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Based on the concept of the tripartite synapse, we have reviewed the role of glucose-

derived compounds in glycolytic pathways in astroglial cells. Glucose provides energy

and substrate replenishment for brain activity, such as glutamate and lipid synthesis.

In addition, glucose metabolism in the astroglial cytoplasm results in products such

as lactate, methylglyoxal, and glutathione, which modulate receptors and channels in

neurons. Glucose has four potential destinations in neural cells, and it is possible to

propose a crossroads in “X” that can be used to describe these four destinations.

Glucose-6P can be used either for glycogen synthesis or the pentose phosphate

pathway on the left and right arms of the X, respectively. Fructose-6P continues through

the glycolysis pathway until pyruvate is formed but can also act as the initial compound

in the hexosamine pathway, representing the left and right legs of the X, respectively. We

describe each glucose destination and its regulation, indicating the products of these

pathways and how they can affect synaptic communication. Extracellular L-lactate,

either generated from glucose or from glycogen, binds to HCAR1, a specific receptor

that is abundantly localized in perivascular and post-synaptic membranes and regulates

synaptic plasticity. Methylglyoxal, a product of a deviation of glycolysis, and its derivative

D-lactate are also released by astrocytes and bind to GABAA receptors and HCAR1,

respectively. Glutathione, in addition to its antioxidant role, also binds to ionotropic

glutamate receptors in the synaptic cleft. Finally, we examined the hexosamine pathway

and evaluated the effect of GlcNAc-modification on key proteins that regulate the other

glucose destinations.

Keywords: astrocyte, glycolysis, GSH, lactate, methylglyoxal, neurotransmission

AIM

Glucose is the major energetic source of neural cells. In addition to providing ATP via the
glycolytic pathway, glucose provides metabolites that are key to brain activity, such as glutamate
and NADPH for lipid and glutathione (GSH) synthesis, as well as recycling of ascorbic acid.
This short review will focus on glucose-derived compounds from astrocytes that modulate
neurotransmission, in addition to providing energetic and substrate replenishment for brain
activity. Glutamate, for example, is the main excitatory neurotransmitter and originates from
astroglial glucose, as it is synthetized de novo from alpha-ketoglutarate. Two specific astrocyte
enzymes, pyruvate carboxylase and glutamine synthetase, are necessary for this process. We will
restrict this review to the role of glucose-derived compounds (arising directly from the glycolytic
pathway in the cytoplasm of astroglial cells) that modulate synaptic receptors or transporters
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by binding to them, such as lactate, methylglyoxal, and
GSH. Moreover, we will review the regulatory role of uridine
diphosphate-N-Acetylglucosamine (UDP-GlcNAc), which
covalently regulates several astrocyte proteins, including glucose
metabolism enzymes and related transcription factors, which in
turn modulate synaptic communication.

INTRODUCTION

Preliminarily, it is important to highlight the importance of
astrocytes in the synapse, particularly in glucose metabolism.
Although there is no doubt about the significance of blood
glucose for brain activity, the mode of entry of glucose to the
brain and its cell distribution are still debated (e.g., Lundgaard
et al., 2015; Barros et al., 2017). Once inside the cell, glucose
is phosphorylated on carbon 6 by hexokinase (HK), generating
glucose-6P, which is converted to fructose-6P via the action of
an isomerase. These two compounds (glucose-6P and fructose-
6P) are used in at least two different pathways. It is possible to
propose a metaphorical “X” intersection of these reactions, as
illustrated in Figure 1, to describe the destinations of glucose
in the neural cells. Glucose-6P can be converted to fructose-
6P, but can also be used for glycogen synthesis or in the
pentose phosphate pathway (PPP) (left and right arm of the
X, respectively). On the other hand, fructose-6P continues
through the glycolysis pathway until pyruvate is formed, but

FIGURE 1 | Four intracellular destinations of glucose that suggest an

intersection in “X.” Glucose enters astrocytes mainly via GLUT1, and neurons

mainly via GLUT3 and is trapped by phosphorylation (catalyzed by hexokinase

1, HK1). Afterward, four destinations are possible; these form a crossroads in

the shape of an X, where glycogen synthesis and the pentose phosphate

pathway (PPP) are the left and right arms of the X, and glycolysis (until

pyruvate) and the hexosamine pathway (HP) are the left and right legs of the

X. The deviation of glycolysis that generates methylglyoxal (MG) is also

indicated. PFK-1, phosphofructokinase-1; G-3P, glyceraldehyde 3-phosphate;

DHAP, dihydroxyacetone phosphate.

can also act as the initial compound in the hexosamine
pathway, as represented by the left and right legs of the X,
respectively.

Glucose Transport and Phosphorylation
Before discussing the destinations of glucose, it is important
to understand how it enters the neural cells, via the glucose
transporter (GLUT) and sodium-glucose co-transporter (SGLT),
which are blocked by phloretin and phlorizin, respectively (Shah
et al., 2012). GLUTs are passive and bidirectional transporters.
GLUT1 is the main isoform found in cells forming the blood-
tissue barriers (endothelial and choroid plexus), astrocytes and
the ependymal cells lining the cerebral ventricles. In addition to
glucose, GLUT1 transports dehydroascorbic acid (the oxidized
form of vitamin C) (Rivas et al., 2008) and glucosamine
(Chopra, 2004). At the blood-brain barrier (BBB), GLUT1
works at about one-third of maximal capacity under basal
conditions (Leybaert et al., 2007). Neurons express mainly
GLUT3, although some neurons in the rodent brain also
express the insulin-sensitive GLUT4 (in the hippocampus, the
cerebellum and the hypothalamus) (Choeiri et al., 2002) and
SGLT1 (in the hippocampus and the cerebral cortices) (Yu et al.,
2010). However, glucose transportation by these carriers is not
considered a rate-limiting step in brain energy metabolism. In
contrast, the next step, glucose phosphorylation by hexokinase,
represents the rate-limiting step.

