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Abstract

Glycation is a general spontaneous process in proteins which has significant impact on their physical and functional
properties. These changes in protein properties could be related to several pathological consequences such as
cataract, arteriosclerosis and Alzheimer’s disease. Among the proteins, glycation of Human serum albumin (HSA)
is of special interest. Human serum albumin is the most abundant protein in the plasma and because of its high
sensitivity for glycation, undergoes structural and functional changes due to binding of reducing sugars in vitro. The
glycation process occurs by plasma glucose in vivo which has great impacts on the three dimensional structure of
protein. These changes are efficient and stable enough which makes the protein to be considered as a new special
disease marker instead of HbA1C for diabetes. In some cases, glycated albumin was used as an alternative marker
for glycemic control. Glycated albumin reacts with glucose ten times more rapidly than HbA1C and has shorter
half-life which makes it more reliable for indicating glycemic states. In this review, glycation of Human Serum
Albumin has been overviewed, starting from overall concepts of glycation, followed by some Examples of
pathological consequences of protein glycation. The BSA aggregation was reviewed in terms of structural and
biological impacts of glycation on the protein followed by reporting documents which indicate possibility of
glycated albumin to be used as specific marker for diabetes. Finally, some of the studies related to the models of
glycated albumin have been briefly described, with an emphasis on In vitro studies. It is interesting to note the
relationship found between in vitro glycation experiments and the propensity of proteins to form amyloid
structures, a point that could be further explored as to its significance in hyperglycemic states.
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Introduction
Albumin is one of longest known proteins of plasma [1].
Normal concentration of albumin is 35–50 g/l, which
makes it the most abundant protein in plasma with a wide
variety of physiological functions. Human albumin presents
50% of the normal individual’s plasma protein [2]. The
protein is organized into three domains, I, II and III, each
subdivided into two subdomains, A and B [3], with 17
intramolecular disulfide bonds which makes it suitable for
a wide variety of modifications including response to
pH and other biophysical compounds [4]. Due to its
low molecular weight (67 kDa), albumin contributes
in osmotic pressure maintenance of plasma, compared
with other plasma globulins [5], and also because of
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its weak isoelectric point, the protein has a global negative
charge at physiological pH [6]. Albumin structure allows
protein to bind and transport diverse metabolites such as
metal ions, fatty acids, bilirubin and drugs [7,8]. Indeed,
conjugation of drugs with this protein with long half-life,
improved their pharmacokinetic properties [9].
There are three main binding sites on the protein; two

of them (site I and site II) are located on subdomains
IIA and IIIA, respectively [10] and have been found to
bind specifically aromatic and heterocyclic ligands [3].
Flexibility of human serum albumin (HSA) enables inter-
action of the protein with numerous compounds, by con-
trast, site II, which is less flexible, has not same property.
As examples, paracetamol, a commonly used analgesic
drug, binds to residues located in the subdomain IIIA
[11,12] and other metabolites such as fatty acids bind to
other locations, whose seven binding sites are localized
in subdomains IB, IIIA, and IIIB [13]. In addition, some
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residues, such as cysteine, lysine, serine and arginine, have
found to covalently bind to many drugs [14].
When protein modification induced by physiological

or pathological changes occurs, an alteration of the native
conformation and efficiency of these binding sites can be
expected [15]. Advanced Glycation End Products (AGE),
which could bind to plasma proteins, were considered as a
novel class of uremic toxins [16], and besides ceruloplas-
min and other plasma compounds such as ascorbic acid
[17], the role of albumin has been highlighted as an anti-
oxidant, having a part in keeping the body safe in cases of
oxidative stress [18] which is due to availability of several
residues to work as antioxidant [19]. Cys-34 is one of the
powerful residues involved in disulfide bond and in a
healthy person 70-80% of albumin Cys-34 is in its reduced
form and is able to scavenge hydroxyl radicals [20] when
the protein is in native conformation [21].
Another amino acid, methionine, is involved in the anti-

oxidant activity of protein. The more exposed methionine
residues are presented to oxidation, could serve as ROS
(reactive oxygen species) scavenging system to protect
proteins from oxidation [22]. Other main binding sites
could be mentioned. For instance, carbohydrates could
bind to albumin via three main sites (Lys-351, Lys-475
and Arg-117), and as so, albumin may protect other pro-
teins from glycation in the initial stages of diabetes [23].
Many studies have been done on bovine serum albumin

