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ABSTRACT: The deep eutectic solvent glyceline formed by
choline chloride and glycerol in 1:2 molar ratio is much less
viscous compared to glycerol, which facilitates its use in many
applications where high viscosity is undesirable. Despite the
large difference in viscosity, we have found that the structural
network of glyceline is completely defined by its glycerol
constituent, which exhibits complex microscopic dynamic
behavior, as expected from a highly correlated hydrogen-
bonding network. Choline ions occupy interstitial voids in the
glycerol network and show little structural or dynamic
correlations with glycerol molecules. Despite the known
higher long-range diffusivity of the smaller glycerol species in
glyceline, in applications where localized dynamics is essential (e.g., in microporous media), the local transport and dynamic
properties must be dominated by the relatively loosely bound choline ions.

■ INTRODUCTION

Unlike traditional room-temperature ionic liquids, their recently
discovered low-cost, biodegradable, nontoxic counterparts,
referred to as deep eutectic solvents (DES’s), are composed
of both ionic and molecular (neutral) constituents.1−3 In 2003,
Abbott and co-workers were the first to report on
contemporary DES’s prepared by mixing, in appropriate
stoichiometry, a hydrogen bond acceptor (HBA) such as the
high-melting organic salt choline chloride (melting point, mp:
302 °C) with a suitable hydrogen bond donor (HBD) species
like urea (mp: 133 °C).1 Several formulations for DES’s
involving diverse HBD/HBA combinations have since
emerged, with choline chloride featuring prominently as the
quaternary ammonium salt of choice, coupled with a variety of
HBDs, including assorted carboxylic acids, amides, phenols, and
glycols. As emerging sustainable media, DES’s are already
finding applications in a multitude of areas, including
morphologically controlled nanoparticle synthesis,3−7 metal−
organic frameworks,8−10 thin-film electrodeposition,11−13 gas
capture,14−20 fossil fuel desulfurization,21−23 micellar chem-
istry,24−27 porous carbons,28,29 organic synthesis,30 liquid

extraction,22,31 biodiesel production,32 biomass treatment,33−35

and DNA/RNA chemistry.36,37

Recently, there has been a significant push to gain deeper
insight into the structure, dynamics, and molecular interactions
present within DES’s using a wealth of computational
methods.38−40 Computational efforts have revealed that the
addition of HBDs results in significant moderation of the
cation−anion interaction in a complex manner within the
DES.41 These studies paint a picture of DES formation being
accompanied by hydrogen-bond-directed charge transfer
processes to yield transient cage-like formation and nanoscale
ordering entailing segregation of the ionic and molecular
domains.38,42 The hydrogen-bonding network is essential for
eutectic formation and strongly influences the local structure
and dynamics within DES’s. Thus, a rigorous understanding of
the complexities of the hydrogen-bonding network is para-
mount to the rational future design of tailored and chemically
diverse DES’s. Recently, neutron scattering (e.g., small-angle,
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total, and quasi-elastic neutron scattering (QENS)) techniques
have been leveraged to probe the microscopic details of liquid
structure and dynamics within DES’s and their binary mixtures
with water, offering valuable insight into the underlying
nanostructure, disorder, clustering (i.e., domain and transient
cage formation), charge transfer, and phase behavior.43−48 Key
information regarding the behavior and self-assembly of
polymers, proteins, and micelles in DES’s is also accessible
from neutron scattering studies.27,49−52 A recent QENS study
on the microscopic dynamics within the DES glyceline (1:2
choline chloride/glycerol) revealed that choline experiences a
spacious local environment and exhibits less spatially con-
strained short-range diffusion dynamics,48 despite its smaller
long-range translational diffusivity compared to the slightly
smaller molecular component, glycerol.53−55 The collective
microscopic dynamics within DES’s, which are most directly
linked to the properties associated with the hydrogen-bonding
network between the DES components, have remained
unexplored as pulsed-field gradient NMR spectroscopy and
QENS experiments probe the single-particle diffusion dynam-
ics.48,53−55 In response to this drawback, we report on a
neutron spin-echo (NSE) study paired with dielectric spec-
troscopy measurements that help elucidate the collective
microscopic dynamics within the DES glyceline. A detailed
understanding of the glyceline collective dynamics is made
possible by the application of NSE that mostly probes the
coherent neutron scattering signal of glyceline samples
synthesized with different hydrogen−deuterium compositions.
The four samples used in this study are denoted hh
(hydrogenated choline chloride/hydrogenated glycerol), hd
(hydrogenated choline chloride/deuterated glycerol), dh
(deuterated choline chloride/hydrogenated glycerol), and dd
(deuterated choline chloride/deuterated glycerol).