Notably, more than 90% of non-fenestrated capillary brain
vessels are covered by astrocytic end-feet (Jukkola and Gu,
2015). Moreover, the tight junctions between endothelial cells
(responsible for non-fenestration) are actively regulated by
astrocyte signals (Ballabh et al., 2004). These aspects indicate the
importance of astrocytes in glucose distribution. However, this
does not mean that glucose needs to pass through astrocytes to
reach neurons. In fact, after crossing endothelial cells via GLUT
1, glucose can reach neurons directly via GLUT3, because there is
room for molecular diffusion, since astrocytes form gap junctions
among themselves instead of tight junctions.

Glucose phosphorylation on C6, catalyzed by HK, is the
first rate-limiting step of glycolysis. All three isoforms of HK
(of low Km) are present in brain tissue, but HK1 is the most
abundant isoform in neurons and astrocytes and it is assumed
to be “the brain hexokinase.” HKs 1 and 2 bind to the outer
mitochondrial membrane by a hydrophobic sequence at their
N-terminal, close to the pore that allows ATP output (Pastorino
and Hoek, 2008). The activation of Akt kinase (or inhibition of
glycogen synthase kinase 3, GSK-3) favors the binding of HK to
the mitochondria by a mechanism that is still unclear. Glucose-
6P induces a conformational change of the HK, displacing it from
the mitochondria and decreasing its activity. Glucose-6P acts as
a non-competitive inhibitor of HK, which under basal conditions
is predominantly inhibited (DiNuzzo et al., 2015).

PFK-1 Catalyzes the Other Rate-Limiting
Step of Glycolysis
Glucose-6P is isomerized to fructose-6P, which in turn is
converted to fructose-1,6-bis-phosphate (F1,6BP, see Figure 1).
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This reaction is the second rate-limiting step of glycolysis and
is catalyzed by PFK-1. HK has been reported to be higher
expressed in neurons than in astrocytes (Lundgaard et al., 2015);
however, the activity and regulation of PFK-1 in astrocytes
suggest a higher glycolytic activity in these cells (Bolaños et al.,
2010). PFK-1 is allosterically downregulated by metabolites
ATP, citrate and long-chain fatty acids (Jenkins et al., 2011)
and upregulated by fructose 2,6 bisphosphate (F2,6BP) (Mor
et al., 2011). Moreover, lactate, at least in muscle cells, is
able to disarrange the tetrameric structure and reduce the
enzymatic activity of PFK-1 (Costa Leite et al., 2007). F2,6BP,
the main allosteric activator, is present in astrocytes at higher
concentrations than in neurons. In fact, the enzyme responsible
for the generation of F2,6BP from fructose-6P in brain tissue, 6-
phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB-
3), has lower expression levels in neurons due to elevated
proteosomal degradation (Herrero-Mendez et al., 2009). PFKFB-
3 is the target of several kinases, including Akt and AMP-
activated protein kinase (AMPK; Marsin et al., 2000). AMPK
is able to phosphorylate/activate PFKFB-3 as well as PFK-1
(Bartrons et al., 2018), indicating a direct regulatory role of
AMP.

The lower activities of PFK-1 and PFKFB-3 in neurons
suggest that glucose uptake could be conducted to the PPP
to generate NADPH, which is required for the regeneration
of GSH in these cells (Bolaños et al., 2010). Neurons have
low concentrations of GSH (Dringen et al., 2005) and activity
of γ-glutamyl cysteine ligase (GCL; Makar et al., 1994) when
compared to astrocytes. Interestingly, oxidative stress-mediated
S-glutathionylation of PFKFB-3 decreases its catalytic activity
in cancer cells, redirecting the glycolytic flux to the PPP (Seo
and Lee, 2014). Understanding the metabolic regulation of these
three enzymes (HK1, PFK-1, and PFKFB-3) is important for
comprehending the journey of glucose to pyruvate (including the
passage through glycogen) or to ribulose-5 (PPP), as well as the
effects of products of these pathways (lactate, methylglyoxal, and
GSH) on synaptic communication. All these regulatory enzymes
of glucose flow are direct or indirect targets of GlnNAcylation,
which in turn depends on glucose flow itself, as we will discuss
below.

THE LEFT ARM AND LEG OF GLUCOSE
METABOLISM MODULATE SYNAPTIC
TRANSMISSION VIA LACTATE

Lactate, directly derived from glucose or glycogen (in astrocytes),
performs functions beyond energy supply. These functions are
mediated by different mechanisms and newly presented pathways
(already verified or still proposed), including a specific receptor
and its signaling transduction pathways.

The Lactate Receptor: For Every Orphan,
a Family
The lactate receptor, initially known as GPR81, belongs to
a family of G protein-coupled receptors (GPRs). It was first

mapped via a genomic sequence database and then identified
in the human pituitary gland (Lee et al., 2001). At that
time, in the absence of a specific ligand, the receptor was
considered an orphan. Later, the receptor was shown to be highly
expressed in adipose tissue (Liu et al., 2009). The subsequent
pharmacological characterization of L-lactate as a ligand for
GPR81 was initiated, taking into account the similarity of
GPR81 with other receptors from the GPR family, GPR109a and
GPR109b, which also have β-hydroxybutyrate as a ligand. L-
lactate inhibits lipolysis via GPR81 in adipocytes from human,
mouse, and rat adipose tissue (Cai et al., 2008; Liu et al.,
2009). The suggestion that lactate may act in a hormone-
like manner comes from the demonstration of an insulin-
dependent inhibition of lipolysis via GPR81 by Ahmed et al.
(2010).