(BSA) which has high (76%) sequence homology to hu-
man serum albumin (HSA). BSA, with 583 amino acids
and molecular weight of 66.28 [24], has an ellipsoidal
shape and like HSA, includes three homologous domains
(I, II and III), which are connected together through
helical extensions. Similar to HSA, it contains 17 disulfide
bridges which make the structure stable in neutral pH and
room temperature. The free thiol group of Cys-34 is also
present in BSA. It has been found to have a relevant role
in thermal aggregation of the protein [25]. BSA shows
several conformational isomers at different pH values; lots
of these structural changes are due to breakage of ionic
bonds. The three dimensional structure of the protein
changes from nature (N) form, hold at pH 4–8, to the un-
folded state at pH 3, where a decrease of helical structure
is observed [26].
As mentioned, BSA and HSA have close homology in

primary structure; a main difference, important in struc-
tural studies, is believed to be due to the presence of
two tryptophan residues (Trp-131, and Trp-214) in BSA,
while one (Trp-214) is present in HSA [27,28]. The tryp-
tophan 214 localized at domain II of HSA is suggested
to have a role in its amyloid fibril formation [29].
In this review, we provide an outline on human serum

albumin and its glycation in diabetic patients, which is
recently suggested to have high potential as a possible
diagnostic marker alongside with the well-known HbA1C.
Some pathological effects of glycation are also mentioned.
Finally, an introduction to in vitro models of albumin
glycation, as valuable tools in the study of this modified
protein is also included.

Glycation of proteins
Glycation, i.e., the non-enzymatic addition of carbohydrate
moieties to protein reactive residues, has been the subject
of many studies over the last decade. The process is fas-
tened in diabetic states, which provided the preliminary
ground to assess the relationship between elevated levels
of glycated hemoglobin A1C and this disease [30]. In vivo
glycation has been described in proteins such as the lens
crystallins [31], collagen, ferritin, apolipoprotein [32], and
serum albumin [33]. In addition to glucose, sugars such as
galactose [34], fructose, ribose [35] sialic acid [34], man-
nose [36], glucose 6-phosphate [37], glyceraldehydes [38],
and fucose [39] have been used in vitro as glycating
agents, sometimes to fasten the process.
These sugars undergo maillard reaction corresponding

to a condensation between a carbonyl compound of redu-
cing sugar and a free amino group of specific residues
such as lysine or arginine [40] and besides the solubility of
the end-stage products, the reaction intermediates may be
dark brown aggregates [41]. Early glycation leads to the
formation of Schiff's bases and Amadori products and
Further oxidation produces advanced glycated end prod-
ucts (AGE) [42]. During the production of fluorescent
AGEs products, proteins undergo both glycation and oxi-
dation. As the early-stage of the reaction includes inter-
action of reducing sugars, such as glucose, with free amino
groups of lysine and arginine residues, recent studies have
demonstrated that the glycation process is facilitated read-
ily by the presence of a histidine residue near the lysine
[43]. The late-stage of reaction is an irreversible cascade of
reactions involving dehydration, hydrolysis, etc., leading to
the formation of AGE. AGEs products are considered to
be a marker of various diseases, such as arteriosclerosis,
renal failure, Alzheimer disease, or diabetes, but they also
increase during normal aging [44,45].
AGE products exhibit a wide range of chemical struc-

tures and thereby have different biological [46,47] proper-
ties (Figure 1). Major chemically characterized AGEs
are N-(carboxymethyl)lysine (CML) [48], pentosidine [49],
pyrraline [50], and imidazolone [51].
Protein cross-linking by AGEs results in the formation of

detergent-insoluble aggregates [52,53]. Such aggregates
may have interference with protein degeneration and other
metabolic disorders during the diabetes or other in vivo
glycating conditions in the body such as pregnancy.

