
Page 1/26

GLUT5 (SLC2A5) enables fructose-mediated
proliferation independent of ketohexokinase
Roger Jie Liang 

Cornell University Joan and Sanford I Weill Medical College
Samuel Taylor 

Weill Cornell Medicine
Navid Nahiyaan 

Weill Cornell Medicine
Junho Song 

Weill Cornell Medicine
Charles J Murphy 

Memorial Sloan Kettering Cancer Center
Ezequiel Dantas 

Weill Cornell Medicine
Shuyuan Cheng 

Weill Cornell Medicine
Ting-Wei Hsu 

Weill Cornell Medicine
Shakti Ramsamooj 

Weill Cornell Medicine
Rahul Grover 

Weill Cornell Medicine
Seo-Kyoung Hwang 

Weill Cornell Medicine
Bryan Ngo 

Weill Cornell Medicine
Lewis C Cantley 

Weill Cornell Medicine
Kyu Y Rhee 

Weill Cornell Medicine
Marcus DaSilva Goncalves  (  mdg9010@med.cornell.edu )

Weill Cornell Medical College in Qatar https://orcid.org/0000-0002-0784-9248

Research

https://doi.org/10.21203/rs.3.rs-42250/v2
mailto:mdg9010@med.cornell.edu
https://orcid.org/0000-0002-0784-9248


Page 2/26

Keywords: Fructose, ketohexokinase, hexokinase, GLUT5 (SLC2A5), metabolism

Posted Date: January 7th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-42250/v2

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

Version of Record: A version of this preprint was published on March 24th, 2021. See the published
version at https://doi.org/10.1186/s40170-021-00246-9.

https://doi.org/10.21203/rs.3.rs-42250/v2
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1186/s40170-021-00246-9


Page 3/26

Abstract
Background: Fructose is an abundant source of carbon and energy for cells to use for metabolism, but
only certain cell types use fructose to proliferate. Tumor cells that acquire the ability to metabolize
fructose have a �tness advantage over their neighboring cells, but the proteins that mediate fructose
metabolism in this context are unknown. Here, we investigated the determinants of fructose-mediated cell
proliferation.

Methods: Live cell imaging and crystal violet assays were used to characterize the ability of several cell
lines (RKO, H508, HepG2, Huh7, HEK293T (293T), A172, U118-MG, U87, MCF-7, MDA-MB-468, PC3, DLD1
HCT116, and 22RV1) to proliferate in fructose (i.e. the fructolytic ability). Fructose metabolism gene
expression was determined by RT-qPCR and western blot for each cell line. A positive selection approach
was used to “train” non-fructolytic PC3 cells to utilize fructose for proliferation. RNA-seq was performed
on parental and trained PC3 cells to �nd key transcripts associated with fructolytic ability. A CRISPR-cas9
plasmid containing KHK-speci�c sgRNA was transfected in 293T cells to generate KHK -/- cells. Lentiviral
transduction was used to overexpress empty vector, KHK, or GLUT5 in cells. Metabolic pro�ling was done
with Seahorse metabolic �ux analysis as well as LC/MS metabolomics. Cell Titer Glo was used to
determine cell sensitivity to 2-deoxyglucose in media containing either fructose or glucose.

Results: We found that neither the tissue of origin nor expression level of any single gene related to
fructose catabolism determine the fructolytic ability. However, cells cultured chronically in fructose can
develop fructolytic ability. SLC2A5, encoding the fructose transporter, GLUT5, was speci�cally upregulated
in these cells. Overexpression of GLUT5 in non-fructolytic cells enabled growth in fructose-containing
media across cells of different origins. GLUT5 permitted fructose to �ux through glycolysis using
hexokinase (HK) and not ketohexokinase (KHK).

Conclusions: We show that GLUT5 is a robust and generalizable driver of fructose-dependent cell
proliferation. This indicates that fructose uptake is the limiting factor for fructose-mediated cell
proliferation. We further demonstrate that cellular proliferation with fructose is independent of KHK. 

Background
Fructose is an important contributor to cell metabolism, growth, and disease. It is the second most
abundant sugar in the blood and is commonly consumed as part of the Western diet. Most caloric
sweeteners including sucrose, honey, and high fructose corn syrup contain at least 40% fructose, and the
yearly consumption of these caloric sweeteners in the US is over 120 lbs (~60 kg) per capita (1). The
excessive availability of fructose-containing sugars has negatively altered human physiology and
predisposed us to cardiometabolic disease, insulin resistance, and obesity (2,3).

Fructose metabolism is tissue speci�c. Canonical fructose metabolizing organs include the kidney and
those found in the gastrointestinal tract such as the liver, pancreas, and intestine. In these organs,
fructose enters through the fructose transporter, GLUT5, before being phosphorylated by KHK and cleaved
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by Aldolase B (ALDOB) into glyceraldehyde and dihydroxyacetone phosphate. Both of the products can
be metabolized into glyceraldehyde-3-phosphate, a downstream glycolytic intermediate. Digestive organs
are directly exposed to dietary fructose on a daily basis, and they express high levels of fructose
metabolism genes (4,5). Metabolic tracing experiments have proved that dietary fructose is metabolized
to fructose-1-phosphate (F1P) in these organs (6). However, other organs—such as heart, muscle, and
certain parts of the brain—have also been reported to metabolize fructose (5,7–11).