As all GPR ligands are hydroxy-carboxylic acids, the GPRs
are now HCA receptors (HCARs; Ahmed et al., 2009; Blad
et al., 2011; Offermanns, 2017). GPR89/HCAR1 has received
more attention during recent years and has been implicated
in inflammation and cancer signaling [for reviews, see (Haas
et al., 2016; Offermanns, 2017)]. A compound present in fruits
(Liu et al., 2012; Bergersen, 2015), 3,5-dihydroxybenzoic acid
(DHBA), was identified as an agonist for HCAR1, inhibiting
lipolysis in wild-type mouse adipocytes, but not in HCAR1
knocked-down adipocytes (Liu et al., 2012). The HCAR2 ligand
3-hydroxy-butyrate has been considered as an antagonist for the
HCA1 receptor and has been used experimentally as such (Shen
et al., 2015).

To characterize HCAR1 signaling pathways, a study using
a cell line designed to express human HCAR1 (CHO-K1)
showed activation of extracellular signal-regulated kinases
(ERK1/2) via HCAR1 in response to lactate and DHBA
and sensitivity to the Gi protein inhibitor pertussis toxin
(Li et al., 2014). Moreover, the Gαγ subunit dissociated
from the activated Gi protein was central in the regulation
of HCAR1-activated ERK1/2 phosphorylation via extracellular
Ca2+, protein kinase C (PKC), and insulin-like growth factor-
1 receptor (IGF-1R) activation. Arrestin-2 and 3 had no
effect on ERK1/2 activation, whereas HCAR1 internalization
was dependent on arrestin-3 (Li et al., 2014). Supposed
non-canonical actions of the HCAR1 receptor, i.e., without
involving cyclic AMP (cAMP) reduction, have been proposed
based on β-arrestin actions but still await future confirmation
(Bergersen, 2015; Morland et al., 2015) and a different yet
unknown receptor has also been suggested (Tang et al.,
2014).

D-lactate, the stereoisomer of L-lactate, is produced at
very low concentrations under physiological conditions from
methylglyoxal (MG, see below). It is considered to be a partial
agonist of the HCAR1 receptor with maximal stimulation
significantly lower than that by L-lactate (Cai et al., 2008).
As reported throughout this review, although some studies
have shown D-lactate as a positive control for L-lactate
HCAR1 signaling in neurons (Bozzo et al., 2013), many
other studies have shown antagonistic (Tang et al., 2014),
absent (Herrera-López and Galván, 2018), and controversial
actions of the lactate enantiomer on neuroprotection and
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cognitive functions (Gibbs and Hertz, 2008; Castillo et al.,
2015).

Synaptic and Vascular Modulation by
Lactate
The presence of the – at that time – orphan GPR81 was first
demonstrated in brain tissue in 2001 (Lee et al., 2001). HCAR1
is located at synaptic membranes of excitatory synapses in the
hippocampus and the cerebellum. It is located predominantly
at postsynaptic sites, but it is also present in astroglial end-
feet processes and endothelial membranes, indicating that energy
metabolism is associated with synaptic function (Lauritzen et al.,
2014). The vascular endothelial density of the receptor is twice the
density at the astrocytic end-feet, suggesting a lactate control of
cerebral blood flow (see Figure 2). The effect of physical exercise
on the density of capillaries via HCAR1 in the sensorimotor
cortex and more markedly in the hippocampus, was reproduced
by daily subcutaneous injections of L-lactate (about 10 mM
in the blood). The regulation of angiogenesis via HCAR1 and
downstream Erk1/2 and Akt signaling resulting in vascular
endothelial growth factor (VEGF) production were confirmed by
the extensive expression of the receptor at perivascular pial and
pericyte-like cells (Morland et al., 2017).

Even before the deorphanization of the GPR81, several non-
metabolic actions of lactate have been reported in neural cells.
Lactate increases the action potential frequency of glucose-
sensing neurons at the ventromedial hypothalamic nucleus via
KATP and chloride channels (Song and Routh, 2005). Another
study using cortical astrocyte cultures and SH-SY5Y neuronal
cells incubated with lactate showed increased brain-derived
neurotrophic factor (BDNF) and inducible nitric oxide synthase
(iNOS) expression in astrocytes but not in SH-SY5Y cells.
However, the authors centered their discussion only on the
energetic aspect of lactate (Coco et al., 2013).

The first demonstration of a signaling pathway involving
lactate and receptor interaction in the brain was demonstrated
by Bozzo et al. (2013), who showed that L-lactate modulated
the calcium spike frequency in primary mouse neuron cultures.
The authors showed, for the first time, a brain non-energetic
effect of L-lactate via HCAR1, since other metabolic substrates,
such as pyruvate or glucose, could not mimic this effect of L-
lactate. In addition, they used the agonist DHBA, reproducing
the effects of lactate, and D-lactate, which has a poor affinity
for the monocarboxylate transporter 2 (MCT2) and works as a
partial agonist. On the other hand, a non-metabolic astrocyte-
neuron signaling modulation by lactate, through a different

