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Secretory immunoglobulin A (SIgA) is one important line of defense in the intestinal 

mucosal surface to protect the intestinal epithelium from enteric toxins and pathogenic 

microorganisms. Multiple factors, such as intestinal microbiota, intestinal cytokines, and 

nutrients are highly involved in production of SIgA in the intestine. Recently, glutamine 

has been shown to affect intestinal SIgA production; however, the underlying mecha-

nism by which glutamine stimulates secretion of intestinal SIgA is unknown. Here, we 

review current knowledge regarding glutamine in intestinal immunity and show that 

glutamine-enhanced secretion of SIgA in the intestine may involve intestinal microbiota, 

intestinal antigen sampling and presentation, induction pathways for SIgA production 

by plasma cells (both T-dependent and T-independent pathway), and even transport of 

SIgA. Altogether, the glutamine-intestinal SIgA axis has broad therapeutic implications 

for intestinal SIgA-associated diseases, such as celiac disease, allergies, and in�amma-

tory bowel disease.

Keywords: glutamine, intestinal microbiota, secretory IgA, T cells

INTRODUCTION

�e mammalian intestine is home to large numbers of bacteria, many of which invade the intestinal 
epithelium to enter the systemic circulation. In addition to bacteria, the intestine is challenged 
by viruses, parasites, food and environmental antigens, and bacterial metabolites. In order to 
maintain homeostasis, the intestinal mucosal surfaces have multiple layers of defense, including 
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innate defenses and adaptive defenses. Innate defenses include 
mucus, antimicrobial substances (e.g., lysosome and defensins), 
and tight junctions (1). Secretory immunoglobulin A (SIgA) 
is the principal regulator of adaptive defenses on the intestinal 
mucosal surface of humans and many other mammals, such 
as mice, pigs, and rats. SIgA has critical roles in intestinal 
homeostasis by regulating immune responses via multiple 
mechanisms (2, 3). �e characterized functions of SIgA in the 
intestine include: (1) immune exclusion via interacting with 
environmental antigens (e.g., bacteria, viruses, and toxins); (2) 
anti-in�ammation by sampling intestinal antigens to induce 
�2 or regulatory T cell-biased mucosal immune responses; (3) 
homeostasis of commensals by enhancing the cross talk between 
the probiotic bacteria and the intestinal mucosa (2, 3). �us, the 
lack of SIgA in the intestine is associated with various intestinal 
diseases, such as necrotizing enterocolitis and gastrointestinal 
mucositis (3). Targets to increase secretion of intestinal SIgA are 
promising and directed at mitigating pathogenesis of diseases. 
Compelling evidence from well-designed investigations have 
shown that glutamine supplementation increases the abundance 
of SIgA in the intestine in various hosts, including rats (4, 5), 
mice (6, 7), Chinese Holstein calves (8), pigs (9), humans (10), 
and even broiler chickens (11). Similarly, we found that glu-
tamine supplementation increases SIgA in the luminal contents 
of the jejunum and ileum, and the number of IgA+ plasma cells 
in the ileum in mice (12). However, underlying mechanisms 
by which glutamine promotes the production of intestinal 
SIgA are unknown. In our recent study, we found that dietary 
glutamine-mediated secretion of intestinal SIgA through e�ects 
on the intestinal microbiota, and T cell-dependent and T cell-
independent pathways (12). In this review, we discuss the cur-
rent evidence about underlying mechanisms whereby glutamine 
enhances production of intestinal SIgA.

GENERATION OF INTESTINAL SIgA

M Cells and SIgA Production
Intestinal epithelia can be classi�ed as villus epithelium (VE), 
which is mainly involved in digestion and absorption of nutrients, 
and follicle-associated epithelium (FAE), which promotes contact 
with luminal antigens to induce mucosal immune responses. VE 
contains primarily of enterocytes, scattered goblet cells, and, 
occasionally, enteroendocrine cells. Compared to the VE, FAE 
has fewer goblet cells, a thinner mucus layer, lack of expression 
of polymeric immunoglobulin receptor (pIgR) in enterocytes, 
and an absence of antimicrobial peptide-producing Paneth 
cells (13–15), which results in easier access of luminal antigens 
to FAE. Besides the above di�erences, FAE harbors a unique 
subset of epithelial cells, called microfold cells (M cells) (15, 16). 
M cells continuously sample and transport luminal antigens to 
the underlying gut-associated lymphoid tissue (GALT), where 
antigen-presenting cells (APCs), mainly immature DCs, capture 
the antigens and undergo maturation. A�er maturation, DCs 
migrate to the T-cell area of GALT to present antigens to T cells, 
which help in activation of antigen-speci�c B cells and ultimately 
production of sIgA by lamina propria IgA+ B cells (17).