Examples of pathological consequences of protein glycation
Most of the studies on glycation contributed to diseases
have been primarily focused on diabetes and diabetes-



Figure 1 Chemical structures of various AGEs.
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related complications [54,55]. However, resulting dam-
ages are, of course, not limited to diabetic patients and
even at normal glucose levels some degree of glycation
and resulting damage occurs. Such damages are obser-
ved in various diseases such as cataract, arteriosclerosis,
and neurodegenerative diseases such as Alzheimer’s
disease (AD), Parkinson’s disease [56], Creutzfeld-Jacob
disease [40] and amyotrophic lateral sclerosis (ALS) [33].
In general, these random damage-induced posttransla-

tional modifications of proteins are basic causatives of
protein degradation [57-60]. However, this oxidative
cross linking of proteins is accompanied by a decreased
proteolytic susceptibility and therefore accumulation of
these oxidized proteins [61]. For example Friguet et al.
[62] reported a decreased proteolytic susceptibility of
N-carboxymethyl lysine- glycated glucose-6-phosphate
dehydrogenase. Besides that, the degradation of AGE
modified proteins might be a complex process, including
various uptake mechanisms, several proteases or pepti-
dases, and perhaps other additional hydrolases, involving
in lipid modifications [63].

Cataract
Cataract is one of the major causes of impaired vision
which caused blindness in patients with long time ele-
vated glucose levels. Indeed diabetes has been thought
to increase the risk of its development. At least two
mechanisms have been mentioned for development of
cataract in diabetic subjects: firstly, the aldose reductase-
osmotic mechanism and, secondly, the glycation hypoth-
esis. As a matter of fact, the glycation hypothesis may be
more compatible with the slow progress of cataract in
diabetic patients.
A lot of reports, confirms glycation of lens crystallin in
the case of diabetic cataract [64-66]. Liang et al. (1986)
reported increased glycation of α-crystaliin compared to
β and γ-crystallins. The data of Stevens et al. (1978)
showed that glycation of γ-crystallin was higher than α
and β-crystallins in diabetic rats and also Chiou et al.
(1981) observed that γ -crystallin glycation was equal to
or higher than that of α and β-crystallins and other
studies showing glycation of different crystallins. In rat
lens, the soluble protein fraction diminishes considerably
with aging and diabetes and the proportion of different
crystallins depleted from the soluble fraction may also
vary [64]. It is believed that glycation causes lens crys-
tallins to aggregate into high molecular weight (HMW)
aggregates [67].

Arteriosclerosis
Arteriosclerosis in its wide sense, including athero- and
arteriosclerosis occurs more frequently in diabetics than
in non diabetic individuals [68]. Diabetes leads to arterio-
sclerotic diseases such as coronary artery occlusion and
cerebrovascular. In addition, hyperglycemia causes aortic
intramural accumulation of sorbitol, which leads to in-
creased osmolarity and thus to intramural water retention
and decreased tissue oxygenation [69]. Glycation of low
density lipoprotein and collagen in the vascular wall are
also considered as effective factors of arteriosclerosis [70].
Elastin is another important protein component of elastic
fibers of arterial media with a long biological half-life
which glycation causes macroangiopathy in diabetic indi-
viduals [71]. Actually the elastin content per unit volume
of thoracic aorta decreases more rapidly in diabetics than
in normal control individuals. Indeed the content of



Figure 2 Human serum albumin drug binding sites with the
location of main lysine and arginine residues involved in
glycation. [The image was generated by PyMOL (0.99rc6 open-source)
with the use of 1BMO.pdb].
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collagen and glycosaminoglycan increases in parallel with
calcium deposition and therefore accumulation of degen-
erated elastin in diabetics.

Alzheimer’s disease
Alzheimer’s disease (AD), the leading cause of senile
dementia, is another glycated protein related disease
which is characterized by formation of senile plaques in
brain. A wide variety of studies have demonstrated the
increased accumulation of AGEs in AD brain [72-74].
AGE modifications and oxidative-stress mechanisms can
both impair the neuronal proteins and result in plaques
formation [75]. Amount of glycation in cerebrospinal
fluid (CSF) is another cause of ageing and AD. Indeed,
glycation of CSF proteins which is reported in the CSF
of AD patients is suggested to be a triggering cause of
AD. It is proposed that the high level of glycation in AD
may be accompanied by numerous neuropathological
consequences due to damaged proteins [72].