FIGURE 2 | Generation and release of lactate in astrocytes. L-lactate is generated either from recently uptaken glucose or from glycogen. Neurotransmitters (NT),

and/or extracellular K+, trigger glycogen breakdown until lactate, via cAMP/PKA signaling. Lactate leaves the cell by the monocarboxylate transporter 1 (MCT1) and

enters neurons via the monocarboxylate transporter 2 (MCT2). Extracellular lactate also binds to hydroxy-carboxylic acid receptor 1 (HCAR1), which is found more

abundantly in perivascular and post-synaptic membranes. Lactate travels among astrocytes through gap junctions (GJ). PKA, protein kinase A; GP, glycogen

phosphorylase; GS, glycogen synthase; PP1, protein phosphatase 1.
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and unknown mechanism, was demonstrated by Tang et al.
(2014). This investigation elegantly showed the release of L-
lactate by astrocytes employing in vitro optogenetics. They
also demonstrated exogenous lactate in cultured and acute
brain slices and showed that in vivo lactate administration
modulates the excitability of noradrenergic neurons from the
locus coeruleus. The authors suggested a possible receptor, other
than HCAR1, since D-lactate acted as an inverse agonist and
lactate concentrations used were about ten times lower than the
IC50 for the Gi-coupled receptor.

A study revealed L-lactate upregulation of immediate
early genes associated with N-methyl-D-aspartate (NMDA)
transmission in neuronal cultures from the mouse neocortex and
in vivo administration of L-lactate (Yang et al., 2014). Genes
such as Arc, c-Fos, and Zif268 had an increased expression after
lactate treatment in a range between 2.5 and 20 mM in a time-
dependent manner, with a one-hour peak. An energetic effect
was excluded after the ineffectiveness of D-lactate, pyruvate, and
glucose in an equicaloric concentration at the same experimental
conditions. Moreover, signaling of lactate on these plasticity-
related genes was intracellular, since the MCT blocker UK5099
abolished this effect. Interestingly, after longer treatment periods,
lactate also stimulated an increase in BDNF expression and the
phosphorylation of Erk1/2. The authors showed lactate action via
NMDA receptors, but not a specific lactate receptor.

More recently, one study showed the modulation by lactate
of the action potential frequency in pyramidal cells from
the CA1 region of the hippocampus, under stable energetic
conditions. Both lactate and its agonist, DHBA, induced a
biphasic modulation in neuronal excitability, inducing reduced
excitability at lower concentrations (lactate at 5 mM and DHBA
at 0.56 mM), while higher concentrations (lactate at 30 mM and
DHBA at 3.1 mM) increased firing frequencies. Use of a neuronal
MCT2 blocker did not abolish the lactate effect and neither did D-
lactate alter the firing frequency of the cells; however, Gi protein
inhibition via pertussis toxin confirmed the effect of lactate via
HCA1R (Herrera-López and Galván, 2018).

Lactate release in response to glutamate uptake was described
20 years ago (Pellerin and Magistretti, 1994); however, an
alternative molecular pathway for lactate efflux, induced by
neuronal depolarization has been proposed (Choi et al., 2012).
A soluble adenylyl cyclase (sAC) sensitive to HCO3

− is
found abundantly expressed in astrocytes and responds to
extracellular K+ elevation. An increase in cAMP secondary to
HCO3

−influx (via HCO3
−/Na+ transporter) was observed in

cultured astrocytes and in brain slices; furthermore, sAC was
found to be responsible for the production and release of lactate
as a consequence of the glycogen breakdown coupled with K+

increase in astrocytes (see Figure 2). As cAMP levels stimulate
glycogen breakdown (Pellerin et al., 2007), HCA1 receptor
(coupled to Gi protein) activation via lactate could mediate
glycogenolysis feedback control by lactate in astrocytes.

The lactate response during neurotransmission is fast and
independent of the metabolic status or oxygen availability,
leading to the observation by Sotelo-Hitschfeld et al. (2015)
of a steady-state reservoir of lactate (Sotelo-Hitschfeld et al.,
2015). The synaptic activity and consequent depolarization

caused by extracellular K+ have been reported to elicit glycogen
mobilization (Choi et al., 2012) and lactate generation (Sotelo-
Hitschfeld et al., 2012). On the other hand, using a FRET lactate
sensor, the group demonstrated that depolarization, via depletion
of the astrocytic lactate reservoir in cultured astrocytes, may
occur via a non-identified anion channel (Sotelo-Hitschfeld et al.,
2015).

HCAR1-mediated lactate effects have been suggested to be
neuroprotective in depression (Carrard et al., 2018) and cerebral
ischemia (Berthet et al., 2009, 2012). More recently, in a
middle cerebral artery occlusion stroke model, HCAR1 receptor
expression was increased in the hippocampus, the cortex, and
the striatum after ischemia (Castillo et al., 2015). Moreover, in
hippocampal slices in an oxygen and glucose deprivation model,
DHBA and D-lactate protected the CA1 region from the insult
(Castillo et al., 2015). Although it is not possible to determine
the definitive role for HCAR1 in the synaptic communication at
this moment, the astrocyte lactate released during glycogenolysis
is reportedly crucial for memory consolidation (see Hertz
and Chen, 2018 for review). However, recent data indicate
that an aging-associated shift of glycogen metabolism enzyme
concentrations, and their localization in astrocytes and neurons,
may occur (Drulis-Fajdasz et al., 2018). In addition to its role
in synaptic signaling modulation, the astrocytic steady-state
reservoir, and the rapid response to depolarization, lactate may
act as a gliotransmitter molecule (Tang et al., 2014; Sotelo-
Hitschfeld et al., 2015). However, synthesis rather than release
should be considered as the limiting step for lactate signaling in
the brain (Mosienko et al., 2015).