�e development of M cells in mice depends on the receptor 
activator of NF-κB ligand (RANKL) secreted by a subepithelial 
network of reticular cells and B cells. �e binding of RANKL 
to its receptor, RANK (TNFRSF11a), promotes activation of the 
non-canonical (RelB) NF-κB signaling pathway, and expression 
of Spi-B that drives M cell fate determination and maturation 
(18, 19). Mice with Tnfrsf11a deletion lack intestinal M cells 
and have profound delays in emergence of lamina propria IgA+ 
plasma cells (20). �e diminished amounts of fecal SIgA persist 
into adulthood, which suggests that antigen sampling by intes-
tinal M cells is the principal pathway initiating mucosal SIgA 
production (20).

Induction of Intestinal SIgA
For the induction of intestinal SIgA, both T cell-dependent 
and T cell-independent modes are proposed (3, 21–23). In the 
T cell-dependent model, M cells and intraepithelial dendritic 
cells (DCs) sample and deliver antigens from the intestinal 
lumen to APCs (like DCs and macrophages) in the underlying 
subepithelial dome region. Antigens are processed by APCs to 
peptide-derived antigens and then expressed with the major 
histocompatibility class II molecule (MHC-II). CD40 and the 
peptide-MHC-II complex on APCs bind to CD40L and T cell 
receptor (TCR) on T cells, respectively, to activate T cells in the 
interfollicular region. �e activated T cells can promote B cell 
activation with signaling through the B cell receptor (BCR) and 
CD40 on B cells. Meanwhile, �2 cytokines, such as transforming 
growth factor (TGF)-β1, interleukins (IL)-4, -5, -6, -10, and -13, 
are necessary for di�erentiation of immature B cells into IgA-
secreting plasma cells. TGF-β1 is essential for activation and class 
switching recombination of IgM-positive B cells to IgA-positive B 
cells. Other �2-derived ILs, including IL-4, -5, -6, -10, and -13, 
promote proliferation of IgA+ B cells and their di�erentiation into 
IgA-secreting plasma cells.

�e production of most intestinal IgA in extrafollicular 
structures, such as isolated lymphoid follicles and lamina propria 
(LP), depends on the T cell-independent pathway. �e B cells 
are activated by signaling through BCR and toll-like receptors 
(TLRs) recognizing microbial signatures. �e release of the B 
cell-activating factor (BAFF), a member of the tumor necrosis 
factor family, a proliferation-inducing ligand (APRIL), the pep-
tide hormone vasoactive intestinal peptide (VIP), IgA-inducing 
protein (IGIP), and nitric oxide (NO) from other cells (e.g., DCs), 
also promote T cell-independent mucosal IgA responses.

TRANSPORTATION OF INTESTINAL SIgA

�e process for transport of SIgA has also been well established 
(3, 22, 23). Brie�y, most IgA-secreting plasma cells secrete IgA in 
the lamina propria as polymeric IgA (dimer or polymer), which 
is covalently linked to the joining (J) chain. �e uptake of dIgA 
or pIgA is mediated by pIgR. pIgR is a 120 kDa transmembrane 
protein consisting of �ve extracellular immunoglobulin (Ig) 
homology domains, a transmembrane region and a cytoplasmic 
domain, and is expressed on the basolateral surface of epithelial 
cells. pIgR binds dIgA or pIgA at the basolateral side of epithelial 
cells, then the dIgA-pIgR or pIgA-pIgR complex is shuttled to the 
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apical membrane of epithelial cells by vesicles. Upon reaching 
the apical side, pIgR is cleaved to release SIgA into the lumen of 
the intestine as a hybrid molecule including pIgA and secretory 
component (SC) from pIgR.

GLUTAMINE AND GENERATION OF 

INTESTINAL SIgA

Available evidence suggests that glutamine increases the abun-
dance of intestinal SIgA, probably through the intestinal micro-
biota, induction pathway (T-dependent and T-independent), 
IgA-secreting plasma cells, and even transport of intestinal SIgA.

