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ABSTRACT
Glycans are carbohydrate components of glycoconjugates, which interact with their receptors;
for example, galectins and C-type lectins. The specificity to their receptors makes them the ideal
biomarkers that they can be used as a therapeutic target or as a screening tool. We collected and
reviewed articles from different databases, which show that glycans play a significant role in several
body functions, such as stimulation of the immune system, and can be used in the differentiation
among cancer types. They also help in nervous system repair, regeneration, regulation and prolifer-
ation. Furthermore, several pathogens like Schistosoma, HIV, Influenza, Candida, and Ebola produce
glycoproteins to aid in the invasion via attachment to surface glycoproteins and defend themselves
against the host's immune system.
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INTRODUCTION
As characterized by the IUPAC, the terms glycan
and polysaccharide are equivalent and describe a
compound containing monosaccharides that are con-
nected glycosidically, or bits of carbohydrate glyco-
conjugates, such as a glycoprotein, glycolipid, or a
proteoglycan1. Glycans are exclusively comprised
of O-glycosidic linkages of monosaccharides. For
instance, cellulose is a glycan that is made from
β -1, 4-connected D-glucose, and chitin is a gly-
can that is made from β -1,4-connected N-acetyl-
D-glucosamine2–4. Glycans can be homo-or het-
eropolymers of monosaccharide buildups and can be
in straight or extended forms. All cells and vari-
ous macromolecules in nature convey a variety of
covalently linked sugars (monosaccharides) or sugar
chains (oligosaccharides), which are conventionally
alluded to as ”glycans”3. Sometimes, these glycans
can also be freestanding entities. They perform differ-
ent functions in multicellular organisms and play the
role of mediators between different organisms (e.g.,
between host and a parasite or a symbiont). In addi-
tion, protein-bound glycans are abundant within the
nucleus and cytoplasm, where they can serve as regu-
latory switches1. During 1960s and 1970s, the initial
phase of the molecular biology revolution, investiga-
tions of glycans lingered a long way behind those of
othermajor classes of particles. The advancements for
studying glycan structures and functions since then
opened a novel and new era of molecular biology that

was called “glycobiology”. In the late 1980s, this word
was first coined to distinguish the molecular biology
of glycans and specifically, their conjugates with lipids
and proteins1.
Various natural bioactive molecules are glycoconju-
gates and linked to glycans, which can affect the
biosynthesis, action, stability, and molecules turnover
within intact organisms. For instance, heparin (sul-
fated mucopolysaccharide) and their derivatives are
the utmost generally used drugs globally. Glycan bi-
ology has turned out to be essential in the current
biotechnology because the steps of glycoprotein drug
patenting, FDA approval for its usage, andmonitoring
the overall manufacture require knowledge of the gly-
can structure. Furthermore, nowadays, glycoproteins
are the major products of the biotechnology indus-
try, including monoclonal antibodies, hormones, and
enzymes. The diagnostic and/or therapeutic signifi-
cance of glycans are helpful in several human disease
states that are characterized by the changes in glycans
biosynthesis5.
There are more glycans than proteins encoded in our
entire genome. Defects in genes that control glycan
production or glycan chaperone proteins, or defects
at the level of Golgi-complex, where their assembly
occurs, can cause glycosylation disorders6. Glycans
have a role in protein modification before it is formed
as well as when the protein is mature7. Because gly-
can interaction with their receptors is purely physi-
cal, 3D analysis of glycoprotein structure via glyco-
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protein crystallography might give better consider-
ate of the contact amongst glycans and their carbo-
hydrate/protein receptors8.
Carbohydrates in glycoproteins are attached to their
protein part either via N-linked glycosylation, O-
linked glycosylation or both 9. N-linked glycans
are made abnormally in cancer cells, which are
then recognized by the CD337 receptor on natural
killer cells10.Glycans can change the function of im-
munoglobulins. Each immunoglobulin (IgG, IgA,
IgM, IgE or IgD) has unique properties based on
the way it is glycosylated. For example, when IgG
CH2-84.4 glycans are sialylated and fucosylated, it will
give that antibody the anti-inflammatory properties,
whereas G0 glycan at CH2-84.4, which lacks galac-
tose and is neither sialylated nor fucosylated, gives
the antibody the pro-inflammatory properties, and
increases the level of what is seen in various auto-
immune diseases 11. Immune systems have glycan
binding receptors, which are known as lectins. These
can be secreted, such as galectins, or membrane-
bound like siglecs. Regardless of their locations,
all lectins have carbohydrate-recognition domains
(CRDs) that bind to the glycan portion of glycoconju-
gates such as glycoprotein, glycolipid, and proteogly-
can12. A macrophage galactose-type lectin (MGL),
which is expressed exclusively on immature den-
dritic cells andmacrophages, is an example of specific
lectins13.
Glycosylation is an important post-translational
modification, and almost half of all proteins are gly-
cosylated14. Glycosylation can act as a key regulatory
mechanism controlling several physiopathological
processes, and different types of glycosylation
can interfere with cell development as well as the
microenvironment, which can then lead to cancer
formation and progression.