Methylglyoxal and D-Lactate Also Affect
Neurotransmission
Methylglyoxal is a dicarbonyl compound (formula
CH3C(O)CHO) derived from endogenous and exogenous
sources and responsible for most of the glycation reactions in
cell metabolism. The endogenous source of MG comes from
enzymatic or non-enzymatic reactions of reducing sugars,
lipids and amino acids in the cell. The main source of MG
synthesis is from aldehydes, which are intermediates of the
glycolysis pathway, such as glyceraldehyde 3-phosphate and
dihydroxyacetone-phosphate (see Figures 1, 3). At physiological
or pathological conditions,MG is produced through spontaneous
dephosphorylation of dihydroxyacetone-phosphate (Angeloni
et al., 2014; Muronetz et al., 2017). Coffee, alcoholic beverages,
cigarette smoke and food are all exogenous sources of MG
(Nemet et al., 2006; Angeloni et al., 2014).

Methylglyoxal is also present in different biological materials
(tissues, urine, plasma and the cerebrospinal fluid) and its
concentration is related to the status of glucose metabolism
(Nemet et al., 2006; Angeloni et al., 2014). It has been suggested
that about 0.1–0.4% of the glycolysis pathway results in the
formation of MG (Kalapos, 2008). More recently, it has been
proposed thatMG, at physiological levels (µM), acts as an agonist
of the γ-aminobutyric acid type A (GABAA) receptor and is
associated with anxiolytic behavior (Distler et al., 2012) and
induction of sleep (Jakubcakova et al., 2013). However, due to the
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FIGURE 3 | Generation and release of MG and D-lactate in astrocytes.

Methylglyoxal (MG) is produced from dihydroxyacetone phosphate (DHAP) by

a deviation of the glycolytic pathway. MG is condensed with glutathione (GSH)

and then, by sequential action of glyoxalases 1 and 2 (GLO1 and 2),

generates D-lactate and recycles GSH. D-lactate leaves the cell via

monocarboxylate transporter 1 (MCT1) but disturbs lactate and pyruvate

flows to mitochondria (not illustrated). MG and D-lactate leave the cell and act

on the GABAA receptor and hydroxy-carboxylic acid receptor 1 (HCAR1),

respectively. Extrasynaptic GABAA receptors of MG are not illustrated.

lower levels of MG in the synaptic cleft (compared to those of
GABA), it has been proposed that MG has a modulatory effect on
GABAA receptors in the extrasynaptic space (Tao et al., 2018).

On the other hand, the relationship between GABAA

and glucose metabolism (more precisely, glucose uptake)
has been investigated over the last 30 years, but findings
are not clear and sometimes conflicting (Ito et al., 1994;
Peyron et al., 1994; Parthoens et al., 2015). Currently,
measurement of glucose metabolism (based on deoxyglucose
uptake) is associated with glutamatergic activity, mainly because
glutamate is the predominant neurotransmitter. However, other
neurotransmitters such as noradrenaline and adenosine, as well
as K+ itself, released by neuronal activity, modulate energetic
metabolism (Hertz et al., 2015;Waitt et al., 2017). In this scenario,
MG is a glucose-derivative molecule that putatively connects
energetic metabolism and the GABAergic system.

Methylglyoxal is metabolized predominantly by the
cytoplasmic glyoxalase system, formed by two enzymes,
glyoxalases 1 and 2 (GLO1 and 2), which act sequentially.
GLO1 depends on GSH. GSH reacts directly with MG and
produces hemithioacetal and GLO1 converts this metabolite

to S-Lactoylglutathione. Subsequently, this compound is
hydrolyzed by GLO2 into D-lactate and GSH is regenerated
(Figure 3). Notice that, due to the lower activity of the left leg
of the destination of glucose in neurons, it may be assumed that
extracellular MG and D-lactate, as well as L-lactate, originate
predominantly from astroglial cells.

D-lactate is oxidized to pyruvate by a D-isomer-specific lactate
dehydrogenase (D-LDH; Cristescu et al., 2008). Mitochondrial
D-LDH activity in rat brain tissue is about 60% lower than
in liver (Ling et al., 2012). High levels of D-lactate inhibit
the membrane L-lactate transport and pyruvate transport to
mitochondria in astrocytes (Gibbs and Hertz, 2008) and neurons
(Ros et al., 2001), which explains the neurotoxicity of this
compound. However, a neuroprotective effect of D-lactate has
been proposed in seizures (Angamo et al., 2017), possibly due
to energy impairment. More recently, in addition to confirming
the presence D-LDH activity in mouse brain tissue, it was shown
that D-lactate is a partial agonist of HCAR1 (Castillo et al.,
2015).

Astrocyte Dysfunction, MG-Induced
Protein Glycation, and
Neurodegenerative Diseases
It is well known that in aging, diabetes mellitus, and
neurodegenerative diseases, MG is elevated to sub-millimolar
levels, working as a potent glycant agent (Srikanth et al.,
2013; Maessen et al., 2015). Elevated D-lactate levels from liver
metabolism are observed in diabetic animals (Kondoh et al.,
1994) and the accumulation of this compound could contribute
to memory impairment, dependent on lactate flow (Suzuki et al.,
2011). However, when the detoxifying system fails due to a
reduction in glyoxalase activity or GSH deficiency, MG and
advanced glycation end-products (AGEs) formation increases,
but D-lactate levels can be reduced, as has been observed in
endothelial cells (Li et al., 2013).