Glutamine and Intestinal Microbiota
�e �rst step in generation of SIgA from plasma cells is induction 
by intestinal antigens, mostly bacterial antigens from the lumen 
of the gut (24, 25). Germ-free mice have fewer IgA-expressing 
cells in the Peyer’s patches and lamina propria, and the coloniza-
tion of germ-free mice with a microbiota quickly triggers produc-
tion of IgA (26). Even a single strain of bacteria can e�ectively 
promote the secretion of intestinal SIgA. For example, not only 
Streptococcus termophilus (27), but most Bi�dobacterium, such 
as Bi�dobacterium adolescentis BBMN23 (28), Bi�dobacterium 
longum BBMN68 (28), and Bi�dobacterium animalis (29), induce 
the production of intestinal SIgA. However, some members of 
the microbiota (e.g., species of Sutterella) degrade both IgA and 
SC, thus they negatively in�uence the amount of intestinal SIgA 
(30). In a previous study, we found that glutamine modulates 
the intestinal microbial community in mice (31). At the phyla 
level, the content of Firmicutes in the jejunum and ileum of 
glutamine-supplemented mice is lower than for the control 
group, resulting in a shi� in the Firmicutes-to-Bacteroidetes ratio 
to favor Bacteroidetes in the ileum (31). Meanwhile, glutamine 
supplementation increases the abundance of Streptococcus and 
Bi�dobacterium in the jejunum, compared to the controls (31). 
As we discussed in a previous study (31), one possible mecha-
nism is that glutamine supplementation changes the intestinal 
microenvironment, thereby altering the composition of intestinal 
microbiota (32). For instance, glutamine supplementation regu-
lates utilization and metabolism of amino acids in bacteria in the 
small intestine in a niche-speci�c manner (33, 34), which may in 
turn a�ect the activity and number of certain microorganisms 
(31). Whether the decrease in Firmicutes-to-Bacteroidetes ratio 
promotes the production of intestinal SIgA is unknown, but we 
also found that arginine promotes the production of intestinal 
SIgA, coinciding with shi�ing the Firmicutes-to-Bacteroidetes 
ratio to favor Bacteroidetes in the jejunum and ileum (35). 
Indeed, monocolonization of the intestine of rats with Bacteroides 
thetaiotaomicron (belonging to Bacteroidetes) increases produc-
tion of intestinal SIgA 6 days a�er colonization (36). Collectively, 
glutamine regulation of production of intestinal SIgA may be 
mediated by the intestinal microbiota. Indeed, our recent study 
using �uorescence in situ hybridization (FISH) analysis revealed 
that glutamine supplementation increases intestinal microbiota 
invasion into the wall of the ileum (12). Interestingly, disruption 
of the mouse intestinal microbiota with an antibiotic cocktail (37, 

38) during glutamine supplementation abrogates the in�uence of 
glutamine supplementation on secretion of SIgA (12). Similarly, 
in antibiotic cocktail treated mice, dietary glutamine supplemen-
tation for 7 days fails to enhance intestinal SIgA production (12).

Paradoxically, it is widely known that glutamine decreases 
the translocation of bacteria from the gastrointestinal lumen 
to Peyer’s patches or mesenteric lymph nodes (MLNs) in rats 
(39, 40) and mice (7, 41). One possible reason for this conclusion 
is that it comes from the use of animal models with an impaired 
intestinal mucosal barrier (42, 43), thereby a�ecting the function 
of glutamine in intestinal bacteria. Indeed, although glutamine 
signi�cantly decreases the translocation of bacteria across the gut 
in rats with chronic portal hypertension and common bile duct 
ligation, glutamine has little e�ect on bacterial translocation in 
rats subjected to a sham laparotomy (44). However, we found that 
dietary glutamine supplementation decreases bacterial translo-
cation based on the lower bacterial load in the MLN of healthy 
mice (12). Another possible explanation is based on functions of 
SIgA to prevent the translocation of intestinal bacteria across the 
intestinal epithelium (2, 3, 22). Glutamine induces production 
of intestinal IgA, which inhibits the translocation of intestinal 
bacteria across the intestinal epithelium and reduces intestinal 
bacterial translocation a�er glutamine supplementation (40, 45). 
�is �nding is supported by evidence that glutamine decreases 
bacterial translocation in most models a�er a long period of 
usage (at least 8 days) (40, 41), while glutamine has little e�ect on 
bacterial translocation when supplemented for shorter periods 
of time (40, 46). It is possible that short periods of supplementa-
tion are insu�cient to induce functional levels of SIgA. �us, we 
propose the following model as to how glutamine supplementa-
tion promotes intestinal production of SIgA by in�uencing the 
intestinal microbiota. Glutamine supplementation a�ects the 
intestinal microbiota (31, 47) by increasing bacterial stimulation 
of the intestinal wall (12), which promotes intestinal secretion of 
SIgA, and the SIgA intercepts the invading bacteria and neutral-
izes them in the lamina propria (2, 3, 22, 48–50), which decreases 
the bacterial load in MLN a�er glutamine supplementation.