Tumors can also metabolize fructose. This has been shown for a variety of tumor types arising from the
breast, brain, prostate, ovary, pancreas, intestine, lung, liver, kidney, and blood ((5,12), Breast: (13,14)
Brain: (15,16), Prostate: (17), Ovary: Jin et al., 2019, Pancreas: (19,20), Intestine: (21), Lung: (22–24),
Liver: (25), Kidney: (26), Blood: (27,28)). In many of these cases, fructose has been shown to enter the cell
through a membrane transporter, GLUT5, and then undergo metabolism into downstream glycolytic
intermediates. In tumors, it has been presumed, but not clearly shown, that fructose is metabolized by
ketohexokinase.  It also remains unclear what basic machinery is required by tumor cells to permit
fructose metabolism.

In this study, we set out to determine the cell-intrinsic factors that enable tumor cell proliferation in
fructose. We pro�led 13 cancer cell lines from 5 different origins and demonstrate that neither the tissue
of origin nor expression level of any individual gene related to fructose metabolism determine fructolytic
ability. We “trained” non-fructolytic cells in a high fructose, low glucose media in order to obtain cells that
metabolize fructose. The trained cells showed strong upregulation in the expression of SLC2A5, the gene
encoding GLUT5. Overexpression of GLUT5 allowed six non-fructolytic cell lines of different origins to
proliferate in fructose media. This proliferation did not require KHK. Instead, fructose was preferentially
metabolized by hexokinase. Taken together, these �ndings demonstrate that cells proliferate using
fructose by upregulating GLUT5 independent of KHK.

 

Methods
Experimental model and subject details

Cell culture

RKO, H508, HepG2, Huh7, HEK293T (293T), A172, U118-MG, U87, MCF-7, MDA-MB-468, and PC3 cells
were obtained from ATCC. DLD1 and HCT116 cells were a generous gift from Lukas Dow. 22RV1 and
was a generous gift from Dawid Nowak. 22Rv1, PC3, and H508 cells were cultured in full RPMI (Corning,
Corning, NY) supplemented with 10% fetal bovine serum (FBS) (Gemini, Sacramento, CA) and 1%
penicillin/streptomycin (Life Technologies, Carlsbad, CA). All of the other cells were cultured in DMEM
(Corning) supplemented with 10% FBS and 1% penicillin/streptomycin (Life Technologies). HepG2 cells
were grown on collagen coated plates (2 ug/cm^2). Cell lines were STR �ngerprinted and/or bought from
ATCC directly. Cells were tested for mycoplasma (Lonza, Basel, Switzerland).
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Sugarless RPMI (Life Technologies) and DMEM (Life Technologies) were used in many experiments.
Glucose (Millipore-Sigma, Burlington, MA) and fructose (St. Louis, MO) powders were diluted to 1 M stock
in water before �ltration. This stock solution was diluted into sugarless media.

To generate the semi-trained PC3 line, the parental cells were cultured in RPMI (Life Technologies)
containing 1 mM glucose 10 mM fructose and 5% dFBS (Life Technologies). Cells were passaged
approximately once per week. After >20 passages, semi-trained cells were cultured in 10 mM fructose in
order to generate trained PC3 cells.

 

Method Details

RNA extraction, RT-qPCR, and RNA-seq

Total RNA was isolated directly from plates using the RNeasy Mini Kit (Qiagen, Hilden, Germany). For
qPCR, 1.25 µg RNA was reversed transcribed using SuperScript VILO Master Mix (Thermo Fisher,
Waltham, MA). Resulting cDNA was diluted 1:10 and qPCR was performed with Fast SYBR Green
Mastermix (Life Technologies). The relative expression of each gene was calculated by comparative ΔCt
method after normalizing to endogenous controls (Raw dCt in Table S2, Primers in Table S3). A heatmap
of the results was produced using the Qlucore Omics Explorer (Qlucore, Lund, Sweden).

RNA samples from PC3 and semi-trained PC3 were submitted to the Weill Cornell Medicine Genomics
Core for paired-end RNA-seq on a NovaSeq 6000. Raw sequenced reads were aligned to the mouse
reference GRCm38 using STAR (v2.4.1d, 2-pass mode) aligner. Aligned reads were quanti�ed using
Cu�inks (v2.2.1) to obtain fragments per kilobase per million (FPKM). Statistical analyses on the
normalized expression values (FPKM) were performed using the Qlucore Omics Explorer (Qlucore, Lund,
Sweden). Gene expression levels were log2 transformed before performing PCA and differential gene
expression analysis.

 

 

Genomic DNA (gDNA) extraction and qPCR

500 uL genomic lysis buffer (20 mM Tris-HCl pH 7.5, 20 mM EDTA, 1% SDS, 400 ug/mL proteinase K)
was used to lyse 500,000 cells. Proteinase K was heat inactivated at 95°C for 15 minutes and allowed to
cool to room temperature. Protein was precipitated with 5 M NaCl, and sample was centrifuged at 13,000
x rpm at room temperature for 10 minutes. Supernatant was poured out and pellet was washed with 1 mL
70% ethanol. Samples were centrifuged for at 13,000 x rpm for 5 minutes and supernatant was drained.
Pellets were resuspended in 10 mM Tris-HCl pH 8.0. To analyze SLC2A5 copy number, qPCR was
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performed on 40 ng of gDNA using Fast SYBR Green Mastermix. Primers were designed to be within the
same exon for SLC2A5 and B2M and can be found in Table S3.

 

Cell line mutation and clinical data analysis

Cell line genomic data were downloaded from the Cancer Cell Line Encyclopedia (CCLE, Broad Institute)
(29) or the COSMIC (Wellcome Sanger Institute) (30) databases and cross referenced with known
oncogenic mutations from COSMIC tier 1 genes (Table S1). Full list of oncogenic mutations for each cell
line can be found in Supplementary File 1. Mutation and clinical data for each cell line were cross
referenced with Cellosaurus (Table S1) (31).