Methylglyoxal promotes glycation on lipids, nucleic acid and
proteins (Allaman et al., 2015). MG mainly promotes post-
translation modifications on proteins by the Maillard reaction
on amino acid residues. The most common glycated amino
acids are arginine and lysine and consequently the formation
of AGEs such as argpyrimidine, hydroimidazolone (MG-H1),
Nε-(1-carboxyethyl)-L-lysine (CEL), and Nε-(1-carboxymethyl)-
L-lysine (CML) adducts, respectively (Rabbani and Thornalley,
2012). AGEs are ligands of the receptor for advanced glycation
end products (RAGE) and induce inflammation by activation
of the nuclear factor κB (NF-κB) pathway in all neural cells
(Chavakis et al., 2004; Donato et al., 2009).

Elevated MG seems to increase the expression of astrocyte
markers (glial fibrillary acidic protein – GFAP and S100B) and
cytokines in astrocyte culture and in vivo, leading to astrogliosis
and neuroinflammation (Chu et al., 2016). However, cognitive
impairment has also been reported without changes in classical
parameters of astrogliosis (Hansen et al., 2016b). Impairment in
glucose flow and/or dysfunction of the glyoxalase system is a
common and early event in neurodegenerative diseases, such as
Alzheimer’s (AD) and Parkinson’s diseases (PD).
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Elevated MG and AGEs levels play a key role in protein
misfolding and oxidative stress, and are also involved in AD
(Angeloni et al., 2014). The increases in glycation reactions
and MG levels are suggested as a possible link in diabetic
individuals that develop AD (Janson et al., 2004). In different
in vitro models, MG induced glutamatergic excitotoxicity by
promoting glutamate release (Arriba et al., 2006) and glutamate
uptake disturbance (Hansen et al., 2016a, 2017). Elevated MG
and AGEs stimulate apoptosis and reduce neurogenesis as well
as neuronal survival in the hippocampus by downregulation of
BDNF expression and its signaling pathways (Di Loreto et al.,
2008; Falone et al., 2012; Chun et al., 2016). MG is involved
in tau hyperphosphorylation through activation of GSK-3β and
p38 mitogen-activated protein kinases (p38 MAPK) (Li et al.,
2012). Moreover, AGEs and hyperphosphorylated tau are co-
localized in the cytoplasm of neurons, possibly contributing to
neurofibrillary tangle formation (Lüth et al., 2005; Fawver et al.,
2012). AGE immunoreactivity has also been observed in amyloid
plaques (Münch et al., 1997; Krautwald and Münch, 2010);
recently, MG was shown to glycate Lys-16 and Arg-5 residues on
β-amyloid, resulting in glycated Aβ (Fica-Contreras et al., 2017).
The Aβ-AGE form is more insoluble, neurotoxic and resistant to
protease reactions (Angeloni et al., 2014).

In PD, a predictor event is the low activity of neuronal PPP
enzymes (Dunn et al., 2014) and mitochondrial dysfunction
(Dranka et al., 2012; Hipkiss, 2014), which changes the redox cell
status and increases the anaerobic glycolysis pathway and MG
formation. In addition, dysregulation of the glyoxalase system
(Joe et al., 2018) also leads to high MG levels and an increase in
glycation reactions. MG reacts directly with dopamine, reducing
its concentration and generating the salsolinol-like compound,
1-acetyl-6.7- dihydroxy-1,2,3,4-tetrahydroisoquinoline, which
promotes mitochondrial dysfunction (Hipkiss, 2014). Moreover,
the glycation of the N-terminal region of α-synuclein reduces
its ability to remain attached to the plasma membrane. In
fact, the accumulation of aggregated glycated-α-synuclein in the
cytoplasm results in neurotoxic effects on dopaminergic neurons
(Vicente Miranda et al., 2016).

THE RIGHT ARM MODULATES
GLUTATHIONE HOMEOSTASIS AND
GLUTAMATERGIC
NEUROTRANSMISSION

Glucose metabolism, in addition to producing energy, supports
other important functions, for example the generation of
reducing equivalents for antioxidant defenses and biosynthetic
pathways, in both astrocytes and neurons (Magistretti and
Allaman, 2018). The PPP, which constitutes the right arm of the
glucose destinations (Figure 1), is the main cytosolic source of
NADPH and is essential for regeneration of GSH. This pathway
decarboxylates glucose-6-phosphate into ribulose-5-phosphate, a
precursor for the nucleotide biosynthesis, conserving the redox
energy as NADPH. Glucose-6-phosphate dehydrogenase (G6PD)
is the rate-limiting enzyme for the PPP (see Figures 4, 6),

which in the resting brain represents a minor pathway for
glucose metabolism (Gaitonde et al., 1983; Wamelink et al.,
2008; Bouzier-Sore and Bolaños, 2015). However, under several
conditions, for example in response to injury, the PPP can be
markedly upregulated (Bartnik et al., 2005; Jalloh et al., 2015;
Rosa et al., 2015) and has demonstrated protective roles because
it provides precursors for tissue repair, as well as increases GSH
to avoid oxidative stress and neuroinflammation.

In astrocytes, the PPP is essential for maintaining an adequate
pool of reduced GSH, since these cells export this antioxidant
molecule to neurons. Activation of the PPP in astrocytes protects
neurons from oxidative stress by increasing astrocytic GSH
levels (Takahashi et al., 2012). In neurons, the low expression of
PFKFB-3 (Figure 6) results in a low glycolytic rate, and glucose
is diverted to the PPP (Almeida et al., 2004; Herrero-Mendez
et al., 2009). This is particularly important for generating GSH,
since neuronal cells have a lower synthesis and, consequently,
GSH concentrations, compared to astrocytes (Makar et al., 1994;
Dringen et al., 2005).

