above)  [83] .

  Using cultured mesangial cells, Nose et al.  [35]  dem-
onstrated Ang II induction of GLUT1. The process was 
partially attenuated by an EGFR inhibitor, indicating that 
Ang II activation of GLUT1 expression was in part medi-
ated via the EGFR  [35] . This observation is consistent 
with transactivation of the EGFR by Ang II with down-
stream induction of tyrosine kinase-mediated pathways 
 [83] . The authors also showed that EGF and HB-EGF 
triggered GLUT1 synthesis  [35] . Taken together, these 
studies indicate a role for the EGFR in mediating Ang II 
induction of GLUT1, and demonstrate that activation of 
the EGFR with EGF and HB-EGF may activate GLUT1 

synthesis independent of Ang II. These observations sug-
gest that mediators acting via the EGFR may induce 
GLUT1 synthesis and provide additional pathways for 
GLUT1 induction of pro-sclerotic events in diabetic ne-
phropathy.

  Platelet-Derived Growth Factor ( fig. 1 f) 
 Platelet-derived growth factor (PDGF) is a glycopro-

tein dimer mediating its effect via two related tyrosine 
kinase PDGFR  [7, 84] . PDGF is expressed in mesangial 
cells and mediates cellular proliferation and matrix pro-
tein deposition  [84] . PDGF and PDGFR expression were 
increased in experimental diabetic nephropathy  [85]  and 
Langham et al.  [85]  demonstrated increased PDGF ex-
pression in renal biopsies from diabetic patients. Finally, 
Lassila et al.  [86] , using an animal model of accelerated 
diabetic nephropathy, showed increased renal PDGF ex-
pression, and increased glomerular and tubulointerstitial 
matrix protein accumulation in diabetic animals. These 
changes were attenuated in diabetic mice treated with a 
tyrosine kinase inhibitor  [86] . These studies support a 
role for PDGF in the pathogenesis of diabetic glomerulo-
sclerosis, and suggest the effects of the growth factor may 
be inhibited by tyrosine kinase blockade.

  GLUT1 may potentiate the effect of PDGF on the kid-
ney in diabetes. In this regard, the GLUT1 promoter re-
gion has specific PDGF response elements  [21] , and un-
der the influence of PDGF, GLUT1 has been shown to 
translocate to the cell membrane of adipocytes, where it 
increased glucose uptake  [87] . Finally, PDGF has been 
shown to stimulate GLUT1 synthesis and glucose trans-
port in skeletal muscle from transgenic mice overexpress-
ing the PDGFR  [88] . These data suggest a model whereby 
PDGF may stimulate GLUT1 expression and glucose uti-
lization, triggering GLUT1-mediated pro-sclerotic cas-
cades associated with the development of diabetic glo-
merulosclerosis.

  GLUT1 as a Facilitator of the Pro-Sclerotic Mediators 

of Diabetic Glomerulosclerosis 

 GLUT1 promotes the development of glomerular dis-
ease resembling diabetic glomerulosclerosis via the cel-
lular uptake and utilization of glucose  [10] . In diabetes, 
GLUT1-mediated utilization of glucose activates at least 
4 pro-sclerotic pathways, all of which may facilitate the 
development of glomerulosclerosis. The loss of filtration 
surface area from glomerulosclerosis leads to glomeru-
lar hypertension and mesangial cell stretch. Mesangial 
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stretch triggers GLUT1 synthesis and expression, effec-
tively defining a GLUT1 self-expression loop that pro-
motes glomerulosclerosis. Hyperglycemia also upregu-
lates GLUT1 expression, initiating and constantly stimu-
lating this amplification cascade.

  Cytokines and growth factors promoting the develop-
ment of glomerulosclerosis may activate the GLUT1 am-
plification cascade at numerous levels, thus invoking this 
parallel pro-sclerotic pathway. In many cases, the recruit-
ment of GLUT1-mediated pathways may intensify or 
augment fibrotic events directly stimulated by a given cy-

tokine or growth factor, making GLUT1 a strong co-me-
diator of diabetic glomerulosclerosis in this setting. This 
stance is supported in recently developed transgenic 
mouse models in which diabetic glomerulosclerosis was 
the pathologic result in nondiabetic mice overexpressing 
GLUT1, and raises interesting questions about a more 
global role for GLUT1 in the pathogenesis of glomerulo-
sclerosis (summarized in  fig. 2 ).

  Finally, the role of GLUT1 as a mediator of glomeru-
losclerosis, and as a potential therapeutic target, will be 
further elucidated as pharmacologic inhibitors of GLUT1 
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  Fig. 2.  Summary of pathways interacting with GLUT1. GLUT1 fa-
cilitates the movement of glucose into the cell (top and bottom) 
and triggers GLUT1 synthesis (top). Activation of GLUT1 synthe-
sis is also associated with an increase in VEGF and extracellular 
matrix protein (ECMP) synthesis (lower right). GLUT1-mediated 
intracellular transport of glucose increases intracellular glucose 
availability leading to glucose metabolism via glycolysis, with gen-
eration of DAG and activation of PKC, which stimulates TGF-β, 
as well as more GLUT1 (bottom left). TGF-β-mediated events in-

clude an autoinduction cascade, activation of the highly pro-fi-
brotic cytokine CTGF, and engagement of the TGF-β receptor, 
triggering more GLUT1 synthesis through MAPK, as well as 
ECMP synthesis via Smads. Ang II (top right) induces mesangial 
cell strain and GLUT1 synthesis. In addition, Ang II engagement 
of the AT1 receptor triggers DAG/PKC, and additional GLUT1 
synthesis. AT1 binding also is associated with transactivation of 
the EGFR, IGF-1R and PDGFR, all of which may trigger ERK and 
more GLUT1 synthesis. 
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are developed. In this regard, naturally occurring flavones 
as well as synthetic tyrphostins have been recently shown 
to inhibit GLUT1 through distinct mechanisms  [89] . 
Continued work in this area will likely generate com-
pounds of therapeutic potential in the treatment of 
GLUT1-driven glomerulosclerosis.

  In summary, GLUT1 may act in concert with cyto-
kines and growth factors, in some cases in positive feed-
back fashion, to mediate development of diabetic glomer-
ulosclerosis. Defining the role of GLUT1 in facilitating 
these pro-sclerotic events may give new insights for the 
therapy and management of diabetic glomerulosclerosis, 
and provide strategies for slowing the development and 
progression of this disease. Recent findings of potential 
roles for MGF and mTOR in GLUT1-mediated extracel-
lular matrix production provide important avenues for 
future investigation in this field, as do the findings of 

 potentially important therapeutic roles for angiotensin-
converting enzyme inhibitors and angiotensin receptor 
blockers in suppression of diabetes-induced GLUT1 and 
glucose uptake in the kidney.
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