 

Cell con�uence, viability, and the fructolytic index

            Cells were plated at low con�uency in a 6- or 12-well dish. After settling, cells received a PBS wash
and were given 5% dFBS, 1% penicillin-streptomycin media containing no sugar, 10 mM glucose, or 10
mM fructose. Plates were loaded into IncuCyte ZOOM Live Cell Analysis System (Essen Bioscience, Ann
Arbor, MI) for imaging. 16 frames per well were analyzed at each timepoint to determine con�uency.
Change in con�uency per hour was measured by linear regression on Prism (Graphpad, San Diego, CA).

Independent cell proliferation experiments were used to produce the fructolytic index (n = 3). It was
calculated by dividing the relative growth in fructose (growth rate in fructose – growth rate in the no-
sugar control) by the relative growth in glucose (growth rate in glucose – growth rate in the no-sugar
control). After 3-4 days in the Incucyte system, cells were �xed with ice cold 80% methanol before. Crystal
violet reagent (Sigma-Aldrich) was added to each well, and the plates were placed on a rocker for 30
minutes. Cells were then rinsed with water and imaged with a scanner.

For the competition assay, phase contrast and �uorescent images from the Incucyte system were
exported as TIFF �les. A custom ImageJ (Bethesda, MD) program (https://github.com/sam-
taylor/CompCount) was used to acquire cell count and size. A bandpass �lter, automatic threshold, and
watershed algorithm were employed to distinguish cells from background. Data from the individual
images were compiled into groups using MATLAB (Natick, MA) statistical software.

To measure sensitivity to drugs, cells were plated at low con�uency with several replicates in a 96-well
white bottom plate. The next day, powdered 2-DG (Sigma-Aldrich) was reconstituted in 10 mM glucose or
10 mM fructose media to make 100 mM 2-DG stock, which was then serially diluted. Cells were washed
with PBS and were given 5% dFBS, 1% penicillin-streptomycin media containing either 100 µL of 10 mM
glucose or 10 mM fructose media containing serially diluted 2-DG. Cell viability was measured after 72
hours using Cell Titer Glo reagent according to manufacturer’s instructions (Promega, Fitchburg, WI).
Plates were covered and rocking for 15 minutes before luminescence was measured.

https://github.com/sam-taylor/CompCount
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Western Blots

Whole cell lysates were extracted with RIPA buffer (CST, Danvers, MA) containing protease and
phosphatase inhibitor (Life Technologies) and quanti�ed with BCA reagent (Thermo Fisher). Murine
muscle, liver, and Khk-/- liver was obtained from our previous study (21). Equal amounts of protein were
diluted in 4x LDS buffer (Life Technologies) before being run in 4-12% bis-tris gels (Invitrogen, Carlsbad,
CA). Gels were transferred to PVDF membranes (Perkin-Elmer, Waltham, MA) and blocked for 1 hour in 5%
BSA in Tris-buffered saline containing .1% Tween 20 (TBST). Membranes were probed while rocking at
4°C with the following antibodies and concentrations: GLUT1 (Millipore 07-1401) 1:1000, GLUT2 (Abcam,
Cambridge, UK, ab192599) 1:1000, GLUT5 (Invitrogen, PA5-80023) 1:1000, KHK (Abcam) 1:1000, HK1
(CST 2024) 1:1000, HK2 (CST 2867) 1:1000, ALDOA (CST8060) 1:1000, ALDOB (Abcam ab152828)
1:1000, ALDOC (Proteintech, Rosemont, IL, 14884-1-AP) 1:1000, LDHA (CST) 1:1000, LDHB (Abcam)
1:1000, GAPDH (Proteintech 10494-1-AP) 1:5000, Pan-Actin (CST 4968) 1:1000, and V5-HRP (Life
Technologies R96125) 1:5000. After incubation, cells were washed with TBST before appropriate HRP-
conjugated secondary antibody was added for 1 hour. After 3 more TBST washes, membranes were
exposed to Supersignal West Dura (Life Technologies) and imaged using a ChemiDoc MP Imaging
System (BioRad, Hercules, CA).

 

Plasmids and cloning

The following plasmids were generously provided by researchers via Addgene: pSpCas9(BB)-2A-Puro
(PX459) V2.0 (#62988) from Dr. Feng Zhang (Broad Institute) (Ran et al., 2013)m pDONR221-SLC2A5
(#132090) from the RESOLUTE Consortium and Giuliu Superti-Furga (Research Center for Molecular
Medicine of the Austrian Academy of Sciences), and pLenti-U6-tdTomato-P2A-BlasR (Lrt2B) (#110854)
from Dr. Lukas Dow (Weill Cornell Medicine) (32).

We selected sgRNA (Figure S3) for human KHK at the beginning of exon 5 using CRISPRdirect (33).
Oligonucleotide pairs were annealed and cloned into PX459 using BbsI-HF (New England Biolabs,
Ipswich, MA) followed by a ligation reaction (New England Biolabs). PDONR221-GLUT5 was cloned
according to Gateway Technology (Invitrogen) into pLenti7.3_V5_DEST (Invitrogen) using LR Clonase
(Invitrogen) in order to generate pLenti7.3_V5_SLC2A5. These plasmids were generated in Stbl3 bacteria
(Life Technologies) and were puri�ed using Qiagen miniprep or maxiprep kits (Qiagen). 

