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Introduction

Recently, glycerol oxidation reaction (GOR) studies have

been receiving increased attention due to their potential use

for producing higher-valued oxygenated chemicals, including

glyceric acid, tartronic acid, and other compounds [1–4].

Furthermore, energy involved during the product formation

can, theoretically, be used as electrical energy and be applied

in fuel cells, where the complete oxidation of alcohols to CO2

occurs. These were the hypotheses that led to the increase of

research on catalysts. In this context, direct alkaline alcohol

fuel cells (DAAFCs) represent one of the most promising

approaches for renewable and clean energy devices [5, 6].

Glycerol has been the preferred alternative to fuels when

using DAAFCs, due to a wide range of characteristics. This

compound is a non-flammable, non-volatile liquid (boiling

point 290 °C). It is electrochemically oxidizable, providing

up to 14 F mol−1 when fully oxidized, and displays relatively

high theoretical energy density (5.0 kWh kg−1). Furthermore,

glycerol can be obtained from methanolysis of vegetable oils

and thus be produced in renewable and environmentally

friendly ways [5–7]. However, glycerol has three functional

groups and a large number of products can be formed from its

oxidation, which is one of the key problems when designing a

catalyst and determining the operating conditions for the se-

lective formation of a product or to optimize the generation of

electric power [7, 8].

Within the catalysts use for GOR, those based on platinum

(Pt) have demonstrated acceptable power densities [2, 9, 10].

This is the main reason why many researchers have been

devoted to modify Pt-based catalysts to obtain more activity,

with higher selectivity at cheaper costs [10]. Other optimiza-

tion efforts focus on designing new Pt-free catalysts for oxi-

dation of alcohols in alkaline medium. One example of this is

the use of palladium (Pd), which is a good catalyst for the
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oxidation of primary and secondary alcohols in alkaline solu-

tions [2, 8, 9] and has the advantages of being more available

in nature and cheaper than Pt.

Pd-based catalysts are more active for the oxidation of al-

cohols in alkaline media than Pd alone. There are many de-

scriptions of different approaches of binary and ternary mate-

rials for alcohol oxidation such as the following: PdSn [11,

12], PdNi [12, 13], PdAu [2, 14, 15], and others [16–18].

Another metal that has been studied for the same purposes is

gold (Au), which has been reported to be active towards oxi-

dation reactions in alkaline medium, due to its ability of

hydroxylating its surface that interacts strongly with

alcohoxide and simultaneously achieves higher stability than

other materials like Pt and Pd [15, 19].

In the present work, Pd, PdAu, and Au carbon-supported

electrocatalysts have been synthesized through the borohy-

dride reduction method. Their crystal phase and morphology

was determined by X-ray diffraction (XRD) and transmission

electron microscopy (TEM). The catalytic activity of these

catalysts towards glycerol oxidation was studied by compar-

ing some of the critical kinetic parameters evaluated through

several electrochemical techniques like cyclic voltammetry

(CV), in situ attenuated total reflectance Fourier transform

infrared spectroscopy (ATR-FTIR), and chronoamperometry.

Material and methods

Pd/C, Au/C, and PdAu/C electrocatalysts (20 % of metal load-

ing) were prepared using the sodium borohydride method [14,

20, 21] with different Pd:Au atomic ratios (100:0, 75:25,

50:50, 25:75, and 0:100) using H2PtCl6.6H2O (Aldrich) and

HAuCl4.3H2O (Aldrich). The process of metal reduction

started when the metal sources were added and diluted in a

mixture of water/2-propanol (50/50, v/v) followed by addition

of carbonVulcan XC 72 support dispersed in the solution. The

mixture was submitted to an ultrasonic bath for 10 min. A

solution prepared with excess of NaBH4 (Aldrich) and

0.1 mol L−1 NaOH was added to the mixture and kept for

30 min under stirring at room temperature. After this proce-

dure, the final mixture was filtered and the resultant product

washed with 2 L of distilled water and dried at 70 °C for 2 h.

TEM was carried out using a JEOL JEM-2100 electron

microscope operated at 200 kV. The particle distribution his-

togram was determined by measuring 150 particles per micro-

graph. XRD analyses were carried out in a Miniflex II model

Rigaku diffractometer using CuKα (λ= 1.54056Ǻ). The
diffractograms were recorded at 2θ in the range 20–90°, with

step size of 0.05° and scan time of 2 s per step.