Glutathione is an essential molecule for cellular antioxidant
defense and detoxification processes, conferring neuroprotection
(Dringen, 2000b; Dringen et al., 2015; Kinoshita et al., 2018).
Impaired GSH metabolism is associated with oxidative stress
and inflammatory responses, which have been linked to cerebral
diseases and neurodegeneration (Dringen, 2000a; Lee et al., 2010;
Aoyama and Nakaki, 2013; Arús et al., 2017). An age-dependent
reduction in resting NADPH concentration, accompanied by
a decrease in GSH levels, has been reported in cultured
neurons, making them more susceptible to glutamate exposure
(Parihar et al., 2008). This impaired reducing power can lead to
pathological aging, since the inability of neurons to regenerate
GSH is a hallmark of AD and PD (Currais and Maher, 2013).

Glutathione is a tripeptide, consisting of glutamate, cysteine
and glycine, that is synthesized by two enzymatic steps. First,
GCL catalyzes the reaction between glutamate and cysteine to
form the dipeptide γ-glutamylcysteine. The second step is the
reaction of GSH synthase, which mediates the addition of glycine
to γ-glutamylcysteine to form GSH (Lu, 2013). While the first
step catalyzed by GCL is considered the rate-limiting reaction,
the intracellular content of cysteine is the rate-limiting precursor
for GSH biosynthesis (Griffith, 1999; Figure 4).

Glutathione in the brain is present in both intra- and
extracellular compartments and acts as a dynamic buffer of the
redox state. Non-enzymatically, GSH is able to react directly
with free radicals including superoxide, hydroxyl radical, nitric
oxide, peroxynitrite and MG (Clancy et al., 1994; Winterbourn
and Metodiewa, 1994; Aoyama and Nakaki, 2015). Moreover,
GSH can react with protein thiol groups, leading to a reversible
formation of mixed disulfides (S-glutathionylation), which are
important for preventing protein oxidation, thus preserving
and modulating its functions (Giustarini et al., 2004). GSH
also participates in enzymatic reactions, such as those catalyzed
by GSH peroxidase (GPx) and glutathione-S-transferase (GST).
GPx detoxifies hydrogen peroxides and other endogenous
hydroperoxides using GSH as an electron donor. In this reaction,
GSH is oxidized to glutathione disulfide (GSSG; Dringen et al.,
2015); GSSG is then reduced back to GSH via glutathione
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FIGURE 4 | Synthesis and release of GSH in astrocytes. Cystin (cisteinyl-cystein, CC) is uptaken via the xc- exchanger, which releases glutamate. This exchanger is

functionally coupled to the Na+- dependent glutamate transporters, GLAST or GLT-1. Cystin is reduced by GSH to two cysteines. The gamma acid group of

glutamate then condenses with the amine group of cysteine, forming gamma-glutamyl-cysteine (γ Glu-Cys), by the action of the glutamate cysteine ligase (GCL).

Addition of glycine completes the synthesis of GSH that, in part, is exported to modulate ionotropic receptors and as a source of cysteine for GSH synthesis in

neurons. The extracellular cysteine from astroglial GSH is generated after sequential action of the extracellular peptidases, γGT and APN. Neurons synthesize low

levels of GSH compared with astrocytes, but exhibit a high capacity of GSH regeneration, which depends on NADPH synthesis in the PPP. γGT, gamma peptidyl

transpeptidase; APN, aminopeptidase neuronal; GPx, glutathione peroxidase; GR, glutathione reductase; EAAC, excitatory amino acid carrier.

reductase (GR) using NADPH (Dringen and Gutterer, 2002; Ren
et al., 2017).

The high oxidative metabolic rate can increase mitochondrial
reactive oxygen species (ROS) production, rendering the brain
vulnerable to oxidative stress. Astrocytes and neurons exhibit
differences in GSH metabolism and different mechanisms
maintain GSH homeostasis between these cell types. In astroglial
cells, the basal levels of GSH are higher than in neuronal cells,
showing their pivotal antioxidant role in the central nervous
system (Dringen et al., 2005). Neurons, in turn, depend on
astrocytic GSH release for providing extracellular cysteine for
their synthesis of GSH (Figure 4). As previously mentioned,
cysteine is the limiting precursor for synthesis of GSH.

Astrocytes have a Cys-Glu exchanger (system xc−) that
mediates the uptake of cystine, the bioavailable form of
cysteine, in exchange for glutamate (Bridges R.J. et al.,
2012; Ottestad-Hansen et al., 2018). Moreover, they express
the glutamate/aspartate transporter GLAST (also known as
excitatory amino acid transporter 1, EAAT1 in humans)
and glutamate transporter 1 (GLT1, or EAAT2 in humans)

(Lehre and Danbolt, 1998), which provide intracellular glutamate
for GSH synthesis and for system xc− operation (Reichelt et al.,
1997). Importantly, these glutamate transporters also account
for the majority of glutamate removal from the synaptic cleft,
maintaining extracellular glutamate concentrations low to avoid
excitotoxicity (Anderson and Swanson, 2000; Rose et al., 2017). In
this regard, system xc− and glutamate transporters are associated
with both GSH biosynthesis and modulation of glutamatergic
neurotransmission, as xc− mediates glutamate release. Altered
function of these transporters can result in GSH depletion and/or,
consequently, glutamate excitotoxicity in pathological conditions
(Ré et al., 2003; Yi and Hazell, 2006; Bridges R. et al., 2012; Thorn
et al., 2015). At the same time, GLAST/GLT1 are also related to
glucose metabolism; as they are sodium-dependent, their activity
increases the intracellular sodium concentration, consequently
activating the Na+/K+ ATPase pump, which consumes ATP in
astrocytes. ATP, in turn, can be supplied by the glycolytic pathway
(for a review, see Bélanger et al., 2011).