 

Generating knockouts

We plated 200,000 cells/well in a 6-well dish. The following day, cells were transfected with 3 µL
Lipofectamine 2000 (Life Technologies) and 3 ug plasmid containing sgRNA in Optimem (Life



Page 8/26

Technologies). The following day, media was changed. The day after media change, cells were selected
with 2 ug/mL puromycin for 48 hours. 50 or 100 cells were then passaged into 10 cm dishes and were
allowed to proliferate into visible colonies over 2 weeks. Single colonies with normal morphology were
selected using cloning cylinders (Thermo Fisher). Knockouts were veri�ed by western blot and sanger
sequencing.

 

Transduction

2,000,000 293T cells were plated in a 10-cm dish. The next day, cells were transfected with 30 µL
Lipofectamine 2000, 9 ug psPAX2, 1 ug VSV-G, and 9 ug of either Lrt2b, pLenti7.3-V5 EV, pLenti7.3-V5-
SLC2A5. Media was changed the following day. Viral particles were harvested 48 and 72 hours after
initial media change. The 2 harvests were combined and aliquoted for storage in -80 C.

To generate PC3-red, parental cells were given 50% Lrt2b virus and 50% media as well as 10 ug/mL
polybrene. The next day, cells were given 50% virus and 50% media as well as 10 ug/mL polybrene.
Media was changed after 24 hours. The day after media change, cells were grown in media containing 10
ug/mL blasticidin (Invivogen, San Diego, CA). Overexpression was veri�ed by microscopy.

To overexpress GLUT5, non-fructolytic cell lines from several origins were plated at low con�uence in 6-
well dishes. The next day, cells were given 50% EV or SLC2A5 virus and 50% media as well as 10 ug/mL
polybrene. Media was changed after 24 hours. Overexpression was veri�ed by western blot.

 

Seahorse Assay

ECAR was measured with the Seahorse XFe96 Analyzer (Agilent, Santa Clara, CA), following
manufacturer’s Glycolytic Stress Test protocol. Brie�y, 5,000 cells were plated in each well of a 96-well
Seahorse assay plate. That same day, the assay cartridge was hydrated and kept in a non-CO2 incubator
at 37°C. After 12-24 hours, cells were washed with PBS before they were given reconstituted sugarless
DMEM powder (Sigma-Aldrich) supplemented with 2 mM glutamine and 5 mM HEPES buffer. Cells were
then incubated for 45 minutes at 37°C in a non-CO2 incubator. Compounds (�nal concentrations: Glucose
10 mM or fructose 10 mM, oligomycin 1 uM, and 2-DG 50 mM) were prepared, loaded into the �ux pack,
and put into the Seahorse XFe96 Analyzer. The plate containing cells were subsequently loaded into the
machine. ECAR was analyzed using Seahorse Wave software.

 

Metabolite extraction, targeted analysis, and untargeted analysis
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Metabolomics were carried out on cells to measure polar metabolites. 500,000 cells were plated in
triplicate in 6-well dishes for each condition. The next day, cells were washed brie�y with 37°C PBS before
given media containing no glucose and 10 mM [U-13C]-fructose (Cambridge Isotope Laboratories,
Tewksbury, MA). After 30 minutes incubation, cells were washed brie�y with warm PBS and immediately
harvested into 2 mL Eppendorf tubes using with ice cold 80% methanol (Yuan et al., 2012) and 0.02 M
formic acid. Cells were vortexed and stored in -80C overnight. Samples were spun down at 13,000 x RPM
for 10 minutes at 4°C. Supernatant was transferred to a new Eppendorf tube and was evaporated for
LC/MS.

Quantitative metabolomics were performed on samples as previously described (21). Brie�y, 5 µL of each
�ltered extract was injected through an Agilent ZORBAX Extend C18, 2.1 x 150 mm, 1.8 (Agilent)
downstream of an Agilent ZORBAX SB-C8, 2.1 mm x 30 mm, 3.5 um guard column (Agilent) heated to
40°C in the Agilent 1290 In�nity LC system. Solvent A (97% water/ 3% methanol containing 5 mM
tetrabutylammonium hydroxide (TBA) and 5.5 mM acetic acid) and Solvent B (methanol containing 5
mM TBA and 5.5 mM acetic acid) were infused at a 0.250 mL/min �ow rate. The reverse phase gradient
was as follows: 0-3.5 min, 0% B; 4-7.5 min, 30% B; 8-15 min, 35% B; 20-24 min, 99% B; followed by a 7-
minute run at 0% B. Acquisition was performed on the Agilent 6230 TOF mass spectrometer (Agilent)
using an Agilent Jet Stream electrospray ionization source (Agilent) operated at 4000 V Cap and 2000 V
nozzle voltage in high resolution, negative mode. During acquisition, the sample nebulizer was set to 45
psig with sheath gas �ow of 12L/min at 400°C. Drying gas was kept at 325°C at 8 L/min. The fragmentor
was set to 125 V, with the skimmer set to 50 V and Octopole Vpp at 400 V. Samples were acquired in
centroid mode for 1.5 spectra/s for m/z’s from 50-1100.

Data was analyzed by batch processing with Agilent MassHunter Pro�nder software (Agilent) for both
targeted and untargeted analysis. For targeted analysis, we identi�ed metabolites by both retention time
and with authentic standards. We identi�ed untargeted compounds using Pro�nder Batch Targeted
Feature Extraction. Then, we processed hits through Agilent Mass Pro�ler Professional software for
quality control.

