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Synapses are the fundamental units of connectivity that link
together the nervous system. Lectin studies from 30 years
ago suggested that specific glycans are concentrated at
neuromuscular synapses in the peripheral nervous system
and at excitatory synapses in the brain. Subsequent studies
have confirmed that particular glycan structures are localized
at these synapses, including polysialic acid, high mannose,
the cytotoxic T cell antigen, and forms of heparan sulfate.
Though the role of these molecules in synapse formation
and function is still poorly understood, there is increasing
evidence that the function of agrin, a synaptogenic factor in
neuromuscular formation, is modulated by several glycans.
In addition, the recent generation of ST8SiaIV null mice
strongly suggests a role for polysialic acid in synaptic
plasticity in the some regions of the central nervous system.
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Introduction

Most neurobiologists do not consider glycobiology in their
thinking about synapses. Many studies of synaptic develop-
ment and function are done using methods in which glycan
composition is either completely ignored or not considered.
Thus it would seem that most students of the synapse at least
passively subscribe to the view that glycans are not central to
understanding synapses. Accordingly, of the past thousand
papers with the words synapse or synaptic in their title, only
three have glycobiology as their primary topic. This is under-
standable, given the history of the field. As described in this
article, two vast bodies of literature support the notion that
carbohydrates are not critical for understanding synapses.

Many studies have shown that one of the primary events in
synapse formation, the localization of postsynaptic neurotrans-
mitter receptors, involves protein–protein interactions between
the cytoplasmic tails of receptors and cytoplasmic anchoring
factors (for review, see Sanes and Lichtman, 1999a; Sheng and
Pak, 2000). Examples of such anchoring proteins have now
been found for almost every family of neurotransmitter
receptor. Even synaptic proteins that are not receptors but are
highly glycosylated, such as densin 180, a sialomucin

(Apperson et al., 1996), and syndecan-2, a heparan sulfate
proteoglycan (Ethell and Yamaguchi, 1999), have cytoplasmic
peptide anchoring motifs that likely are important for their
localization to synaptic areas.

Another group of studies support the notion that glyco-
sylation is not important for neurotransmitter receptor function.
Addition of such glycosylation inhibitors as tunicamycin or
direct mutagenesis of N-linked glycosylation sites on nicotinic
acetylcholine receptors (AChRs) show that although all
subunits of the nicotinic AChR contain N-linked glycans and
that these sites are by and large important for receptor assembly
and stability (Merlie et al., 1982; Prives and Bar-Sagi, 1983;
Blount and Merlie, 1990; Gehle and Sumikawa, 1991;
Ramanathan and Hall, 1999), they are not required for
receptors to conduct ions in response to acetylcholine (Gehle
and Sumikawa, 1991). Interestingly, glycosylation governs the
resistance of cobra and mongoose AChRs to the paralytic
effects of α-bungarotoxin and so may be functionally important
from an evolutionary perspective (Kreienkamp et al., 1994).
Both α-amino-3-hydroxy-5-methyl-4isoxazole-proprionic acid
(AMPA) and N-methyl-D-aspartate (NMDA) types of glutamate
receptor subunits also have multiple N-linked glycosylation
sites (see Everts et al., 1997). As with AChRs, inhibition of
N-linked glycosylation can have a profound effect on cell
surface expression of some glutamate receptor subunits (NR1 in
particular; Everts et al., 1997), but in general the loss of N-linked
sites shows that they are not required for ionic conductance
(Everts et al., 1997). Ligand binding and lectin-induced inhibition
of desensitization, however, can be altered by glycosylation of
some glutamate receptors (Thio et al., 1992; Everts et al.,
1997; for review see Standley and Baudry, 2000). Thus
although there are always some exceptions to the rule, the
general conclusion from studies on neurotransmitter receptors
is that glycosylation may affect receptor stability or folding, as
in other glycoproteins, but has no intrinsic effect on activity.

In this review, I will discuss the evidence that there are
indeed synaptic glycans and cover recent studies that suggest
that glycans do play important roles in synapse formation and
synaptic plasticity. Although these examples are few, their
precedent should lead to a more thorough examination of this
issue in the future.