In conclusion, glutamine may modulate intestinal bacteria to 
e�ect production of intestinal SIgA and increases in SIgA inhibit 
the translocation of intestinal bacteria.

Glutamine, Antigen Sampling, and  

Antigen Presentation
Glutamine and Mononuclear Phagocytes
Although M cells have critical roles in intestinal SIgA production, 
there are not publications that describe e�ects of glutamine on M 
cell maturation and function. �is may be due to the scarcity of 
M cells available for research on their amino acid requirements 
and metabolism. Besides M cells, mononuclear phagocytes in 
VE can sample and deliver antigens from the intestinal lumen 
to APCs (51). LP contains CD11c+ mononuclear phagocytes: 
CD11chi CD103+ CD11b+ CX3CR1− cells (CD103+ DCs) and 
CD11cint CD103− CD11b+ CX3CR1+ cells (CX3CR1+ mac-
rophages), which capture antigen from the intestinal lumen by 
extending transepithelial dendrites (TEDs) from the LP into the 
lumen of the gut by penetrating tight junctions (52, 53). Unlike 
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CX3CR1+ macrophages, CD103+ DCs migrate from the LP into 
the epithelium and crawl laterally while sending dendrites into 
the intestinal lumen to actively sample intestinal antigen (53). 
Indeed, activated B cells can move to the subepithelial dome of 
PPs, where they interact with DCs, which enhances IgA produc-
tion by integrin αvβ8-mediated activation of TGF-β (54). �e 
uptake of Bacillus amyloliquefaciens SQR9 by DCs induces the 
maturation and expression of CD80, CD86, CD40, MHCII, and 
cytokines in DCs, and secretion of SIgA (55). Also, lung CD103+ 
DCs and CD24+CD11b+ DCs have been shown to activate B cells 
through T cell-dependent or -independent pathways (56). Besides 
DCs, recent investigations have also shown that macrophages 
promote IgA production by B-1 cells in the intestine via TGF-β2-
dependent manner (57, 58). Some amino acids a�ect migration 
and function of DCs. For example, DCs of mice with Toxoplasma 
gondii infection increase gamma-aminobutyric acid (GABA) 
secretion and exhibit a hyper-migratory phenotype because the 
increase in GABA activates GABAA receptor-mediated currents 
in T. gondii-infected DCs (59). Inhibition of GABA synthesis 
and signaling in T. gondii-infected DCs or blockade of GABAA 
receptor impairs function of DCs in vitro, including their trans-
migration capacity, motility, and chemotactic response to CCL19 
(59). Glutamine increases the migration of T. gondii-infected 
bone marrow-derived DCs, while 2-(methylamino)-isobutyrate 
(MeAIB; inhibitor of glutamine transport by SNAT2), or 
methionine sulfoximine (MSO, a glutamine synthetase inhibitor) 
blocks glutamine-enhanced migration of T. gondii-infected bone 
marrow-derived DCs (60). Lower concentrations of glutamine 
diminish the function of monocyte-derived macrophages, such 
as cytokine synthesis, phagocytosis, and antigen presentation 
(61–63). Glutamine a�ects the expression of HLA-DR, intercellu-
lar adhesion molecule-1 (ICAM-1/CD54), Fc receptor for IgG (Fc 
gamma RI/CD64), complement receptors type 3 (CR3; CD11b/
CD18) and type 4 (CR4; CD11c/CD18), and tetanus toxoid-
induced antigen presentation on human monocyte-derived 
macrophages (61). �us, glutamine may regulate intestinal SIgA 
production through its in�uence on intestinal antigen sampling 
and presentation by macrophages and DCs.