 

Quanti�cation and statistical analysis

Sample size was estimated based on prior data (21). Data is presented as ± standard error of the mean
(SEM), calculated by Graphpad Prism 8. For total metabolites and GLUT5 rescue growth rates, unpaired
two-tail t tests were done between control and experimental conditions. For RT-qPCR data and 13C
metabolomics, two-way ANOVA was done with post-test comparisons made by Fisher’s LSD test.
Statistical signi�cance is indicated in �gures using the following denotation: *P < 0.05, **P< 0.01, ***P <
0.001, and ****P < 0.0001. Sample number was noted in �gure legends.
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Software availability

An application to perform cell quanti�cation from images was created by S.T and is available on
https://github.com/sam-taylor/CompCount.

Results
The fructolytic index quanti�es proliferation using fructose relative to glucose

We measured the ability of 13 tumor cell lines to proliferate in 10 mM fructose and in 10 mM glucose
using live cell imaging. Cells were sampled from a variety of organs including the brain, breast, prostate,
liver, and colon/rectum. We noticed a striking difference in the ability of cells to proliferate in fructose as
determined by live cell imaging (Figure S1A). For example, metastatic prostate PC3 cells do not grow in
fructose media, but hepatocellular carcinoma HepG2 cells do (Figure 1A). We veri�ed these results with a
crystal violet assay after 3-4 days of growth (Figure S1B).

To quantify and compare the fructolytic ability among the cells, we created the fructolytic index. This
index is calculated by dividing the relative growth in fructose (growth rate in fructose minus growth rate in
the no-sugar control) by the relative growth in glucose (growth rate in glucose minus growth rate in the
no-sugar control) (Figure S2A). In other words, it is a ratio of how well cells utilize fructose compared to
glucose as a growth substrate (Figure 1B). Of note, we used 5% dialyzed FBS (dFBS) to minimize the
contamination of FBS-related sugars to the media. The concentration of dFBS in the culture media was
held constant at 5% in all cell lines except for 22RV1, which required 1% in our growth assays (Figure
S2B-C).

Neither the tissue of origin nor expression level of any individual gene related to fructose metabolism
determines fructolytic growth

There was heterogeneity in the fructolytic index amongst cells derived from the same tissue (Figure 1C).
We reviewed the genomic mutations and clinical parameters associated with each cell line and found no
obvious trend that predicts fructose growth (Table S1). We also pro�led the cell lines for their expression
of select fructolytic and glycolytic genes and found no clear correlation of any individual transcript or
protein with the fructolytic index (Figure 1D-E, Table S2). Unbiased hierarchical clustering of the samples
according to gene expression similarly failed to group the cells by fructolytic index (Figure S2D). Taken
together, commonly used methods and existing bioinformatic annotations failed to predict the fructolytic
index of cell lines.

Cells can be trained to proliferate with fructose

To determine how cells utilize fructose, we attempted to “train” a non-fructolytic cell line to proliferate
using this sugar. We employed a positive selection approach that was inspired by in vitro drug resistance
studies, whereby researchers add selective pressure to bacteria or tumor cells in order to �nd and
characterize drug-resistant clones (34,35) (Figure 2A). PC3, a cell line with a low fructolytic index, was

https://github.com/sam-taylor/CompCount
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grown in media containing high fructose and limiting amounts of glucose for several passages. The
original PC3 line was cultured with non-fructose containing media in parallel as a control.

By passage 10 (P10), the line grown in fructose gained the ability to proliferate in fructose, albeit only at
high concentrations (>62.5mM) (Figure 2B). By passage 20 (P20), the cells could proliferate at lower
concentrations (>10mM) of fructose, and we called these cells “semi-trained” (Figure S3A-B). We next
removed glucose completely from culture media of the “semi-trained” cell lines in hopes of selecting for
cells that best proliferated in fructose (Figure 2C). Recovered cells initially proliferated slowly, but after 1-2
passages, “trained” cells proliferated equally well in glucose and fructose (Figure 2D-E, Supplemental
video 1).

To control for plating and media conditions, we co-plated the parental PC3 line with the trained cells in a
competition assay (36) (Figure 2C). Parental cells were labeled with an RFP reporter and plated at a 1:1
ratio with trained cells. In glucose-media, the �nal number of parental and trained cells were equal, but in
fructose-media, the parental cells only constituted 10-15% of total cells (Figure 2F, Supplemental Video 1-
2). We next asked if the acquired ability to proliferate with fructose was lost when cells were grown in
glucose for long periods of time. Even after 5 passages in media devoid of fructose, the cells completely
retained their fructolytic ability (Figure S3C-E).

GLUT5 protein and mRNA abundance correlate with fructolytic ability

We cultured the parental and semi-trained PC3 cells for either 24 or 48 hours in media containing either
11 mM glucose (full RPMI) or 1 mM glucose plus 10 mM fructose (Figure S4A). We then extracted RNA
and performed next-generation sequencing to analyze expression across the transcriptome (RNA-seq) to
capture intrinsic differences between the cells. Small differences in gene expression between the parental
and semi-trained cells would presumably be enhanced in the trained cells.

The RNA-seq results were �rst summarized in a 3-dimensional principal components analysis (PCA),
which revealed unique clusters separating the parental from semi-trained cells as well as the different
media conditions (Figure S4B). Only �fteen genes were differentially expressed between the parental and
semi-trained cells, even when using a generous statistical threshold (q=0.4 and log2 fold change>1.1),
con�rming that the cells remained very similar despite being separated for > 20 passages (Figure 3A,
Figure S4C). We validated the expression of these 15 genes together with several fructolytic and
glycolytic enzymes using cDNA from parental, semi-trained, and trained cells (Figure 3B, S4D, S4F). From
these data, we observed that the expression of SLC2A5 had the highest fold change difference and
correlated with fructolytic ability. There was a >30x fold increase in semi-trained cells and >200x increase
in trained PC3 cells (Figure 3B). GLUT5 protein levels were also increased in trained PC3 cells compared
to their parental PC3 cells (Figure 3C). We further showed that the increased level of GLUT5 expression
was not due to an increase in SLC2A5 copy number (Figure S4E).