Glycation of albumin
Human Serum Albumin is very sensitive to glycation. As
mentioned before, the slow, non-enzymatic Maillard
reaction initially involves the attachment of glucose or
other carbohydrate compounds such as galactose and
fructose, to the free amine groups of albumin [35]. The
glycation efficiency depends on the nature and the anom-
erization of the carbohydrate involved in the process. As
an example, in comparison with glucose, ribose induces a
faster glycation process with albumin and forms amyloid-
like products [76]. In vivo studies demonstrated that the
proportion of glycated albumin in healthy persons is in
the range of 1- 10% [3], compared with diabetic individ-
uals in whom this may increase two- to three fold [77].

Impact of glycation on albumin structure
In vitro or in vivo studies that have been performed on
structural properties of glycated albumin include both
human and bovine albumin. Comparing sequences of
human and bovine albumin reveals a homology close to
80% [78]. Observed differences are mainly proposed to
be structurally conservative, e.g. hydrophobic amino acids
are replaced by other hydrophobic amino acids and there-
fore the main three dimensional structures is the same.
The glycation of albumin induces several structural modi-
fications, including an increase in total molecular weight
of the protein due to the glycation [79]. Non-enzymatic
glycosylation of albumin occurs at multiple residues such
as arginine, lysine and also cysteine. So far, a lot of studies
focused on the main sites modified by glycation for serum
albumin have been done in vivo. Lysine, arginine and
cysteine residues are subjected to glycation mostly because
of their high nucleophile properties. Lysine-525 (Figure 2)
is considered to be the predominant site of the of human
serum albumin in vivo glycation which constitutes 30% of
the overall glycation of the protein by glucose [80]. Along-
side with Lys-525 which appears to be the most reactive
glycation site, in native conformation, other lysine resi-
dues, such as 199, 276, 281,378, 439, and 545 have been
found to have lower participation than Lys-525 in overall
glycation [81,82]. For example, Lys-199 accounts for only
5% of total glycation. In addition, other residues of less
importance have also been identified [80] which are
located in the vicinity of known drug binding sites in HSA
[82]. These charged amino acid residues at physiological
pH may have an acid-based role for Amadori rearrange-
ment. The Lys-199 and Lys-281 are close to disulfide
bonds, which present a positively charged amino group,
close to these sites and higher accessibility of some amine
residues depends on the tertiary structure conformation
of albumin.
Regardless of residues located at the amino terminal of

the albumin, evidence for the reactiviy of other lysine
residues, such as Lys-12, Lys-233, Lys-317, or Lys-351, is
less certain [83]. This hypothesis is established by the
fact that in vivo copper-albumin complex cannot be gly-
cated. The extent of glycation depends on the glycemic
status and also the half-life of the protein.
Other researches propose lysine-524 (equivalent to

Lys-525 of HSA) as the major glycation site in BSA [84]
and Lys-275 (equivalent to Lys-276 of HSA), Lys-232
(equivalent to Lys-233 of HSA) and Lys-396 are suscep-
tible to be glycated [84].
Although less than lysine residues (24 for 59 lysine

residues), arginine residues can also be involved in glyca-
tive modification of HSA (Figure 2). Arg-410 appears to
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be the predominant glycation site [85] and other involving
but not major residues such as Arg-114, Arg-160, Arg-
186, Arg-218 and Arg-428, have also been identified [82].
Finally, the thiol group of cysteine residues is powerful

nucleophile, which can also be glycated in vitro by methyl-
glyoxal to give rise to AGEs such as S-carboxymethyl-
cysteine (CMC) [86]. CMC occurrence in plasma from
diabetic patients, suggest the involvement of Cys-34 in the
glycation process [87].
Glycoxidation of albumin is accompanied by structural

modifications in both in vitro and in vivo glycation
process. The interrelationship between glycation and
amyloid formation is interesting in this regard, as criteria
for glycation completion was the production of the amyl-
oid nanofibril after 20 weeks of incubation with glucose.
This has caused a decrease in hydrophobicity of the
protein [88] due to the transition in albumin from a hel-
ical to a beta-sheet structure. Glycation induced aggrega-
tion is not necessarily associated with secondary structure
modification. In addition, the glycation process could
result in an overall stabilization in both tertiary and
secondary structure of the protein which increases the
protein stability and improves the protein life time [33].