■ METHODS
Broadband Dielectric Spectroscopy. For the dielectric

measurements, we combined two experimental techniques to
determine the complex dielectric permittivity and conductivity
in the frequency range 100 ≤ ν ≤ 2.5 × 109 Hz. In both cases,
parallel-plate capacitors (diameter 2 or 19 mm, plate distance ≤
100 μm) were filled with the liquid sample material. The low-
frequency measurements at 100 ≤ ν ≤ 106 Hz were performed
using a frequency-response analyzer (Novocontrol Alpha-A
analyzer). At higher frequencies, 106 ≤ ν ≤ 2.5 × 109 Hz, a
coaxial reflectometric technique was used employing an
impedance analyzer (Agilent E4991A). Cooling and heating
were achieved by a N2 gas heating system (Novocontrol
Quatro). Further details of this can be found in previously
reported works.56,57

Chemicals. Trimethyl-d9-amine, ethylene-d4 oxide, hydro-
chloric acid, and choline chloride were purchased from Sigma-
Aldrich (St. Louis, MO). Glycerol-d8 was acquired from C/D/
N Isotopes Inc. (Quebec, Canada).
Preparation of Four Glyceline Samples of Variable

Deuteration States. Synthesis of Choline-d14 Chloride. The
reaction and reaction setup for choline-d14 chloride have been
described in the Supporting Information (SI).
Step 1: Preparation of Trimethyl-d9-ammonium Chloride.

First, 4.336 g of a 37% mass fraction aqueous solution of HCl
was added to a cylindrical flask equipped with a valve side arm
and which already contained a poly(tetrafluoroethylene)-coated
stir bar and 5 g of distilled water. The flask was tightly sealed
with a rubber septum and chilled in an ice bath. Trimethyl-d9-

amine gas (3.04 g, 1.02 equiv) was transferred from a
pressurized cylinder to the reaction mixture via a Tygon tube
(R-3603) connected to a 1 mL syringe (Sigma-Aldrich, Z-
683531) terminated with a stainless steel needle (Sigma-
Aldrich, Z-116149). The reaction mixture was stirred for 2 h.

Step 2: Preparation of Choline-d13 Chloride. The side arm
of the reaction flask was then connected to an ethylene-d4 oxide
(EO-d4) cylinder via Tygon tubing. The reaction flask was
chilled to −80 °C, and the valves of the reaction flask and the
ethylene-d4 oxide cylinder were gradually opened to allow for
EO-d4 transfer and condensation. The valves were then closed,
and the reaction flask was allowed to naturally warm to room
temperature, followed by heating to 75 °C for 1 h. The flask
was cooled to room temperature, and the EO-d4 transfer was
repeated several times until the EO-d4 cylinder had lost a total
of 1.68 g of mass. Following reaction, water was removed from
the reaction mixture by rotary evaporation (4.67 Hz, 8 mbar, 78
°C) to yield crude choline-d13 chloride. The choline-d13
chloride was purified by recrystallization using ethanol before
proceeding.

Step 3: Preparation of Choline-d14 Chloride. The recrystal-
lized choline-d13 chloride was further deuterated to choline-d14
chloride via three H−D exchange cycles performed by
dissolving choline-d13 chloride in D2O, followed by rotary
evaporation. The exchange was initially carried out by
dissolving 4.2 g of choline-d13 chloride in 10 mL of D2O
(99.9 atom % D, Aldrich), followed by rotary evaporation. This
was repeated twice to yield 4.2 g of choline-d14 chloride. The
overall yield of choline-d14 chloride with respect to the amount
of EO-d4 was 79%.