Glutamine, Epithelial Cells, and Goblet Cells
Villous epithelial cells expressing neonatal Fc receptor (FcRn) 
and goblet cells play a role in intestinal antigen sampling (51, 64). 
FcRn contributes to the uptake of intestinal antigens by VE cells 
because it functions as IgG secretion across the intestinal epithe-
lium into the lumen and also IgG-dependent sampling of luminal 
antigens (65, 66). Although details of the process are unknown, 
goblet cells from the small intestine of mice deliver low molecular 
weight soluble antigens from the intestinal lumen to underlying 
CD103+ LP-DCs (64). �e bene�cial e�ects of glutamine on 
intestinal epithelial cells and goblet cells are well known (31, 67). 
For example, glutamine supplementation enhances expression of 
goblet cell-speci�c-mucin 4 in the mouse jejunum (31). However, 
it remains to be determined if glutamine a�ects intestinal antigen 
sampling by VE cells and goblet cells.

In conclusion, glutamine may in�uence sampling of intestinal 
antigens and presentation by APCs in intestine through M cells, 
macrophages, DCs, epithelial cells, and goblet cells.

Glutamine and Th2 Lymphocytes
�e activation of �2 lymphocytes plays a critical role in the gen-
eration of intestinal SIgA by activating B cells (22, 23). Glutamine 
is known to a�ect the number and function of T lymphocytes, and 
their subgroups (helper T lymphocytes, cytotoxic T lymphocytes) 
in humans (68), mice (69), and rats (70). Unfortunately, there has 
been no further investigation into the e�ects of glutamine on 
subgroups of helper T lymphocytes, including �1, �2, �17, 
and Tregs. However, in dextran sulfate sodium-induced colitis 
in mice, glutamine suppressed �1/�17 and expression of their 
associated cytokine expressions, but promoted Treg responses 
(71–73). Indeed, total parenteral nutrition decreases SIgA in 
the intestine and the abundance of �2 cytokines, like IL-4 and 
IL-10, which are known to stimulate SIgA production in  vivo 
(74). However, glutamine supplementation in such situations 
enhances expression of IL-4 and IL-10 and the abundance of SIgA 
in the intestine (74). We demonstrated that glutamine promotes 
�2 responses in mice infected with bacteria or viruses (75, 76). 
In mice infected with porcine circovirus type 2 or Pasteurella 
multocida, glutamine supplementation increases expression of 
�2 cytokines, like IL-6 and IL-10 (75, 76). However, others have 
reported that glutamine has little or even inhibitory e�ects on �2 
responses in some animal models (71, 77, 78). �e discrepancy 
may be related to the animal model, dosage, route of administra-
tion, and/or duration of glutamine supplementation, as well as 
time of analyses and methodologies. We also found that the func-
tion of glutamine varies due to those variables (31, 75, 76, 78).

In our recent study, 7  days of dietary 1.0% glutamine sup-
plementation had little e�ect on expression of IL-4 and IL-10 
mRNAs in the ileum, but increased expression of IL-5, -6, and -13 
mRNAs in the ileum (12). Meanwhile, glutamine supplementa-
tion increased TGF-β signaling based on greater expression 
of TGF-β1, -β2, and -β3 and TGF-β receptor 2 in the ileum of 
glutamine-supplemented mice, compared to control mice (12). 
Although dietary 1.0% glutamine supplementation for 7  days 
had little e�ect on the abundance of IL-5 protein in the ileum, 
glutamine supplementation enhances the abundance of IL-13 
protein in the ileum (12). Glutamine supplementation also 
increased the abundance of TGF-β1 protein in the ileum (12). 
Interestingly, interference of IL-13 signaling during glutamine 
supplementation by intraperitoneal injection of the IL-13 anti-
body decreased expression of J-chain mRNA in the ileum (12). 
Collectively, glutamine promotes the secretion of SIgA in the 
intestine, and this may be mediated by �2 cytokines, such as 
TGF-β and IL-13.

Glutamine and T Cell-Independent 

Pathway
In LP, the production of most intestinal SIgA depends mainly on 
T cell-independent pathways associated with TLRs on B cells, 
and BAFF, APRIL, VIP, IGIP, and NO from other cells. Although 
e�ects of glutamine on expression of TLRs on B cells is not 
known, glutamine is an important energetic and biosynthetic 
nutrient for B lymphocytes (79) that may a�ect the expression of 
TLRs on B cells. In a mouse model with P. multocida infection, 
we found that glutamine supplementation a�ects the expression 
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FIGURE 1 | Possible mechanisms whereby glutamine promotes secretion of intestinal secretory immunoglobulin A. Intestinal secretory immunoglobulin 