Electrochemical studies of the electrocatalysts were carried

out using an electrochemical cell with three electrodes. The

working electrodes were prepared by thin porous coating tech-

nique [14, 22], where 20 mg of the electrocatalyst was added

Results and discussion

TEM images of the Pd/C, PdAu/C, and Au/C materials were

obtained (Fig. 1). As can be observed, all electrocatalysts are

well dispersed with some agglomerations on the carbon pow-

der. The mean particle sizes are as follows: 6.1, 4.3, 5.2, 6.1,

and 9.2 nm for Pd, Pd75Au25, Pd50Au50, Pd25Au75, and Au

respectively. For these Pd-based materials, it is possible to

observe a decrease in the average particle size when gold

was added. However, when the amount of gold was increased

in the composition, the average particle size increased again

probably due to a capacity of agglomeration of gold atoms

during the reduction process. It is also interesting to note that

the gold nanoparticles are at least 50 % bigger than those

containing Pd, fact analogous to other similar materials report-

ed in the literature [13, 26].

The XRD patterns of Pd/C, PdAu/C, and Au/C catalysts

were collected in the range of 20° to 90° and are shown in

Fig. 2a. All of them displayed a typical face-centered cubic

(fcc) pattern for Pd and Au [6, 10, 21], with the diffraction
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to a solution containing 50 mL of water and 100 μL of a 6 %

polytetrafluoroethylene (PTFE) suspension. The resulting

mixture was treated in an ultrasound bath for 10 min, filtered,

and deposited on the working electrode (0.36 cm2 area and

0.30 mm deep). The reference electrode was an Ag/AgCl

(3 mol L−1 KCl) and the counter electrode was a Pt plate.

Electrochemical measurements were made using a

potentiostat-galvanostat Autolab 302N. CV was performed

using 1.0 mol L−1 glycerol in 1.0 mol L−1 KOH solution

saturated with N2. Chronoamperometry experiments were

performed using 1.0 mol L−1 glycerol in 1.0 mol L−1 KOH

solution, at −0.35 V, at room temperature. The currents in

cyclic voltammograms and chronoamperograms were nor-

malized per gram of metal.

The spectro-electrochemical in situ ATR-FTIR measure-

ments were performed with a Nicolet 6700 FTIR spectrome-

ter, equippedwith aMCT detector cooled with liquid N2, ATR

accessory (MIRacle with a Diamond/ZnSe Crystal Plate

PIKE®) and an electrochemical cell as described in the litera-

ture [14, 23–25]. The working electrodes were the same used

for the electrochemical experiments in the presence of

1.0 mol L−1 glycerol with 1 mol L−1 KOH. The absorbance

spectra were collected as the ratio R:R0, where R represents a

spectrum at a given potential and R0 is the spectrum collected

at −0.85 V. Positive and negative directional bands represent

gain and loss of species at the sampling potential, respectively.

The spectra were computed from 96 interferograms, averaged

from 3000 to 850 cm−1, with the spectral resolution set to

8 cm−1. Initially, a reference spectrum (R0) was measured at

−0.85 V, and the sample spectra were collected after applying

successive potential steps from 0.1 to 0.05 V.



Fig. 1 TEM images and

corresponding histograms of the

(I) Pd/C, (II) PdAu/C 75:25, (III)

PdAu/C 50:50, (IV) PdAu/C

25:75, and (V) Au/C

nanomaterials
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peaks at ∼39°, ∼46°, ∼66°, and ∼80° assigned to the corre-

sponding (111), (200), (220), and (311), respectively. The

peak around 25° present for all the catalysts refers to the

graphite (002) on the face of the carbon support [27, 28].

For the binary composite catalysts of PdAu (75:25, 50:50,

and 25:75), it is possible to see a deformation of the peaks

related to the noble metals and its shift 2θ values between the

Pd and Au. To obtain more information about this shift, the

XRD pattern was refined using the Pawley method with the

Fityk 0.98 software [29, 30]. In Fig. 2b, it is possible to ob-

serve the changes in the peak shape as a result of the contri-

bution of Pd (fcc) (a=0.390 nm) (JCPDS 05-0682), Au (fcc)

(a = 0.408 nm) (JCPDS 04-0784), and different non-

stoichiometric PdAu alloy degree (a = 0.392 until

a=0.405 nm) phases. This intermediate lattice values can in-

dicate the transition of gold atoms inserted into the palladium

crystalline network of palladium atoms or inserted in gold

crystalline network, following the variation of these metals

in the catalyst composition. Furthermore, the Pd peak in

Pd25Au75/C material was not detected.