Biological impact
Glycated albumin has an important clinical implication,
since it is involved in the damages associated with the
diabetes mellitus, such as retinopathy, nephropathy,
neuropathy and coronary artery disease [89]. In most
studies, the deleterious effects of glycated albumin have
been highlighted for instance the physiopathological
correlation between glycated albumin and diabetic renal
deficiency and microangiopathy [90] and also diabetic
retinopathy [91]. Several in vitro studies have shown the
implication of glycated albumin in platelet activation and
aggregation [92]. Beside platelets, the lowering aggregation
effects of glycated albumin have also been demonstrated
in erythrocytes [93].
Another pathogenic implication of glycated albumin

can also be observed in glucose metabolism of both skel-
etal muscle and adipocyte cells [94]. It has been found
that in mouse, adipocyte cell lines, albumin-derived spe-
cies triggers generation of intracellular ROS leading to
an inhibition of glucose uptake which also cause attenu-
ation of adipocyte insulin sensitivity and microangiopathy
[90]. More recently, proteins such as nucleophosmin in
monocyte like cell membrane and Calnexin, a transmem-
brane protein, were reported to serve as receptors for
Amadori-glycated albumin [95].

Glycated albumin, a possible specific marker for diabetes
The glycation process of proteins occurs in a higher
amount in diabetic patients compared to non-diabetic
individuals. This is strongly involved in the development
and progression of chronic diabetic complications. The
two main clinical parameters of diabetes are the glycated
hemoglobin (HbA1C) and the blood glucose levels [96].
The first parameter is as long term indicator of diabetes,
because of long term half life of erythrocytes(about
120 days) and could reflects the glycemic control state
over the past 2 months, But the measurement of glucose
is a short-term indicator and reflects diabetic status over
a 24 h period. However, several studies have reported
that in some case, HbA1C values should be considered
cautiously. As a matter of fact, glycated hemoglobin
levels have invalid correlation to blood glucose levels
in patients with hemolytic anemia, or those having
hemodialysis or iron deficiency [97].
Thus in numerous case such as hemolytic or renal

anemia and liver cirrhosis, HbA1C gives incorrect values
and is not suitable marker as a control [98]. Glycated
albumin, because of its shorter half-life (21 days) com-
pared with hemoglobin, could be used as a shorter-term
glycemic control for diabetes. The glycated albumin level
could not to be easily altered by abnormal hemoglobin
metabolism [99]. This advantage of glycated albumin is
based on two facts. First, the amount of in vivo non-
enzymatic glycation of albumin is approximately 9 times
more than HbA1C [80]. Secondly, albumin glycation reac-
tion occurs ten times more quickly than hemoglobin gly-
cation [80] so, the glycation phenomenon in plasmatic
protein occurs more easily than hemoglobin, which all
make the glycated albumin a good additional marker for
evaluating glycemic control in type 1 and 2 diabetes [100].
In some studies glycated albumin is suggested as an al-

ternative marker for glycemic control in many diabetes
complications, including nephropathy [101], retinopathy
[102] and Alzheimer’s disease [72] and also in the case
of hemodialysis patients [103] or gestational diabetes
[97]. All these data support the possibility use of gly-
cated albumin in the detection of short-term changes in
glycemic controls. Glycated albumin levels, determined
in different in vivo studies for different pathologies asso-
ciated to diabetes mellitus, could be consulted in [33].
It should be mentioned that in some cases such as

thyroid dysfunction, nephrotic syndrome or liver cirrho-
sis which the amounts of albumin is affected, and so,
glycated albumin level is not a suitable indicator [104].
Similarly, glycated albumin could be influenced by other
conditions, such as body mass index (BMI) [105] or the
age of diabetic patients [106]. Therefore a combined
detection of HbA1C and glycated albumin may improve
the efficacy of diagnosis and improvement of a novel
therapeutic potential [107].