13C NMR (125 MHz, D2O): δ 54.79 (m, CD2), 52.85 (m,
CD2), 43.70 (m, CD3).
Glyceline mixtures with varying degrees of deuteration were

synthesized according to previously reported procedures.48

Neutron Scattering Experiments. Neutron scattering
signal can be divided into a coherent and an incoherent
component. The coherent component contains information of
the relative position and motions of the nuclei in the sample,
whereas the incoherent part, which does not contain any
structural information, can be used to measure the single-
particle dynamics of the scattering entities, hydrogen atoms in
particular. Coherent scattering does not change the spin of the
incoming neutron, whereas incoherent scattering has a 2/3
probability of flipping the neutron spin and 1/3 probability of
not altering it. Thus, keeping in mind that the neutron spin
only has two possible states, namely, + and −, using a polarized
neutron beam and an instrument equipped with a spin analyzer
device, it is possible to experimentally separate the coherent
and incoherent components of the scattering signal. This is
achieved by performing measurements of the scattering signal
after the analyzer, with opposite polarizations of the incoming
neutron beam, which can be obtained with the use of an
opportune neutron spin π flipper (see SI for further
information).
NSE spectrometers utilize the neutron spins as an internal

clock to perform very precise measurement of the distribution
of velocity changes experienced by the neutrons after the
scattering event. It directly provides the normalized inter-
mediate scattering function (ISF), I(Q, t)/I(Q, 0). Although
NSE spectrometers employ a polarized incoming neutron beam
because the signal is encoded in the neutron spin itself, they are
not able to separate the coherent and incoherent components

The Journal of Physical Chemistry B Article

DOI: 10.1021/acs.jpcb.7b11224
J. Phys. Chem. B 2018, 122, 1261−1267

1262

http://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.7b11224/suppl_file/jp7b11224_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.7b11224/suppl_file/jp7b11224_si_001.pdf
http://dx.doi.org/10.1021/acs.jpcb.7b11224


to the scattering; instead, the signal measured by spin-echo is a
combination of the coherent and incoherent ISFs
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Here, the prefactors are chosen in such a way as to cancel out
the incoherent contributions from the hydrogens as well as
those arising from the C, O, N, and Cl atoms. Assuming that
the hydrogen atoms of the same molecules are indistinguishable
from each other (an approximation supported by the fact that
at the Q values analyzed here, the relevant length scales are
larger than the intermolecular distance), Scoh

CG is the weighted
sum of the structure factors for the correlation between the
hydrogen atoms in the choline molecules with respect to each
other, Scoh

CHCH, in the choline molecules with respect to the ones
in the glycerol molecules, Scoh

CHGH, and in the glycerol molecules
with respect to each other, Scoh

GHGH

= − − +

+ − +

+ − − +

S Q b b b b S Q

b b b S Q

b b b b S Q

( ) [(13 )( )] ( )

[224 ( )] ( )

[(60 36 )( )] ( )

coh
CG

coh
D

coh
H

coh
D

coh
H

coh
CHCH

coh
D

coh
D

coh
H

coh
CHGH

coh
D

coh
H

coh
D

coh
H

coh
GHGH

It is expected that the three dynamic structure factors, Scoh
CHCH,

Scoh
CHGH, and Scoh

GHGH, are determined by the relative positions of
the center of mass of the glycerol and choline molecules,
although orientational contributions might also play a minor
role.
Equation 1 can be extended to the time domain
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Thus, the normalized ISF, Icoh
CG(Q, t)/Icoh

CG(Q, 0), can be
measured using NSE combining the data from the measure-
ments of the four glyceline samples investigated, as detailed in
the SI.

■ RESULTS AND DISCUSSION
Figure 1 shows the temperature dependence of the microscopic
relaxation times of glyceline. The α-relaxation times from

broadband dielectric spectroscopy measurements on hydro-
genated glyceline (black closed circles, see SI) are compared to
those of hydrogenated glycerol (open circles).60 A Vogel−
Fulcher−Tammann (VFT) fit of the dielectric relaxation data, τ
= τ0 exp(DT0/(T − T0)), gives τ0 = 4 × 10−15 ± 2 × 10−15 s, D
= 16 ± 1, and T0 = 132 ± 3 K for glycerol and τ0 = 8 × 10−16 ±
6 × 10−16 s, D = 21 ± 3, and T0 = 113 ± 4 K for glyceline,
which correspond to glass transition temperatures (Tg) of
about 185 and 175 K, respectively.60 The VFT equation is
customarily applied to the so-called “fragile” glass formers with
strongly non-Arrhenius temperature dependence of the
relaxation characteristics.61