The cyclic voltammograms of the Pd- and Au-based cata-

lysts (Fig. 3) show the hydrogen adsorption-desorption region

on Pd (−0.85 and −0.50 V vs. Ag/AgCl) which is well defined

for Pd/C. This definition as well as the intensity decreases with

the decreasing load of Pd, and it even disappears in the mate-

rial Pd25Au75/C, probably because there is less phase of only

Pd as observed in XRD. In the reverse sweep, there is a pro-

nounced peak between −0.1 and −0.6 V attributed to the re-

duction of Pd oxide [15]. The potential of the center of this

peak is different for each material, resulting from the amount

of surface Pd oxides and by the influence of added gold [13].

Figure 4 shows the profiles obtained by the linear sweep

voltammetry experiments for GOR on Pd and Au materials.

We noticed that all the materials have a close onset potential

for glycerol oxidation (−0.48 V±20 mV). On these profiles, it

is also possible to observe a peak at approximately −0.69 V,

and when compared with the cyclic voltammetry of Fig. 3, we

can conclude that this is not linked with hydrogen desorption

region because this peak is present on the gold catalyst but no

Fig. 2 a XRD patterns of Pd/C,

PdAu/C, and Au/C catalysts. b

Pawley refinement of peak (220)

for PdAu/C materials with dot

line for experimental measure,

black lines for modeled, and grey

line for residual line

Fig. 3 Cyclic voltammograms of Pd/C, PdAu/C, and Au/C catalysts in

KOH 1.0 mol L−1 aqueous solution (v= 10 mV s−1) at room temperature

Fig. 4 Linear sweep voltammograms for GOR on Pd/C, Au/C, and

PdAu/C catalysts in KOH 1.0 mol L−1 and glycerol 1.0 mol L−1,

v= 10 mV s−1
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peaks were observed for hydrogen desorption, leading

us to conclude that it possibly corresponds to any oxi-

dative process that will be indicated in the in situ ATR-

FTIR spectra (Fig. 5).

In order to correlate the activity of glycerol oxidation with

the preferential pathway, we also use the in situ ATR-FTIR

(Fig. 5). For these spectra, we observed a decrease of the

glycerol bands (1004, 1041, and 1094 cm−1) [31, 32] with

Fig. 5 In situ ATR-FTIR taken at

−0.75 to 0.05 V using Pd/C,

PdAu/C, and Au/C in KOH

1.0 mol L−1 with glycerol

1.0 mol L−1. The backgrounds

were collected at −0.85 V

Ionics (2016) 22:1167–1175 1171



an increase of the potential indicating glycerol consumption.

We also noticed an increase of the bands resulting from

1071 cm−1 corresponding to glyceraldehyde [19], 1225 cm−1

to formate [10], 1335 cm−1 to 1,3-dihydroxy-2-propanone

[13], 1345 cm−1 to tortronate [33], 1355 cm−1 to

hydroxypyruvate [31, 32], 1377 cm−1 to glycerate [13, 34,

35], ∼1405 cm−1 to carbonate [31], ∼1589 cm−1 to H–O–H

deformation, symmetric COO− stretch to glycolate and

glyoxylate [31], ∼1665 cm−1 to carbonyl and carboxyl

stretches [31, 34], and 1723 cm−1 to carboxyl stretching [31,

36], and CO2 signal (2343 cm−1) [37] was not detected in

these spectra.

In order to evaluate the catalyst composition effect in the

products with the application of different potentials, all bands

were deconvoluted to Lorentzian line forms [23]. Figure 6

shows the integrated intensities of aldehyde stretch corre-

sponding to glyceraldehyde (1071 cm−1) detected in the first

potential values. However, these bands disappear very quickly

which can be due to low stability of the primary aldehydes

under alkaline condition [19] or to the glycerol consumption

band interference with the detection of the glyceraldehyde

band. The production and consumption of the glyceraldehyde

band can be explained by the peak at 0.69V, observed in linear

sweep voltammograms (Fig. 4).

Figure 7 shows the integrated intensities of the bands for

glycerate (1377 cm−1) and tartronate (1345 cm−1). Literature

suggests that glycerate is the precursor of tartronate [13, 35],

and the results obtained for Pd/C, PdAu/C, and Au/C confirm

that this is true in electrochemical cells with three electrodes,

caused initially by the production of glycerate and later by the

production of tartronate. Furthermore, it is possible to observe

that for PdAu/C materials, the intensity of the tartronate bands

is higher than those measured for the Pd/C and Au/C catalysts,

probably due to synergistic effects provided by the Pd and Au.