In vitro models of glycated albumin
As highlighted in the previous sections, studies on the
glycation process of Human Serum Albumin (HSA) is of
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special interest, due to its clinical significance. This final
section intends to introduce in vitro models of albumin
glycation, as a mean to study this phenomenon under
controlled conditions. The significant impact of glyca-
tion on the protein structure could be observed more
conveniently by in vitro techniques such as the use of
heat and pressure [108]. HSA has approximately 58
lysine residues [80]. As mentioned previously, during the
glycation process, different sugars and sugar phosphates
could undergo traditional Maillard reactions leading for-
mation of various products [109]. Syrový et al. glycated
albumin (5 mg/ml) using Hepes (4-(2-hydroxyethyl)-1-
piperazine ethane sulfonic acid) buffer and carbohy-
drates including glucose, fructose, galactose, ribose and
glyceraldehydes for 20 days at 37°C. They showed that
the incubation of albumin was occurring more efficiently
in presence of ribose, glyceraldehydes and galactose res-
pectively [110]. Another research was done by Schmitt
et al. to study modifications taking place during glyca-
tion of 4 mM HSA in different glucose concentrations
(5–500 mM) and showed that there is a linear relation-
ship between these two parameters. They found that the
percentage of reacted lysines was increasing rapidly up
to 200 mM glucose [111]. GhoshMoulick et al. com-
pared the glycation process of albumin and two other
proteins, namely hemoglobin and lysozyme, and demon-
strated that the ability of albumin glycation is positioned
between two others [112]. Sattarahmady et al. compared
the ability of glucose, fructose, and ribose in glycation of
HSA and generation of amyloid structures and demon-
strated that the prolonged exposure of HSA has a
detergent-like effect on HSA structure and leads to
partial unfolding and hydrophobic surfaces exposure,
and finally amyloid formation [35]. In a previous study,
they had monitored changes occurring in the three-
dimensional structure of the protein, and the number of
basic residues modified with glucose [88]. In order to
study in vitro formation of AGE-HSA, protein con-
centration of 1–10 mg/ml have been used in phosphate
buffer to be incubated with glucose, fructose, and ribose
or other reducing sugars (generally at 500 mM) at 37°C
in the dark [35,110,113,114]. After 2, 4, or 20 weeks of
incubation, the glycation process could be observed as
browning soluble materials. Recently, S. Barnaby et al.
have made a comparison of modification sites formed on
human serum albumin at various stages of glycation. It
was found that the glycation pattern of HSA strongly
depends on total amounts of glycation. Many modifica-
tions sites including K199, K281, and the N terminus, in
addition to lysines 199 and 281, as well as arginine 428
were found in the tested samples. Lysine residues 93, 276,
286, 414, 439, and 524/525, as well as the N-terminus and
arginines 98, 197, and 521, were also found to be modified
at various degrees of HSA glycation [113].
Glycated HSA could forms micelle-like aggregates
upon prolonged glycation. In these cases, glycation of
HSA resulted in physicochemical changes including
alterations in protein conformation, molecular weight,
and pI and all these changes were in the direction of
transition from a helical to a β-sheet structure and for-
mation of nanofibrillar amyloid.
Although in all cases mentioned before, using glucose

could be more compatible to what happens in the body,
in some cases the glycation process is faster by the use
of other reducing sugars, while some results could still
be interpreted as relevant to the natural conditions.
Similarly, using buffers more similar to the body condi-
tions could present more reliable results for the glycation
process.

Conclusion
This review has outlined the glycation reaction of pro-
teins including a discussion on the glycation process
itself, and particularly with regard to albumin glycation.
We give an overview of the role of glycation in the phys-
iopathology of different diseases and specially highlight
the properties of glycated albumin. The new aspect of
glycated albumin being used as a disease marker, com-
pared with HbA1C is also mentioned. Finally, an introduc-
tion to some in vitro models of glycated albumin is made.
It is interesting to note the relationship found between
in vitro glycation experiments and the propensity of
proteins to form amyloid structures, a point that could be
further explored as to its significance in hyperglycemic
states.
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