Synaptic glycans: are there unique ones? 

Because of the role of glycan structures as receptors or co-receptors
for many viruses and bacteria (Gagneux and Varki, 1999),
carbohydrate expression patterns are rarely phylogenetically
conserved; however, the neuromuscular junction (NMJ) is an
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exception. The NMJ is the synapse formed between the nerve
terminal of a motor neuron whose cell bodies reside in the
spinal cord or hindbrain and a skeletal muscle fibers (for
review see Sanes and Lichtman, 1999a). It is the synapse that
ultimately controls voluntary movement, and defects in its
formation are lethal from birth. Lectin staining studies,
combined with enzymatic characterization by glycosidases,
have shown that terminal β-linked GalNAc is confined to the
neuromuscular junction of birds, frogs, fish, chicks, rats, mice,
and humans and is highly concentrated (though not exclusively so)
in Torpedo and lamprey (Sanes and Cheney, 1982; Scott et al.,
1988).

A number of anticarbohydrate monoclonal antibodies that
recognize terminal β-linked N-acetylgalactosamine (GalNAc)
as part of its structure stain the NMJ in rodents (Martin et al.,
1999). Several of these recognize the cytotoxic T cell (CT)
carbohydrate antigen (Lefrancois and Bevan, 1985). The CT
antigen in rodents is very similar to the Sda/Cad blood group
antigen in humans (Conzelmann and Lefrancois, 1988) and can
generally be defined as GalNAcβ1,4[NeuAcα2,3]Galβ1(3GalNAcα
or 4GlcNAcβ-). Two CT antigens are expressed at the NMJ in
rodents and these are defined by the CT1 and CT2 monoclonal
antibodies. CT1 and CT2 are differentially distributed on the
pre- and postsynaptic membrane; this subsynaptic localization
is maintained to a large degree in rodent cell line models for
motor neurons and skeletal muscle (Martin et al., 1999). Anti-
bodies to carbohydrate structures with terminal β1,3 linkages,
including antigloboside antibodies and stage-specific embryonic
antigen 3, also stain the NMJ (Scott et al., 1988; Martin et al.,
1999). Based on immunocytochemistry and immunoblotting, a
GalNAc O-phosphotransferase is also expressed at the NMJ
(Balsamo et al., 1986; Scott et al., 1990). Thus at least three
types of GalNAc linkages may be concentrated at this synapse.
Unlike the brain, where biochemical purification of synaptic
fractions is feasible, there are no studies on direct glycan
sequencing of neuromuscular glycoproteins. Thus although all
of these studies point to the importance of GalNAc at this
synapse, there is in fact no direct proof of their existence.

Using antiphage antibodies absorbed against heparan sulfate
proteoglycans of varying composition, Jenniskens et al. (2000)
have identified unique anti–heparan sulfate antibodies that
stain the rodent NMJ. Antigen recognition by these phages
depended on the presence of GlcNSO3 and ester-linked sulfate
groups. Though most antibodies isolated recognize the entire
muscle basal lamina, several are highly concentrated at the
NMJ. These appear to recognize neural antigens, as they did
not recognize postsynaptic specializations in cultured muscle
cells. Though the glycosaminoglycan (GAG) structures these
antibodies identify are not known, they are especially
intriguing, given the fact that almost all synaptic cleft proteins at
the NMJ either bind heparin (Gesemann et al., 1996; Pall et al.,
1996; Fischbach and Rosen, 1997; Talts et al., 1999) or are
themselves heparan sulfate proteoglycans (Anderson and
Fambrough, 1983; Noonan et al., 1991; Tsen et al., 1995; Zhou
et al., 1997; Peng et al., 1995).