GLYCANS REGULATION IN
DIFFERENT SYSTEMS
Glycosylation Alteration in Cancer
For almost six decades, it has been known that can-
cer cells show alterations in glycosylation15, but very
little is acknowledged about their role in cancer pro-
gression and metastasis, or their correlation with the
survival rates. However, with the invention of mono-
clonal antibody technology, which demonstrated that
glycans were the target of tumor-specific antibodies,
and the recent focus on glycans in the field of cancer
research, significant advancements have been made
giving much more understanding of tumors’ glyco-
proteins and the significance of glycosphingolipid al-
terations4.

Tumor cells show different forms of glycosylation
alterations when compared with their neighboring
healthy cells. Glycosylation of proteins increases di-
versity in their functions while very few changes are
imposed on cell structure. These alterations occur
at specific locations on the protein and in specific
cells. Changes in the specificity of glycosylation in
healthy cells are different from glycosylation in can-
cerous cells, and one or more factors may be involved
in these changes in cancer cells16.
Glycosylation can occur through altered expression of
the enzyme (glycosyltransferase) responsible for cat-
alyzing the addition of carbohydrates onto the protein
(glycosylation) at the gene level17, or through the de-
fects in the Golgi apparatus where this assembly oc-
curs18. Chaperone dysfunction can also lead to the
glycosylation changes seen inmalignant cells19. Most
common glycosylation changes seen in cancer cells
are fucosylation, sialylation, and N- and O- linked
branching glycan. Genetic, epigenetic and several
environmental factors may be responsible for these
changes seen in malignantly transformed cells20.

Glycan’s Role in Lung Cancer
Acute phase proteins undergo glycosylation in in-
flammation and cancer. Changes in glycosylation are
correlated with the severity of the disease. A1AT (α-
1-antitrypsin) is an example, whose primary func-
tion is to regulate protease/anti-protease activity. It
also has a role in cancer, as the altered glycosy-
lation of A1AT is seen in lung, liver, breast, and
prostate cancer21.A1AT can be used in cancer de-
tection and differentiation: the glycosylated patterns
of A1AT may help in detection of lung cancer as
galactosylated A1AT can distinguish NSCLC (non-
small-cell lung cancer) from benign pulmonary dis-
eases, while fucosylated A1AT can differentiate ADC
(adenocarcinoma) from other types of lung cancers
andA1AT-containing poly-LacNAc is useful in detec-
tion of SCLC22. Several NSCLC (non-small-cell lung
cancer)-specific glycoproteins and their N-linked gly-
cosylation sites have been identified, and these can
increase the specificity of thoracic CT scans con-
ducted to detect lung cancers23. The pulmonary sur-
factant’s main components, or SP-A (lung surfactant
protein A), interacts with macrophages or monocytes
and is uptaken by macrophages and transported into
secondary lysosomes. This uptake is inhibited by
alpha-D-mannosyl-bovine serum albumin (BSA), but
not by beta-D-galactosyl-BSA. SP-A is a glycoprotein
with N-glycosylated glycans, so it could act as a ligand
for the mannose-specific receptor on macrophages.
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As SP-A is a mannose-specific lectin itself, it can
bind to mannose residues on cell surface of mar-
crophages24.
One study showed that cigarette smoking leads to in-
creased expression of the receptor for advanced glyca-
tion end-products (RAGE) involved in the activation
of NF-κB, which is mediated by Ras, leading to in-
flammatory lung disease 25.Protein glycosylation af-
fects protein folding, functionality, and stability. Ab-
normally glycosylated protein aids inmalignant trans-
formation of tumor cells. Lung cancer expresses sia-
lylated or fucosylated glycans on their cell surfaces,
including, Globo H, sialyl Lewis x (sLex), sialyl Tn
(sTn), Lewis y (Ley) and polysialic acid 26.EGFR (epi-
dermal growth factor receptor), a glycoprotein, has ty-
rosine kinase activity. EGFR is over-expressed in can-
cer cells, which supports cancer cell invasion, metas-
tasis, and angiogenesis. Twelve glycosylation sites are
known to exist on EGFR extracellular region and gly-
cosylation may help to regulate some of EGFR func-
tions. CL1-0 and CL1-5 are two distinct cell lines
derived from lung cancers, each holding distinct in-
vasive properties with high sialylation and fucosy-
lation of EGFR. Sialylation and fucosylation could
modulate EGFR-mediated lung cancer invasiveness.
Increased sialylation and fucosylation downregulate
EGFR, thus leading to lower lung cancer cell metas-
tasis, while facilitating incorporation of the core fu-
cose via α 1,6-fucosyltransferase, which upregulates
EGFR, leads to greater cancer metastasis. This may
also be themechanismbehind cancer cell resistance to
EGFR inhibitors27. Beta-glycan, which is also known
as Type III TGF-β receptor or RIII, is a proteoglycan.
Its expression is controlled by TGF-β1 (transforming
growth factor beta). TGF-β1 is an inhibitor of growth
even though small cell lung cancer (SCLC) seems to
be resistant to its growth inhibiting properties due to
lacking the expression of R1, R2 TGF-β receptor pro-
teins28. Another study indicates that only the lack of
R2 receptors might explain cancer cell resistance to
TGF-β 29.
Haptoglobin is an acute phase protein. It is made in
the liver and is regulated by several cytokines30.Its
two glycoforms, sialylated and fucosylated hap-
toglobins, can potentially serve as biomarkers for
NSCLC31.P-selectin, which is a transmembrane ad-
hesion receptor present at Weibel Palade bodies
of endothelial-cells and alpha-granules of platelets,
binds to the glycans of neutrophils and monocytes
containing sialyl-Lewis X antigens32. Higher sialyla-
tion of the glycoprotein P-selectin has been observed
in cancer cells, and P-selectin was suggested to aid in
cancer invasion and metastasis33.In one experiment,