A (SIgA) production requires stimulation via a T cell-dependent or a T cell-independent pathway. In the T cell-dependent pathway (left), M cells sample and deliver 

antigens from the intestinal lumen to dendritic cells (DCs) in the underlying subepitheilal dome region. DCs activate T cells in the interfollicular region and stimulate 

production of Th2 cytokines necessary for the differentiation of immature B cells into IgA-secreting plasma cells. In the T cell-independent pathway (right), release of 

the B cell-activating factor of the tumor necrosis factor family (BAFF) and a proliferation-inducing ligand (APRIL) from DCs promote T cell-independent mucosal IgA 

responses. Other factors, such as vasoactive intestinal peptide (VIP), IgA-inducing protein (IGIP), and nitric oxide (NO) also play important roles (not shown) in 

T-cell-independent pathways. SIgA is transported across the epithelium after binding to the polymeric immunoglobulin receptor (pIgR). In the intestinal lumen, SIgA 

binds intestinal antigens from microbes and diet. Glutamine may affect intestinal production of SIgA through intestinal microbiota (A), antigen sampling and 

presentation (B), induction pathways for SIgA production by plasma cells via either a T cell-dependent and T cell-independent pathway (C), activation and homing 

of IgA+ plasma cells (D), and transport of SIgA (E).

5

Ren et al. Glutamine and SIgA

Frontiers in Immunology | www.frontiersin.org November 2016 | Volume 7 | Article 503

of TLRs (TLR-1 to TLR-9) in lung and spleen (76). In mice 
immunized with the inactivated P. multocida vaccine, glutamine 
supplementation increased the expression of TLR-6, -8, and -9 
in spleen (78). In normal mice, we also found that glutamine 
supplementation a�ected expression of TLR-4 and -5 mRNAs in 
the ileum (31). �ese interesting results indicate that glutamine 
may a�ect the expression of TLRs on B cells, but direct evidence 
for that possibility is not available. �ere are few reports on the 
e�ect of glutamine on expression of BAFF, APRIL, VIP, and IGIP 
in innate immune cells. In our recent study, 1.0% glutamine sup-
plementation increased expression of APRIL, BAFF, VIP receptor 
1 and 2, and retinal dehydrogenases (RALDH 1 and 2) mRNAs 
in the ileum, but had little e�ect on the expression of inducible 
nitric oxide synthase (iNOS) mRNAs in the ileum (12). �ese 
compelling results suggest that glutamine may promote produc-
tion of SIgA in the intestine via a T cell-independent pathway; 
however, more convincing evidence is needed to validate this 
hypothesis.

Glutamine and IgA-Secreting Plasma Cells
Glutamine is an important energetic and biosynthetic nutrient 
for proliferation, survival, and function of B cells (68, 79, 80). 
Notably, glutamine signi�cantly increases IgA-positive plasma 
cells in the jejunal LP in rats with proximal colonic resection (81). 
Although the septic rats with cecal ligation and puncture (CLP) 

have a lower number of intestinal LP IgA-positive plasma cells, 
compared with the sham CLP controls, parenteral glutamine 
supplementation increases the number of IgA-positive plasma 
cells in intestinal LP (82). Similarly, 7  days of 1.0% glutamine 
supplementation increased IgA-positive plasma cells in the 
ileum of mice compared with control mice without glutamine 
supplementation (12). �e underlying mechanisms by which 
glutamine increases the number of the IgA-positive plasma cells 
are unknown. It is well known that retinoic acid released by 
DCs is involved to imprint gut-homing receptors, such as α4β7 
integrin, CCR9, and CCR10 on IgA-positive B cells, resulting in 
the migration of IgA-positive B cells from Peyer’s patches to the 
LP (83, 84). However, it will be of interest to determine whether 
glutamine metabolism in DCs or in intestine also a�ects homing 
of IgA-positive B cells.