Excitatory glutaminergic synapses in the brain have been
studied by similar methods to those applied to the NMJ but
have had the added advantage of the ability to isolate synapto-
somes, a purified synaptic fraction, by differential detergent
extraction and centrifugation. Matus and colleagues first
described concentrated binding of concanavalin A (ConA) to

excitatory brain synapses in the rodent, suggesting that high
mannose structures are concentrated at brain synapses (Matus
et al., 1973; Cotman and Taylor, 1974). Ricin communis
agglutinin binding is also concentrated in glutaminergic
synapses (Bittiger and Schnebli, 1974; Kelly et al., 1976), as
are some heparan sulfate moities (Ethell and Yamaguchi,
1999). ConA binding is present both in the pre- and post-
synaptic membrane as well as in the synaptic cleft (Wood and
McLaughlin, 1976). Using a synaptosome preparation, Gurd
and colleagues have sequenced high mannose structures in
synaptic junctions isolated from rat brain (Gurd and Fu, 1982).
The presence of high mannose is consistent with measure-
ments of glycan composition showing a high concentration of
mannose and a relative dearth of sialic acid in postsynaptic
densities (Churchill et al., 1976). High mannose oligosaccharides
(Man9–Man5) have been shown by sequencing to be present
on both the NMDA and AMPA types of glutamate receptors
(Clark et al., 1998). In both receptor subtypes, about 50% of
the neutral glycan chains were oligomannosidic structures.
Although Man5 was the predominant high mannose structure
found on all receptors, a significant portion, about 40%, was
Man6–9 (Clark et al., 1998). Indeed, the extent of mannosylation
appears to be developmentally regulated; the Man8/Man5 ratio
is high at postnatal day 10 and is significantly reduced at day
28 (Fu and Gurd, 1983). Changes in lectin binding and radio-
labeling studies also suggest that developmental changes in
fucose and sialic acid incorporation into synaptic proteins
occur in the postnatal period (Fu et al., 1981; Cruz and Gurd,
1983; Stanojev and Gurd, 1987). Given that all glutamate
receptors have numerous sites (between 4 and 12) for N-linked
glycosylation and may also have O-linked sites (see Everts et al.,
1997), regulation of their glycosylation is likely to be complex.
This is especially true given that glycoprotein synthesis could
occur locally in the dendrites just beneath synapses
(Villaneuva and Steward, 2001). Thus proteins synthesized at
the synapse could be glycosylated in a manner different from
the same proteins produced in the neuronal cell body.

Polysialic acid (PSA) can become synaptic by virtue of its
expression on neural cell adhesion molecule (NCAM), a cell
adhesion molecule found at some synapses. The synaptic
localization of PSA, however, is complex. PSA is not always
present at synapses where NCAM is present and can be absent
from NCAM-positive synapses as well (Seki and Arai, 1999).
The fact that PSA may exist on other brain molecules, such as
the voltage-gated sodium channel α subunit, may also
contribute to such differential distribution patterns (Zuber et al.,
1992).

Last, there is little evidence for the presence of uniquely
presynaptic glycans. The presence of keratan sulfate on the
synaptic vesicle protein SV2 (Scranton et al., 1993) and
synaptic staining by anti-GAG phage antibodies (Jenniskens
et al., 2000) suggest that certain GAGs could be localized to
the presynaptic membrane, and the finding that botulinum
toxin C2 binds complex and hybrid N-linked glycans suggests
a concentration of particular N-linked moeties as well
(Eckhardt et al., 2000a). Both PSA and high mannose are also
likely to be present on presynaptic proteins at some synapses
but can also be present in postsynaptic regions, as can the CT
antigen, though a variant of this structure appears to be
primarily presynaptic (Martin et al., 1999).
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Glycans in neuromuscular formation: agrin

Agrin, a highly glycosylated heparan sulfate proteoglycan
(Tsen et al., 1995), was the first nerve-derived molecule shown
by reverse genetics to be essential for synapse formation; mice
lacking agrin fail to make NMJs and die at birth due to an
inability to breathe (Gautam et al., 1996). Agrin is made in
different splice forms by the motor neuron and the skeletal
muscle (Ferns et al., 1993). The motor neuron-derived form is
secreted and binds muscle membrane complex that includes
the transmembrane tyrosine kinase, MuSK (Glass et al., 1996).
Neural agrin activates muscle-specific kinase (MuSK) activity,
leading to a signaling cascade that ultimately aggregates post-
synaptic AChRs under the nerve terminal. Mice lacking MuSK
also fail to make NMJs and die at birth (DeChiara et al., 1996).