GLUT5 overexpression rescues growth with fructose across cell lines of different origin independent of
KHK
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To test whether GLUT5 permits fructolytic growth in other cell lines, we overexpressed GLUT5 in brain,
breast, prostate, colon, and liver cancer cell lines and repeated the proliferation assays. The
overexpression of GLUT5 was su�cient to permit cellular proliferation in fructose without affecting
expression of other fructolytic or glycolytic genes (Figure 3D, Figure S5A-C). However, this proliferation
required at least 5 mM fructose in the media (Figure S6A-D). We quanti�ed the fructose-mediated
proliferation at 96 hours and found that fructose contributed signi�cantly to proliferation in the trained
and GLUT5-overexpressing cells only in the absence of glucose (Figure S6E-F). These data suggest that
the proliferative contributions of glucose and fructose are through metabolism by a common molecular
enzyme that preferentially binds glucose.

KHK has been described as a rate-limiting enzyme for fructose metabolism in tumor and normal tissue
(9,15,37). To test whether KHK overexpression rescues fructose-mediated cell growth, we overexpressed
KHK-A in non-fructolytic RKO cells and saw no rescue of cell proliferation (Figure S7A-B).

GLUT5 overexpression increases fructose �ux into glycolysis

To measure differences in fructose metabolism between non-fructolytic and fructolytic cells, we cultured
parental, semi-trained, and trained cells in media containing 10 mM [U-13C]-fructose and traced its
metabolic fate. The trained cells demonstrated increased levels of fructose-derived carbon into F1P,
lactate, and TCA cycle intermediates (Figure 4A-B, Figure S8A-B). Measurable amounts of fructose were
also detected in PC3 cells, suggesting that fructose can be imported into cells but does not meet the
concentration necessary to sustain proliferation.

In order to gain real-time insight into the ability of fructose to acidify the media (presumably via lactate
production), we measured the extracellular acidi�cation rate (ECAR) using parental and trained PC3 cells
(Figure 4C-D). While both cell types had similar ECAR in response to glucose, trained cells had much
higher ECAR in response to fructose. Semi-trained cells showed an intermediate phenotype, as expected.
Interestingly, 2-deoxyglucose (2-DG), a competitive inhibitor for HK, immediately extinguished both
glucose- and fructose-induced ECAR. This fact led us to hypothesize that fructose �ux to lactate is
mediated by HK rather than the canonical fructose-metabolism protein, KHK.

Cells proliferate with fructose through hexokinase

Using CRISPR-Cas9, we generated a KHK-/- line using 293T cells (293T KHK-/-) (Figure S9A-B). We then
overexpressed either an empty vector (EV) or V5-tagged GLUT5 in the parental and KHK-/- cells (Figure
S9C). The resulting cells were cultured in 10 mM [U-13C]-fructose prior to recovery of polar metabolites for
metabolomics. GLUT5 overexpression greatly increased the abundance of F1P and its proportion of
fructose-derived carbons in the parental but not the KHK-/- cells (Figure S9D-E). However, the abundance
and isotopic labeling patterns of lactate and TCA cycle intermediates were similar between GLUT5-
overexpressing parental and KHK-/- cells (Figure S9D-E). Moreover, the absence of F1P did not affect
cellular proliferation with fructose, as GLUT5 overexpression rescued fructose mediated proliferation in
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both the parental as well as the KHK-/- cells (Figure 4E). We therefore conclude that KHK is dispensable
for fructose-mediated cell proliferation.

We capitalized on the kinetic properties of HK to discern whether fructose-mediated cell proliferation was
mediated by KHK or HK. HK has a higher a�nity for glucose than it does for fructose (38). Therefore, we
hypothesized that if cells used KHK for growth, then they would be more resistant to the HK inhibitor, 2-
DG, when cultured in fructose as compared to glucose. Alternatively, we hypothesized that if cells
primarily used HK for growth, then they would be more sensitive to 2-DG when cultured in fructose as
compared to glucose. We treated cells with increasing concentrations of 2-DG in media containing either
10 mM fructose or 10 mM glucose and found that cells in the fructose media were 5-33x more sensitive
to 2-DG (Figure 4F). At lower levels of sugar (5 mM), the fructose-treated cells remain more sensitive to 2-
DG than glucose-treated cells; however, this effect is lost when the sugars are given together (Figure 4G).
Therefore, we conclude that cells can adapt to metabolize fructose through upregulation of GLUT5 and
metabolism through HK instead of KHK.

Discussion
Cells preferentially metabolize the nutrients available in their microenvironment. Transformed cells
acquire the ability to metabolize novel nutrients which allow them to outgrow their neighbors and survive
in sites of metastasis. Understanding how tumor cells acquire this ability is valuable given the growing
interest in metabolic and dietary interventions as anti-cancer therapy (39). Here, we show that human
cancer cells from a wide range of origins can acquire the ability to metabolize fructose simply by stable
overexpression of GLUT5. These data suggest that sugar uptake can be a limiting factor preventing
fructose-mediated cell proliferation.