GLUTAMINE AND TRANSPORT OF 

INTESTINAL SIgA

�e expression of pIgR is critical for transport of intestinal SIgA. 
Various intracellular signaling pathways are associated with 
the expression of pIgR, such as Janus kinase-signal transduc-
tion and activator of transcription (JAK-STAT), NF-κB, and 
mitogen-activated protein kinase (MAPK) (48, 85). Multiple 
cytokines produced by innate and adaptive immune cells in the 
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host, including interferons (IFNs)-γ, IL-1, IL-4, IL-17, TNF, and 
lymphotoxin (LT)-β, are reported to regulate the expression 
of pIgR through intracellular signaling pathways (48, 85). For 
example, binding of IL-17 to its receptor activates the classical 
NF-κB pathway through MyD88-independent signaling, which 
results in nuclear translocation of an NF-κB dimer comprising 
p65/RelA and p50 subunits, and expression of pIgR because 
this NF-κB dimer may bind to a cognate element in intron 1 of 
the gene of pIgR (86). Indeed, inhibition of the classical NF-κB 
activation pathway by Bay11-7082 blocks the induction of pIgR 
expression by IL-17 in HT-29 cells (86). Mice de�cient in the 
IL-17 receptor (Il17r −/−) have less SIgA in fecal content and 
lower expression of pIgR in both the small and large intestines, 
compared to wild-type mice (86). Similarly, intestinal microbes, 
especially segmented �lamentous bacteria (SFB), which induce 
�17 responses (87) and have a critical role in the production 
of intestinal SIgA (88) perhaps by a�ecting expression of pIgR. 
Indeed, intestinal microbiota can regulate the expression of 
pIgR (85). For example, in an in  vitro study with HT-29 cells, 
the expression of pIgR was induced by co-culture with di�er-
ent strains of intestinal bacteria, such as E. coli and Salmonella 
typhimurium (89). An in vivo study with germ-free mice revealed 
that those mice have lower expression of pIgR, compared with 
mice with a normal microbiota. Further, monocolonization of 
commensal bacterium B. thetaiotaomicron to germ-free mice 
restored intestinal expression of pIgR to levels comparable to 
those in mice with a normal microbiota (90). �e regulation of 
pIgR expression by intestinal microbiota may largely depend on 
the microbial products as most commensal bacteria are spatially 
segregated from the epithelial surface because of mucus, SIgA, 
and other antibacterial products. For example, some bacterial 
products, like butyrate and lipopolysaccharide, upregulate 
expression of pIgR (85, 89, 91, 92). Besides bacterial products, 
nutrients such as arginine (35) and retinoic acid (93,  94) can 
regulate the expression of pIgR. In our recent study, we found that 
glutamine supplementation a�ected expression of pIgR mRNA 
in our mouse model (12). Glutamine may a�ect pIgR expression 
through its e�ects on the intestinal microbiota, cytokines, and 
intracellular signaling pathways. �e in�uence of glutamine on 
intestinal microbiota was discussed previously. Our research 
with various animal models revealed that glutamine in�uences 
production of multiple cytokines, such as IFN-γ (75), IL-1β (31, 
76, 95), and IL-17 (31, 95). Furthermore, glutamine regulated 
the activation of intracellular signaling pathways, such as STAT, 
NF-κB, and MAPK (31, 95, 96). For example, glutamine a�ects 
the activation of NF-κB signaling by regulating the expression 
of NF-κB protein, the translocation of the dimer (p65 and p50) 
from the cytoplasm to nucleus, the degradation of p65 and IκB, 
and the expression of IκB kinase (31, 95, 96). �us, glutamine 
may a�ect SIgA transport by a�ecting the expression of pIgR.

CONCLUSION

It is well known that glutamine a�ects intestinal production of 
SIgA; however, the underlying mechanism by which glutamine 
promotes intestinal secretion of SIgA is unknown. �e increase 
in knowledge of functions of glutamine in intestinal immunity 
suggests that glutamine a�ects intestinal production of SIgA 
through e�ects on intestinal microbiota, antigen sampling and 
presentation, induction pathways for SIgA production by plasma 
cells, including T-dependent and T-independent pathway, and 
even expression of pIgR (Figure 1). However, more well-designed 
experiments are required to provide convincing evidence to vali-
date this hypothesis regarding relationships between glutamine 
and intestinal SIgA. New molecules a�ecting SIgA production 
are being found, such as �17 cells (97) and innate lymphoid 
cells (98). It will be of interest to study the in�uence of glutamine 
on signaling by those cells. �e amount of SIgA in the intestine 
has been associated with the pathogenesis of various intestinal 
diseases, such as in�ammatory bowel disease (99, 100), food 
allergies (49, 101), and Celiac disease (102). �us, manipulation 
of the glutamine-intestinal SIgA axis has a broad therapeutic 
potential for treating diseases associated with altered produc-
tion of intestinal SIgA. As a functional amino acid, glutamine 
holds promise for improving the intestinal health of animals and 
humans (103–106).
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