Though it remains unclear exactly how agrin signals, four
groups of findings implicate glycans in this process. First,
agrin is highly glycosylated protein and glycans on agrin
mediate binding to other proteins. Agrin is one half sugar by
weight (Tsen et al., 1995). Most of that sugar consists of
heparan sulfate chains (Tsen et al., 1995), but agrin can also
contain O-linked glycans in its mucin region (Parkhomovskiy
et al., 2000) and has sites for N-linked glycosylation (Rupp et al.,
1991; Tsim et al., 1992). Both fibroblast growth factor 2 and
thrombospondin bind agrin via its heparan sulfate moities
(Cotman et al., 1999) and laminin-1 (α1,β1,γ1) and laminin-2
(α2,β1,γ1) bind by both heparan sulfate–dependent and
heparan sulfate–independent mechanisms (Cotman et al.,
1999). Thus agrin is a synaptic protein organizer by virtue of
its myriad interactions with other glycoproteins. 

Second, agrin binds to carbohydrates. Recombinant forms of
neural agrin that are highly active in inducing AChR clustering bind
less well to heparin (Gesemann et al., 1996; Campanelli et al.,
1996) and to N-acetyllactosamine (Parkhomovskiy et al., 2000)
than do inactive muscle forms. By contrast, at least one fragment
of neural agrin binds more strongly to Galβ1,3GalNAcα-
(Parkhomovskiy et al., 2000). Thus, there are differences in
glycan binding between active and inactive fragments, and
these may correlate with differential synaptic distributions of
glycan chains. 

Third, glycans affect agrin signaling in vitro. Galβ1,4GlcNAc
and Galβ1,3GalNAc can inhibit the induction of MuSK auto-
phosphorylation by agrin. Because agrin likely has these
glycan chains on its mucin domain, this finding suggests that
agrin could dimerize via such glycans or bind to and activate
MuSK, as MuSK also binds Galβ1,4GlcNAcβ- (Parkhomovskiy
et al., 2000). Fourth, glycans can affect agrin signaling and
AChR clustering on cultured myotubes. Heparin (Wallace,
1990) and sialic acid (Grow and Gordon, 2000) block agrin
activity on cultured myotubes, and muscle cells deficient in
heparan sulfate biosynthesis have severely reduced AChR
clustering and agrin responsiveness (Gordon et al., 1993). In
addition, unmasking of Galβ1,4GlcNAc or Galβ1,3GalNAc
levels by neuraminidase (Martin and Sanes, 1995; Grow et al.,
1999) or α-galactosidase (Parkhomovskiy and Martin, 2000)
causes agrin-independent activation of AChR clustering and,
in at least some cases, activation of MuSK (Grow et al., 1999).
Thus, the differential affinity of neural agrin for glycans,
coupled with the differential glycosylation of agrin itself,
likely plays a role in its ability to activate MuSK and stimulate

synapse formation. Repetition of these experiments in vivo will
be required, however, for conclusive proof of their role.

Nature may have performed one of these experiments
already: the UDP-GlcNAc-2-epimerase/ManNAc kinase, an
enzyme involved in sialic acid synthesis, is mutated in recessive
hereditary inclusion body myopathy (Eisenberg et al., 2001).
Such mutations likely reduce sialic acid content on myofibers.
If so, they could be the in vivo equivalent of the desialylation
studies done on cultured myotubes. Interestingly, one of the
hallmarks of this and related disorders is the accumulation of
synaptic proteins in inclusion bodies that are located in extra-
synaptic regions of the myofiber (Askanas et al., 1998). Thus
these “synaptic” inclusions may reflect the increased formation
of synaptic membrane in the absence of sialic acid, much as
occurs in cells in culture (Martin and Sanes, 1995).