lung metastasis of the colon cancer was prevented by
inhibiting sialyltransferase, indicating the role of P-
selectin in metastasis34.

Glycans and the Role in Cancer Diagnosis
Early detection of cancer is the main factor in fighting
against this ever-evolving disease. Glycans have the
potential to act as noninvasive biomarkers that can
detect cancer before it metastasizes, which helps to
monitor malignant progression, and accurately pre-
dict prognosis35. One successful example of a gly-
cobiomarker is AFP (alpha-fetoprotein), a glycopro-
tein made during embryogenesis and fetal develop-
ment that is currently used for the detection of hep-
atocellular carcinoma (HCC) 36. However, AFP is
not very useful in differentiating benign liver dis-
ease from HCC. Fucosylated AFP-L3 fraction, on the
other hand, appears in the serum of a patient with
cirrhosis just before its malignant transformation to
cancer, thus making it an ideal glycobiomarker in
diagnosis37. Beta-HCG (beta-human chorionic go-
nadotropin), which is used in gynecological malig-
nancy monitoring; or PSA (prostate-specific antigen)
in prostate cancer, and Dx and CEA (carcinoembry-
onic antigen) in colon cancer monitoring, are all ex-
amples of glycol biomarkers that are used today38.
The EML4 ALK [Echinoderm Microtubule linked
protein as 4(EML4), ALK (Anaplastic Lymphoma Ki-
nase)] and KRAS (V- Ki-ras2 Kirsten rat sarcoma ho-
molog viral oncogene) are other examples of glycol
biomarkers used for lung cancer detection39. Further
discovery of more glycol biomarkers that are able to
detect cancer in its early stages will contribute greatly
to lowering cancer-related deaths, providemore accu-
rate prognosis and diagnosis of cancers, and will facil-
itate the differentiation of cancer types 40.