Sugar uptake is also a key regulatory node for glucose metabolism and growth. For example, the
expression of the glucose transporters, GLUT1 and GLUT4, control skeletal muscle glucose uptake at rest
and in response to contraction or insulin (40,41). Additionally, the expression of GLUT1 and GLUT3 in
tumors is associated with enhanced glucose uptake and oncogenic growth (42–44). Tumor cells
continue to regulate the �ux of glucose at the levels of phosphorylation by HK, fructose-1,6- bisphosphate
production by phosphofructokinase, and lactate export (45). In this study, we show that fructose
phosphorylation by KHK is not required for fructose metabolism and cell growth; however, we speculate
that other regulatory nodes exist.

Our conclusions are supported by clinical evidence from subjects with cancer. GLUT5 is signi�cantly
upregulated in tumors from patients with colon, lung, and breast adenocarcinoma, acute myeloid
leukemia, ovarian carcinoma, and glioma where it contributes to malignancy and poor survival
(16,21,23,25–27,27). Many of these studies investigated fructose metabolism in the absence of glucose,
using a wide range of fructose concentrations (ref 22: 6 mM, ref 24: 25 mM, ref 26: 1.5-6 mM, ref  27: 3
mM, ref 28: 6 mM). It is worth noting that these studies were able to discern physiologically relevant
�ndings despite modelling fructose-mediated growth in the absence of glucose in vitro.
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Our data con�rms that GLUT5 overexpression is su�cient to promote cellular proliferation in fructose, but
the abundance of the GLUT5 transcript in our initial pro�ling did not predict the fructolytic index across
cell lines. For example, H508 (fructolytic) and RKO (non-fructolytic) cells are from the same colorectal
origin with similar levels of GLUT5 yet have vastly different abilities to proliferate in fructose. Other
groups have shown that the stability of GLUT5 mRNA and the location of GLUT5 protein can be
modulated by distinct signaling pathways (5,46).  Therefore, we conclude that GLUT5 expression needs
to be analyzed in tandem with other, currently unknown, cellular features in order to determine fructose-
mediated proliferation a priori.

Our data supports the conclusion that GLUT5 is a robust determinant of fructose-mediated cell
proliferation. However, we were unable to identify how the semi-trained and trained cells upregulated this
message. There was no difference in SLC2A5 copy number in the genomic DNA and minimal change in
the expression of known SLC2A5-regulating fructose-response elements like Chrebpβ (Figure 3, Figure
S3). Due to the speci�city of the SLC2A5 overexpression, we hypothesize that the upregulation stems
from epigenetic or genetic modi�cations at the SLC2A5 locus.

Our data suggest that KHK is dispensable for fructose-mediated proliferation. Instead, we show that
cancer cells metabolize fructose using HK, as is the case in lower order organisms. For example, Hk is the
only fructokinase in yeast and the �ux through HK sustains the high activity of nectarivore �ight muscles
(47,48). In humans, fructose is thought to be primarily metabolized by KHK, but this may be unique to
non-proliferative cells in the liver, intestine, and kidney. Proliferating cells typically switch to less
fructolytic isoforms of KHK. For example, liver cancer cells convert from the high a�nity KHK-c variant
(Km = 0.7 mM), to the low a�nity isoform, KHK-a (Km = 7 mM), that may play a role in de novo
nucleotide biosynthesis (49). On average, the cell lines we pro�led in this study expressed >160x more
KHK-a than KHK-c (Figure 1E, Table S1). Furthermore, the expression of HK (Km for fructose 1-4 mM) is
greater than KHK-a in these cells, which may explain the preference for this route of metabolism (38,50).
Our data suggests that this route is most relevant in tissues such as the liver, kidney, seminal vesicles,
and prostate, where fructose levels achieve concentrations higher than 5 mM (17, 57-58).

The exact role of KHK and F1P in these cell lines remain unclear. KHK-mediated fructose metabolism may
become more important when HK is saturated or inhibited by high concentrations of glucose and glucose
6-phosphate. However, it is unclear if glucose ever reaches these high concentrations in poorly
vascularized solid tumors (51). For example, pancreatic adenocarcinomas in mice have signi�cantly less
glucose in the tumor interstitial �uid relative to plasma (52). These poorly vascularized tumors also
receive less oxygen from the blood (51), and the resulting hypoxia enhances the endogenous production
of fructose and the expression of fructolytic genes (9,53–56).

In conclusion, our study de�nes fructose uptake as a limiting factor for fructose-mediated cell
proliferation. We describe a previously unappreciated role of HK to permit fructolytic cell growth. These
�ndings advance our basic understanding of fructose metabolism in cancer cells and highlight a
limitation of directly targeting KHK for anti-cancer therapy.



Page 15/26

Conclusions
The intent of this study was to �nd the determinants of fructose-mediated proliferation in cell lines. We
have found that fructose-dependent proliferation of cancer cells is not determined by tissue of origin nor
expression of any individual fructolytic gene. Using a positive selection approach, we were able to train
PC3 cells to proliferate with fructose. We saw that GLUT5 was strongly upregulated in trained cells and
that overexpressing GLUT5 allowed non-fructolytic cell lines of several different origins to proliferate in
fructose. Lastly, we showed that cells metabolize fructose through hexokinase, not ketohexokinase, to
sustain proliferation and glycolysis. This study sheds light on cell-autonomous fructose metabolism and
suggests that targeting fructose metabolism may require inhibition of both KHK as well as HK.
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Figure 1

Cellular gene expression and tissue of origin do not determine cellular proliferation in fructose (A) PC3
and HepG2 were seeded into 12-well plates (20,000 cells/well) and cultured in the absence or presence of
10 mM fructose, or 10 mM glucose media for approximately 3 days. Cell density (% con�uency) was
monitored over time using live cell imaging (n = 2 per media condition). (B) Fructolytic index (fructose-
mediated growth/glucose-mediated growth) of the indicated cell lines arranged in order of least to most
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fructolytic (n = 3). (C) Fructolytic index of cell lines in (B) grouped by tissue of origin. (D) Normalized
expression of the indicated genes for each cell line shown as a heatmap. Cell lines ordered by fructolytic
index (n = 2 per gene per cell line). * denotes Ct > 30. (E) Immunoblot of the indicated proteins using
lysates from the indicated cell lines, ordered from least to most fructolytic. Murine muscle, liver, and Khk
knockout liver were used as controls.