Glyceline is known to be less viscous than glycerol, which
makes its use advantageous in applications where the viscosity
of pure glycerol would be prohibitively high, hampering
chemical transport. The viscosity of glyceline is 281 cP at
298 K, whereas the viscosity of glycerol is around 1200 cP at
room temperature.62 Moreover, for various compositions of a
choline chloride mixture with glycerol (i.e., 0.05, 0.10, 0.15,
0.20, 0.25, 0.30, and 0.33 mol fraction of choline chloride), the
lowest viscosity was observed for 0.33 mol fraction of choline
chloride (i.e., 1:2 choline chloride/glycerol, in other words,
glyceline).53 Indeed, the dielectric data indicate that the α-
relaxation dynamics of glyceline is faster than that of glycerol.
Around room temperature, the ratio between the dielectric
relaxation times for glyceline and glycerol matches the ratio of
the viscosities of the two liquids. At the same time, the long-
range single-particle translational diffusivities, as measured by
NMR, of the choline ion and glycerol molecule in glyceline
have the same temperature dependence1 from 298 to 328 K
and do not significantly differ from the diffusivity of pure
glycerol.63 These experimental findings suggest the crucial role
played by the collective dynamics and hydrogen bonding in
determining the transport properties of the system.

Figure 1. Open circles: glycerol relaxation times measured by
dielectric spectroscopy and the corresponding VFT fit (solid line, ref
60). Filled circles: glyceline relaxation times measured by dielectric
spectroscopy and the corresponding VFT fit (solid line). Red symbols:
glyceline average relaxation times, ⟨τ⟩, obtained from the NSE data.
Inset: glyceline NSE I(Q, t) data measured at various temperatures and
plotted as a function of Fourier time scaled by the dielectric relaxation
times of glycerol.
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To probe such collective dynamics, NSE measurements were
performed on the dd glyceline sample at the position of the first
structural maximum, Q = 1.4 Å−1 (symbols in Figure 2), where

θ= π
λ

Q sin( /2)4 is the exchanged wavevector, λ is the

incoming neutron wavelength, and θ is the scattering angle.
The data were fitted by the Kohlrausch−Williams−Watts, or
stretched-exponential, function, I(Q, t)/I(Q, 0) = A exp[−(t/
τ)β], assuming that the scattering signal is completely
dominated by the structural relaxation (solid lines). The
deduced average relaxation times, ⟨τ⟩ = [τΓ(1/β)]/β, are
shown as red closed squares in Figure 1. They are about a factor
of 3 faster than the NSE results obtained in the past for pure
glycerol, with a similar temperature dependence in the
investigated range.64 In this respect, the effect of the addition
of choline chloride is essentially to plasticize the glycerol
hydrogen-bonded network. However, the NSE relaxation times
for glyceline nearly coincide with the pure glycerol, not
glyceline, dielectric relaxation time curve, as can be seen in
Figure 1. At the highest temperatures, some minor deviations of
the two data sets are observed. For 318 K, we demonstrate that
that this discrepancy vanishes, when assuming a two-
component model, I(Q, t)/I(Q, 0) = A(p exp[−(t/τ1)β] + (1
− p)exp[−(t/τ2)β]), to fit the experimental data (dashed line in
Figure 2).65 The second relaxation with a spectral weight of (1
− p) could be an indication of the fast dynamics known to be
present in all glass formers.66 The α relaxation time resulting
from this fit would fully agree with the dielectric relaxation time
of glycerol at this temperature. However, as the experimental
data do not reveal clear evidence for two-step decay, the
significance of such an analysis is limited and no meaningful
values for τ2 can be deduced. The inset of Figure 1 shows the
superimposed dd glyceline NSE data measured at various
temperatures (see below) and rescaled to the main dielectric
relaxation time of glycerol at a given temperature. The data
collapse onto a universal curve independent of measurement
temperature, again demonstrating that the NSE glyceline data
are governed by the same dynamics as the dielectric results on
glycerol.
To obtain insights into the structural and dynamic properties

of the ionic and molecular nanodomains in glyceline, polarized

diffraction data (spin-flip vs no spin-flip) were collected at the
NSE spectrometer for all four samples of variable deuteration
states, allowing the separation of coherent and incoherent
scattering, as presented in Figure 3.