Glycan and the Role in Cancer Treatment
Cancers are defined as a diseases group, which in-
volves irregular cell development and the ability to
occupy other areas of the body41,42. PTMs (post-
translation modifications) such as methylation, N-
acetylation, phosphorylation, and glycosylation are
involved in the maintenance of proteins functioning
in both cancer and normal cells. Most commonly oc-
curring PTMs is glycosylation, and is involved in var-
ious biological mechanisms41,43.
Glycans are the essential biosynthetic precursors and
attached to lipids or proteins to form glycoproteins or
glycolipids as structural elements41. As an important
factor in the understanding of different cancer mech-
anisms, diagnostic and therapeutic strategies, glycan
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biology has gained an important part in cancer re-
search42. Glycan also act as a key regulatory mech-
anism of several physio-pathological processes44. It
was reported over more than sixty years ago that gly-
cosylation changes associated with cancer transfor-
mation42. A wide range of glycosylation alternations
was displayed by cancerous cells as compared to their
non-transformed complements. Molecular hetero-
geneity and functional diversity within cell popula-
tions increased due to glycosylation16,42.
Nowadays, new strategies and options are urgently
needed for timely diagnosis, risk assessment and
treatments of cancer, and glycans can be a poten-
tial source for the development of new biomarkers.
Glycoproteins are the most common used serological
biomarkers for clinical diagnosis, monitoring of pro-
gression and prognostic of disease recurrence in can-
cers35,41,42. Different types of prominent biomarkers
used in patients with prostate, ovarian, colon, breast,
gastric and pancreatic cancer42. These biomarkers
have been shown with abnormal glycosylation in can-
cer cells. The use of these biomarkers for screen-
ing and diagnostic strategies are low due to their low
specificity. Therefore, new research and strategies
of higher specificity biomarkers are required for the
early detection and diagnosis of cancers. For exam-
ple, α-fetoprotein (AFP) is a glycol-biomarker, which
is used for the detection of liver diseases and is a gen-
erally validated protein for the diagnosis of Hepato-
cellular carcinoma (HCC). However, serum levels of
AFP does not differentiate between HCC and benign
liver diseases. Therefore, the glycosylated formofAFP
(AFP-L3 fraction) was proposed as an additional can-
cer marker, that shows significant results to compare
HCC patients and chronic liver diseases42,45.
Glycosylated proteins and other glycoconjugates are
involved in several important physiological processes
in normal tissues and act as major components of
cells. Modifications of glycosylation occurred due
to metabolic, genetic, epigenetic, inflammatory and
environmental mechanisms that initiate various bi-
ological processes in cancer41. The new knowledge
and understanding in the glycobiology would provide
rapid expansion of novel glycoengineered and model
platforms. The combination of the increasing data
and recent advances in glycomics, glycoproteomics,
genomics, metabolomics and proteomics will provide
novel targets and fruitful strategies for the timely diag-
nosis, prognosis and improved treatments of cancers.
In short, a better understanding of abnormal glycan
mechanisms is important for the design and synthe-
sis of anti-cancer drugs 41–43.

The Role of Glycans in the Nervous System

Glycans have important functions in nervous system
development, regeneration, and maintenance of its
plasticity46. Oligodendrocytes express an extracellu-
lar glycoprotein tenascin-R, which is only found in
the central nervous system of vertebrates, can sup-
port axon regeneration and remyelination. Phos-
phacan, Aggrecan, Versican, Neurocan, Brevican are
the ligands to which tenascin-R attaches, and they
play an important role in synaptogenesis, neural cell
adhesion and migration47. One of the most com-
mon posttranslational modifications of proteins is N-
Glycosylation, which plays an important role in the
central nervous system. For example, it is active in
the biosynthesis of ganglioside, which is regulated by
glycosyltransferases. Cells can switch between ex-
pressing simple and complex gangliosides, or in be-
tween simple and complex gangliosides during the
development of the brain. However, glycosyltrans-
ferases need to be fine-tuned at the subcellular level
and stated in a precise way in the biosynthesis of gan-
gliosides in parallel enzymatic pathways48.
CNS recovery can be halted if reactive astrocytes pro-
duce chondroitin sulfate proteoglycan, which acts to
inhibit axonal regeneration. Lectin-glycan interac-
tion was suggested to play an important role in NSC
(Neural StemCell) regulation and proliferation due to
the glycan binding ability of Galectin-1 in the extra-
cellular matrix49.