Figure 2
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Cells can be trained to metabolize fructose for proliferation (A) Schematic for the positive selection
strategy to generate fructolytic cell lines. (B) PC3 an¬¬¬d PC3 passage 10 (P10) cells were seeded into
96-well plate (1,500 cells/well) and cultured in media containing various amounts of sugar. Cell density
(% con�uency) was monitored over time using live cell imaging (n = 2 per condition). (C) Schematic for
the competition growth assay between PC3-red (parental PC3 cells transduced with RFP reporter) and
fructose-trained cell lines. (D) 40,000 of PC3, semi-trained PC3 passage 20 (P20), and trained-PC3 cells in
10 mM fructose or 11 mM glucose over time (n = 2 per condition). (E) Cells from (D) were grown in 10
mM fructose or 11 mM glucose for 96 hours. They were then �xed and stained with crystal violet solution
(n = 2 per condition). (F) 20,000 PC3-red and 20,000 trained PC3 cells were seeded in the same well and
cultured for 96 hours in 10 mM fructose or 10 mM glucose-containing media. Live �uorescent imaging
was performed and the proportion of PC3-red cells to total PC3 cells is shown over time (n = 2 per
condition). Supplemental Video 1 and Supplemental Video 2 are of competition assays monitored with
live cell imaging.
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Figure 3

GLUT5 overexpression rescues cellular proliferation in fructose (A) Normalized expression of genes that
are differentially expressed (q = 0.4, >1.1 log2 fold change) between PC3 and semi-trained PC3 cells
(passage 20) presented in heatmap form. (B) Relative expression of SLC2A5 transcript in semi-trained
PC3 and trained PC3 cells as compared to the parental PC3 line. Two primer sets were used. (n = 2 per
condition). Two-way ANOVA with Fisher’s LDS test. *P < 0.05, ****P < 0.0001 (C) Immunoblot of the
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indicated proteins using lysates from PC3, semi-trained PC3, and trained PC3 cells. Murine liver and
muscle used as controls. (D) GLUT5 or an empty vector (EV) were overexpressed in the indicated cells
lines. The cells were plated at 20,000-30,000 cells/well and then grown in the presence of no sugar, 10
mM fructose, or 10 mM glucose. After 3 days, the cells were �xed and stained with crystal violet solution
(n = 2 per condition).

Figure 4
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Fructose �uxes through HK, not KHK, in order to sustain cellular proliferation (A) Percent of heavy isotope
(13C) incorporation into fructose, fructose 1-phosphate (F1P), and lactate as detected by LC/MS from
polar extracts of PC3, semi-trained PC3, and trained PC3 cells. (n = 2-3). The isotopic labelling is indicated
by M+# designation indicated in the legend where the # represents the amount of [12C] replaced by [13C].
Two-tailed unpaired t tests were used between parental and trained cells (M+3 for lactate, M+6 for
fructose/F1P). *P < 0.05, **P< 0.01, and ****P < 0.0001. (B) Total abundance of fructose, F1P, and lactate
as detected by LC/MS from polar extracts of PC3, semi-trained PC3, and trained PC3 cells. (n = 2-3). Two-
tailed unpaired t tests were used between parental and trained cells. *P < 0.05, **P< 0.01, and ****P <
0.0001. (C) Extracellular acidi�cation rate (ECAR) over time of PC3, semi-trained PC3, and trained PC3
cells under basal conditions and following the addition of glucose, oligomycin (Oligo), and 2-
deoxyglucose (2-DG) at the indicated times. Data are the mean and SEM from 6 replicates. (D) ECAR over
time of PC3, semi-trained PC3, and trained PC3 cells under basal conditions and following the addition of
fructose, Oligo, and 2-DG at the indicated times. Data are the mean and SEM from 6 replicates. (E) GLUT5
or an empty vector (EV) were overexpressed in 293T or 293T KHK -/- cells. The cells were plated at 20,000
cells/well and then grown in the presence of no sugar, 10 mM fructose, or 10 mM glucose. After 7 days,
the cells were �xed, stained with crystal violet solution (n = 2 per condition). (F) Fold change in cell
viability as assessed by ATP concentration (Cell Titer Glo) of the indicated fructolytic cell lines grown in
either 10 mM glucose or 10 mM fructose containing the speci�ed concentrations of 2-DG after 72 hours.
(n = 3 per concentration). The half maximal inhibitory concentration (IC50) is displayed on the graph for
each curve. (G) Fold change in cell viability as assessed by ATP concentration (Cell Titer Glo) of the
trained PC3 grown in the speci�ed sugar conditions containing the speci�ed concentrations of 2-DG after
96 hours. (n = 2 per concentration). The half maximal inhibitory concentration (IC50) is displayed on the
graph for each curve.
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