In addition to the predominantly coherently scattering dd
sample and predominantly incoherently scattering hh sample,
the first structural maximum at ≈1.4 Å−1 in the coherent (and
thus also total) diffraction spectra is readily seen for the hd
sample, but not for the dh sample. Therefore, it is
predominantly the glycerol species that form a structural
network in glyceline, which gives rise to the coherent diffraction
pattern. Because diffraction data correspond to I(Q, t = 0), our
conclusion extends to the dynamic NSE data; it is the glycerol
component of glyceline that gives rise to the coherent
relaxation dynamics measured by NSE. The choline component
does not contribute significantly to the coherent microscopic
dynamics of glyceline. Moreover, the hd and dh samples show a
coherent signal feature centered at QCG ≈ 0.5 Å−1, which clearly
indicates nanoscopic structuring between glycerol and choline
over a length scale on the order of lCG ≈ 2π/QCG = 12.6 Å. This
value is larger than the choline ion size but comparable to the
size of the entity, as identified by molecular dynamics
simulations,48 formed by two glycerol molecules and one
choline cation hydrogen bonded to a chloride anion. Thus, lCG

would represent the average distance between ionic and
molecular nanodomains.
To verify that choline ions are indeed decoupled from the

coherent dynamics of the glycerol network in glyceline, we have

Figure 2. Glyceline relaxation behavior measured by NSE for the dd
sample at Q = 1.4 Å−1 (symbols) and their Kohlrausch−Williams−
Watts fits (solid lines). For 318 K, an alternative fit with a two-
component model is also shown (dashed line).

Figure 3. Coherent (red squares), incoherent (blue triangles), and
total (black circles) scattering signals obtained from polarized
diffraction data (spin-flip vs no spin-flip) for glyceline samples of
variable deuteration states. The error bars are within the symbols.
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computed the “combined” (CG) correlation function, shown in
Figure 4, as explained in the Methods section. Such correlation

function represents the dynamics of the choline-rich domain
with respect to the glycerol-rich medium. Notice that such
information could not be directly obtained from the hd or dh
samples because of the non-negligible incoherent scattering
contributions.
The CG NSE data could be reasonably well fitted even with a

simple exponential decay, I(t) = A exp[−(t/τ)], and the best fit
with a stretched-exponential decay, I(Q, t)/I(Q, 0) = A
exp[−(t/τ)β], yielded A = 0.96 ± 0.01, τ = 2.68 × 10−9 ± 1.1 ×
10−10 s, β = 0.83 ± 0.04 at Q = 0.4 Å−1 and A = 0.92 ± 0.01, τ =
1.04 × 10−9 ± 4 × 10−11 s, β = 0.81 ± 0.04 at Q = 0.7 Å−1. Note
that fits of the NSE data for the dd sample at Q = 1.4 Å−1

shown in Figure 2 (which represent glycerol−glycerol
correlations in glyceline, as evident from the polarized
diffraction data) require significantly smaller stretching
parameters, β ≈ 0.5−0.6. These values are smaller than those
for pure glycerol (β ≈ 0.7),64 which can be ascribed to the
additional disorder in the present mixture, leading to a broader
distribution of relaxation times.67,68 The CG NSE data, on the
contrary, are more indicative of uncorrelated dynamic
fluctuations of the ionic and molecular nanodomains in
glyceline.

■ CONCLUSIONS
To summarize, in spite of the large difference in viscosity
between the DES glyceline and one of its parent compounds,
glycerol, we have found that the structural network of glyceline
is completely defined by its glycerol constituent. The dielectric
relaxation times mirror the different viscosities of glyceline and
glycerol. At the same time, the network dynamics in glyceline is
defined by the glycerol−glycerol dynamic correlations. On the
contrary, the choline−glycerol dynamic correlation function in
glyceline shows largely uncorrelated fluctuations. These
findings indicate that glyceline is actually a highly correlated
hydrogen-bonding network of glycerol molecules, where the

choline ions occupy the interstitial voids, showing little
structural or dynamic correlations with the glycerol network.
We conclude that in applications where the localized dynamics
is essential, the local transport and dynamic properties of
glyceline, counterintuitively, must be dominated by the
relatively loosely bound choline ions, despite their larger size
compared to that of glycerol molecules. The latter are
connected in a hydrogen-bonding network that dominates
the structure and collective dynamics of glyceline.
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(19) Loṕez-Salas, N.; Jardim, E. O.; Silvestre-Albero, A.; Gutieŕrez,
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