The Role of Glycans in the Immune System
and Autoimmunity

The immune system of human is presented every day
with the challenging task of differentiating the ’self ’
from the invaders and the cells that have gone can-
cerous. The immune system does this via an intri-
cate system; if anything in this system goes wrong, it
could lead to autoimmunity50. One area in which the
immune system must discriminate antigens is with
gut microbiota. There are 10 bacterial cells for every
human cell, with more than 10,000 species of bacte-
rial cells. Collectively they constitute 1-3% of human
body weight, and yet we know very little about how
these microorganisms exist in harmony with their
host. Recent studies have shown that glycoconjugates
may be behind such host-microbial relationships. For
example, if Helicobacter pylori bind to a fucosylated
or sialylated glycans, this will prime to the activation
of the defense in the immune system. However, Bac-
teroides, a normal flora of the gut, can attach to fuco-
sylated glycans without activating similar response 51.
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The controlled expressions of glycans on the cell sur-
face through the enzymes glycosyltransferase and gly-
cosidase, both of which modify glycans, are vital in
immune cell activation and homeostasis. Galectin, a
family of lectins, is expressed by almost all immune
cells, either continuously or in inducible forms. It can
be upregulated by other immune cells such as acti-
vated B and T cells. All galectins have at least one
CRD (carbohydrate receptor domain) that binds to
glycan. Galectins upregulation has been observed in
many tumors. Prostate cancer cells that express a low
level of the glycosyltransferase GCNT1, are resistant
to apoptosis mediated by galectin 1, but they express
a high enough level of glycosyltransferase GCNT1 to
eliminate effector T cells52. Changes in the tri- and
tetra-antennary glycan structures, sialyl Lewis X epi-
topes and galactosylated bi-antennary glycans, are ob-
served in cancer patients, and many of these changes
in chronic inflammatory diseases have also been ob-
served53.
Systemic lupus erythematous (SLE), rheumatoid
arthritis, Crohn’s disease, and other autoimmune dis-
eases are known to have altered patterns of glycosy-
lation of glycoprotein IgG54. Decreased galactosyla-
tion and sialylation of the Fc region have also been
observed in autoimmune diseases 55. In fact, IgG can
be switched between its anti-inflammatory and pro-
inflammatory properties depending on the degree
of its sialylation56. Streptococcus pyogenes has an
EndoS (endoglycosidase) that hydrolyzes asparagine-
linked glycan on IgG, which acts to render IgG inac-
tivity so that it can no longer bind to FcγR on white
blood cells and trigger an immune response 57.
The influenza virus that killed over 50 million people
in just one year in the ’90s58 also attached to its host
via a glycan with an sialic acid on its end by using a
glycoprotein known as Hemagglutinin (HA). This in-
teraction of HA and glycan was critical in the infec-
tivity and transmission of the influenza virus59. Its
specificity depends on the fucosylation, sulfation, and
sialylation of the host receptors, as well as the type of
linkage possessed by sialic acid. The human influenza
virus binds to α 2-6 linked sialic acid located on the
respiratory tract epitheliummakeing it different from
the avian influenza virus binding site, which binds to
α 2-3 linked sialic acid located on the epithelium of
intestinal tract60. Though H5N1 virus binds to α 2-3
sialylated glycan, some mutant strains have been ob-
served binding to α 2-6 sialylated glycan, which can
lead to human adaptation of this strain61.
HIV interaction with its human host is also depen-
dent on a glycoprotein, gp120, which is a viral pro-
tein used by HIV to bind to the host’s CD4+ve T-

cells62. There are contrary data on whether carbo-
hydrates play a role in this interaction. Glycans’ role
in escaping the host’s defense system is not limited
to HIV; other viruses and parasites also use them in
to fight against the host defense system63. HIV and
Ebola viruses bind to DC-SIGN(R) (dendritic cell-
specific ICAM-3 grabbing nonintegrin)(receptor) on
host cell surfaces via glycoproteins present on their
envelope64. Candida albicans also produce glycans
that recognize DC-SIGN(R) via α-Man65.
Our immune system can use the same glycans to rec-
ognize foreign invaders. For example, Schistosoma
and other helminths produce glycans that can trigger
an immune response 66.

CONCLUSION
There is an increasing need to study glycan and its in-
teraction with receptors as they are involved in many
functions in the human body. Thus, it is impossible
to ignore its future role in medicine.
Recent advancements in deciphering the information
about glycan receptor interactions have led to an un-
derstanding that glycan binding receptors (galectins,
siglecs) and their interaction with glycan play a sig-
nificant role in immunity, autoimmunity, homeosta-
sis, and cancers. Researchers only have the faintest
glimmer of knowledge concerning the possible role
of glycan in disease development and progression.
Future measures are needed to take what is known
about protein-saccharide interaction to develop effec-
tive treatments for diseases for which there are cur-
rently no cures. These include various autoimmune
diseases, cancer, and chronic inflammation. The im-
pressive progress over the recent years in understand-
ing glycans as promising biomarkers in cancers has
contributed to the discovery of glycans and their im-
portance to clinical applications as potential targets
for personalized and individualized medicine.

ABBREVIATIONS
NSCLC: Non-small cell lung cancer
A1AT: α-1-antitrypsin
SCLC: small cell lung-cancer
ADC: adenocarcinoma
PSA: prostate-specific antigen,
AFP: alpha-fetoprotein,
HCC: Hepatocellular carcinoma
NSC: Neural Stem Cell
EndoS: endoglycosidase
EGFR: epidermal growth factor receptor
DC-SIGN(R): dendritic cell-specific ICAM (intercel-
lular adhesion molecule)-grabbing nonintegrin
TGF-β1: transforming growth factor beta
HIV: Human immunodeficiency virus
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