Though glycans may be important in agrin signaling at the
neuromuscular junction, agrin is also expressed in almost
every region of the brain. It is not clear whether agrin is
important for the formation of brain synapses, but early studies
of this subject suggest that it is not (Serpinskaya et al., 1999;
but see Ferreira, 1999). These studies, however, involve no
electrophysiology and do not address agrin’s role in synaptic
function. Agrin, of course, could play other roles more typical
of brain proteoglycans, such as directing axon migration or
stimulating glial responses after injury. It is interesting to note
in this regard that agrin is the predominant heparan sulfate
proteoglycan found in plaques in Alzheimer’s disease
(Verbeek et al., 1999), a disorder associated with profound
synapse loss (Terry et al., 1991). At least one agrin-binding
protein, α dystroglycan, is concentrated in brain synapses
(Smalheiser and Collins, 2000; Zaccaria et al., 2001).
α Dystroglycan has a mucin domain that is glycosylated with
an unusual NeuAcα2,3Galβ1,4GlcNAcβ1,2Manα-O-Ser
structure in brain (Smalheiser et al., 1998), peripheral nerve
(Chiba et al., 1997), and skeletal muscle (Sasaki et al., 1998).
Some Lewis X structures also occur in brain (Smalheiser et al.,
1998). Though agrin is not likely to be present at many brain
synapses, members of another protein family that share
homology with agrin, the neurexins, also interact with brain-
derived α dystroglycan via its carbohydrate moeties (Sugita
et al., 2001). Thus other proteins in the brain may utilize
binding partners and perhaps mechanisms similar to those used
by agrin at the neuromuscular junction.

Glycans in synaptic plasticity: PSA and others

An increasing number of studies have shown that NCAM, a
protein often modified with PSA, has an important role in
synaptic plasticity, both in the brain and at the neuromuscular
junction. NCAM is required for long-term potentiation (LTP)
of synaptic activity in the Schaffer collateral–CA1 and mossy
fiber–CA3 regions of the hippocampus (Cremer et al., 1994,
1998), long-term plasticity in Aplysia (Mayford et al., 1992),
and paired-pulse facilitation at the NMJ (Rafuse et al., 2000).
The extent to which PSA contributes to the phenotypes in
NCAM-deficient mice is now becoming understood in some
cases. PSA is highly expressed in the brain in the perinatal
period at the time when most synapses are forming, but it
declines markedly during postnatal development except in
areas of postnatal neurogenesis (for review see Rutishauser
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and Landmesser, 1996). Glycosylation of NCAM with PSA
primarily results from the activity of two sialyltransferases,
alpha 2,8 sialyltransferase (ST8) SiaII and ST8SiaIV, though
ST8SiaIII also has some activity (Angata et al., 2000).
STSia8II (or STX) expression is high in embryonic development
but diminishes rapidly in the early postnatal period, whereas
ST8SiaIV (or PST-1) remains high in adult brain (Kurosawa et al.,
1997; Ong et al., 1998).

The recent characterization of mice lacking ST8IV has shed
much light on the extent to which PSA controls the effects of
NCAM on synaptic plasticity (Eckhardt et al., 2000b). Mice
lacking ST8SiaIV show deficits in both LTP and long-term
depression (LTD) in the Schaffer collateral–CA1 projections
of the hippocampus (Eckhardt et al., 2000b). This work has
confirmed earlier studies where treatment of hippocampal
slices with endo-neuraminidase inhibited both LTP and LTD
in this pathway as well as spatial learning (Becker et al., 1996;
Muller et al., 1996). Expression of PSA in neuronal migratory
pathways and in early development was unchanged in
ST8SiaIV –/– mice, presumably due to the continued expression
of ST8SiaII. Because of this, no deficits in the laminar
structure of the hippocampus occurred in these mice as had
been found in NCAM-deficient mice. The deficit in plasticity
appeared to be very specific, as other measures of synaptic
transmission, including basal activity and posttetanic
potentiation, were normal. In addition, LTP in ST8SiaIV –/–
mice was normal in the mossy fiber–CA3 pathway, where PSA
is not normally expressed (Seki and Rutishauser, 1998; Seki
and Arai, 1999). As LTP is affected in this pathway in NCAM
–/– mice, there may be examples where non-PSA-dependent
mechanisms are responsible for NCAM function; however,
such functions could also be due to altered development.