Pd acts as an adsorption site [2, 4, 15] and Au interacts with

oxygenated species [19] favoring the production of

more oxidized products. Additionally, it is possible to

notice that materials containing gold shift from the on-

set potential to produce carboxylic acids that are

100 mV less negative than just Pd/C.

Figure 8 shows the integration of bands corresponding to 1,

3-dihydroxy-2-propanone and hydroxypyruvate, where it is

possible to observe that the intensities of these species are

higher for PdAu materials than the ones obtained for Pd/C

and Au/C. It is interesting to note that for Pd/C 1,3-

dihydroxy-2-propanone, onset potential is 100 mV less nega-

tive than for hydroxypyrivate, which is in agreement with

what has been reported in the literature [9, 13] that states that

1,3-dihydroxy-2-propanone is an oxidation product from

hydroxypyruvate. This is an indication that the presence of

gold can produce the hydroxypyruvate by a parallel pathway.

Figure 9 shows the integration bands of glycerol oxidation

products that require C–C bond break (glycolate, oxalate, for-

mate, and carbonate). It is possible to see that Pd/C and

Pd75Au25/C have oxalate and glycolate production onset with

Fig. 6 Glyceraldehyde (aldehyde stretch) integrated intensities bands as

a function of the potential. Data extracted from Fig. 5

Fig. 7 Glycerate- and tartronate-integrated intensity bands as a function of the potential. Data extracted from Fig. 5
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more negative potential than other materials. In addition, it is

also possible to note that near −0.05 V, the band relative to

glycolate is extinct, and the oxalate band is increased in the

same potential range. These materials also have the more

negative onset potential and higher intensities for carbonate

ion than others catalysts. For Pd50Au50/C catalyst, no

glycolate and oxalate bands were detected. Nevertheless, this

catalyst produces formate and carbonate, indicating that the

Fig. 8 1,3-Dihydroxy-2-propanone- and hydroxypyruvate-integrated intensity bands as a function of the potential. Data extracted from Fig. 5

Fig. 9 Glycolate-, oxalate-, formate-, and carbonate-integrated intensity bands as a function of the potential. Data extracted from Fig. 5

Ionics (2016) 22:1167–1175 1173



phases present in Pd50Au50/C alloy can break all the C–C

bonds of glycerol in a single process.

Formate bands are produced for all materials and will be

fully extinguished until −0.05 V, except for Au/C and

Pd25Au75/C that contain this species at 0.05 V, indicating that

formate is consumed faster in materials that exhibit a Pd

phase. Au/C and Pd25Au75/C catalysts present less negative

onset potential for glycolate production, and these bands dis-

appear at 0.05 V. This extinction coincides with an increase in

intensity of the oxalate band.

Figure 10 shows current-time curves obtained during glycerol

electro-oxidation 1 mol L−1 in KOH 1 mol L−1. The measured

current density for glycerol oxidation at −0.35V can be observed

for all the cases where there is a strong current decay in the first

minutes, followed by a slow decay until 4.3 mA mg−1

(Pd50Au50/C)>4.0 mA mg−1 (Pd75Au25/C)>∼2.5 mA mg−1

(Pd and Pd25Au75/C)>1.4 mA mg−1 (Au/C).

The higher activity of Pd50Au50/C electrocatalyst, when

compared to other materials, is probably a result from the

occurrence of alloy phases present in this composition and

from the preference for the pathway of production of carbox-

ylic acids which is more oxidized and has easier capability of

breaking all C–C bonds of glycerol in just one step.

Conclusion

In summary, we found that PdAu/C is more active than Pd/C

and Au/C. In all compositions of Pd:Au, alloys were formed.

The onset potential determined for GOR is close to −0.48 V

for all electrocatalysts, whereas PdAu containing materials are

more active than the separated noble metals. We hypothesize

that this is due to the synergistic effect of PdAu alloy,

the Pd adsorption capacity, and the Au interaction with

oxygen species. Most importantly, the PdAu (50:50)

composition was found to be the most active, owing

to its preference for producing more oxidized carboxylic

acids and for its greater facility in breaking all C–C

bonds of glycerol in one step.
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