The exact role of PSA in the mechanism of LTP is still unclear,
but several studies suggest a potential role in modulation of
AMPA receptors (discussed in Eckhardt et al., 2000b). This is
intriguing, given that AMPA receptors are required for LTP.
First, colominic acid, a homopolymer of sialic acid, can
increase AMPA receptor channel open time (Suppiramaniam
et al., 1999). Second, desialylation of hippocampal membanes
alters AMPA binding to its receptor (Hoffman et al., 1997).
Last, activity rapidly modulates NCAM/PSA and AMPA
receptor expression on the cell surface (Muller et al., 1996),
and this rapid recycling may be essential for AMPA receptor
control LTP (Isaac et al., 1995; Luscher et al., 1999). The
finding that brain-derived neurotrophic factor can rescue the
deficit in LTP in ST8SiaIV –/– hippocampal slices (Muller et al.,
2000), coupled with the fact that NCAM can bind proteo-
glycans via PSA (Storms and Rutishauser, 1998), also suggests
a potential role for PSA in localizing trophic factors via GAGs
at the synapse. Of course, because of its potential to destabilize
cell–cell interactions, PSA could also serve as a more general
“de-adhesive” to allow alterations in synaptic morphology or
connectivity. Studies on estrogen-induced morphological
changes in the arcuate nucleus (Hoyk et al., 2001) and on
environmentally induced plasticity in the hypothalamic-
neurohypophysial system (Theodosis et al., 1999) show that
PSA is required for changes in synaptic morphology. By contrast,
removal of PSA increases ectopic mossy fiber–pyramidal cell
synapse formation in the hippocampus (Seki and Rutishauser,
1998). Last, although ST8SiaIV is mostly expressed in adulthood
and its absence causes no apparent change in hippocampal

structure, alterations in hippocampal development still cannot
be ruled out as being the cause of the phenotype. Inducible
knockout studies in adult mice will be required to rule out such
effects.

Studies using carbohydrates, glycosidases, and anticarbo-
hydrate antibodies suggest that other glycans, such as HNK-1
(Saghatelyan et al., 2000), heparan sulfate (Lauri et al., 1999),
fucose (Krug et al., 1994), and high mannose oligosaccharides
(Luthi et al., 1994) are essential for LTP. Experiments in the
leech also suggest that mannose structures control presynaptic
vesicle aggregation in sensory neurons (Tai and Zipser, 1998),
and lectin experiments in Aplysia suggest that glycans may
control the specificity of synaptic connectivity (Lin and
Levitan, 1987). Both of these phenomena, like LTP, could
pertain to issues of plasticity. Given the long litany of candidate
protein mediators put forward as being important in LTP
(Sanes and Lichtman, 1999b), one needs to treat the carbo-
hydrate literature here with an equivalent degree of skepticism.
Nevertheless, a good case is being made that heparan sulfate,
separate from the PSA studies, has a role in hippocampal LTP.
Addition of heparitinase (Lauri et al., 1999), soluble heparin-type
carbohydrates (Lauri et al., 1999), soluble syndecan-3 (Lauri
et al., 1999), and soluble heparin-binding growth-associated
molecule (HB-GAM) (Lauri et al., 1998) all inhibit aspects of
LTP in the Schaffer collateral–CA1 pathway. In addition,
syndecan-3 can be co-purified from the hippocampus with c-fyn,
a tyrosine kinase involved in hippocampal LTP and spacial
learning (Grant et al., 1992). Last, mice lacking HB-GAM
have enhanced hippocampal LTP (Amet et al., 2001). Thus, a
body of literature is forming that makes a convincing case that
one or more glycans modulate synaptic plasticity in at least
some regions of the brain. The creation of mice lacking
enzymes involved in GAG synthesis should aid in differentiating
the role of proteoglycans from direct roles of GAGs, as has
occurred for PSA.

Conclusions

Although the glycobiology of the synapse is still in its infancy,
the modulation of agrin signaling by glycans during neuro-
muscular development and the effect of PSA on hippocampal
LTP suggest that glycans will have important roles in synapse
formation and synaptic plasticity. In addition, the presence of
high mannose at glutaminergic synapses suggests an important
role at excitatory synapses in the brain. The combination of
improved reagents for detecting and sequencing glycans,
coupled with forward and reverse genetic approaches in mice,
should allow a more complete characterization of the role of
glycans in this very important aspect of neurobiology.
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