Glutamate is also involved in the mechanism by which
astrocytes are able to readily release GSH in response to neural
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FIGURE 5 | The hexosamine pathway. In panel A, the steps of the hexosamine pathway (HP) from frutose-6P to UDP-N-acetyl-glucosamine. Notice that glutamine

(Gln), Acetyl-CoA and UTP are key substrates in this pathway. The rate-limiting step is catalyzed by glutamine:fructose-6P aminotransferase (GFAT). In panel B, a

schematic representation of the structural changes during N-acetyl-glucosamine synthesis. The first reaction is the amination of fructose-6P (fructofuranose) to

glucosamine-6P (glucopyranose). It is worth noting that, in step six, carbon 1 of glucopyranose binds to the hydroxyl of serine or threonine of the protein target. In

fact, this is a reaction of O-linked β-N-acetylglucosaminylation, but for simplification, the nomenclature widely used is O-GlcNAcylation. However, this gives the

wrong idea that linking occurs at the acyl group. It would be better to use NAGylation, since NAG is another (and the simplest) abbreviation of N-AcetylGlucosamine,

found in some polymers. Herein, we will maintain the use of the term “O-GlcNAcylation.” Abbreviations: OGT, O-GlcNAc transferase; OGA, O-GlcNAcase; Pr, protein.

activity, to maintain neuronal GSH levels via the astrocyte-
neuronal GSH shuttle. In astrocytes, glutamate triggers a cascade
of signals that promote the expression of antioxidant genes
through activation of the nuclear factor (erythroid-derived 2)-
like 2 (Nrf2), leading to the biosynthesis of GSH (Frade et al.,
2008; Jimenez-Blasco et al., 2015; McGann and Mandel, 2018).
In the extracellular space, GSH can be hydrolyzed by γ-glutamyl
transpeptidase forming γ-glutamyl and the dipeptide CysGly.
CysGly is, in turn, cleaved by the neuronal aminopeptidase
N into cysteine and glycine, which serve as precursors for
neuronal GSH synthesis (Dringen et al., 1999, 2001; Hertz
and Zielke, 2004; Figure 4). Neuronal cells are less capable of
importing cystine, but the sodium-dependent excitatory amino
acid carrier 1 (EAAC1, also known as EAAT3 in humans) is
able to uptake cysteine in addition to glutamate (Zerangue and
Kavanaugh, 1996; Shanker et al., 2001). EAAC1/EAAT3 supplies
neurons with the rate-limiting precursor for GSH synthesis,
directly influencing their redox homeostasis (Paul et al., 2018).
Furthermore, EAAC1/EAAT3 acts as a bridge between astrocytic
and neuronal GSH metabolism by importing cysteine released
from the extracellular breakdown of astrocytic GSH.

Glucose metabolism, GSH synthesis and glutamatergic
homeostasis are closely associated processes and share
extracellular and intracellular regulatory mechanisms.
Among these, the neurotrophic factor BDNF has recently
been demonstrated as a key regulator of central energy
homeostasis (Marosi and Mattson, 2014). BDNF increases
glucose transport in neurons by inducing the expression of
GLUT3 through phosphatidylinositol-3 kinase (PI3K) and Akt
kinase (Burkhalter et al., 2003). Because of the low neuronal

content of PFKFB-3, glucose can be used for the generation of
GSH through the PPP. Additionally, BDNF can activate hypoxia-
inducible factor-1 (HIF-1) and Nrf2, which are related to the
induction of enzymes that participate in glucose metabolism
in both astrocytes and neurons. Importantly, Nrf2 regulates
G6PD, GCL, GSH synthase, system xc−, and EAAC1/EAAT3
(Thimmulappa et al., 2002; Shih et al., 2003; Escartin et al.,
2011; Niture et al., 2014), thus facilitating both regeneration and
synthesis of GSH.

Experimental data have suggested a role for GSH as
a neuromodulator. As a thiol-containing compound, GSH
may regulate the redox sites of several ionotropic receptors
and ion channels, altering their functional characteristics
(Gozlan and Ben-Ari, 1995; Pan et al., 1995). In this
regard, both GSH and GSSG have been demonstrated to
modulate neuronal depolarization, calcium ion influx and
second messenger activity (Janáky et al., 1993; Varga et al.,
1997) through the glutamatergic receptors NMDA and α-
amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA).
Such effects appear to be dependent on GSH concentrations.
At micromolar levels, GSH is inhibitory via its interaction
with glutamate binding sites. In contrast, at millimolar
concentrations, GSH activates NMDA receptors by reducing
functional thiol groups (Janáky et al., 1993). Interestingly, as a
consequence, GSH becomes oxidized to GSSG, which triggers
an increase in the PPP to generate GSH (Delgado-Esteban et al.,
2000).

In retinal glial cells, GSH induces calcium shifts in a
P2X7 (a purinergic receptor subtype), but not ionotropic
glutamate receptor dependent manner. In contrast, GSSG
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FIGURE 6 | Regulation of cellular destinations of glucose by O-GlcNAc

modification of proteins. AMP-activated protein kinase (AMPK) and protein

kinase A (PKA) have a narrow interaction in the regulation of glucose

metabolism as well as phosphorylate and are targets of O-GlcNAc transferase

(OGT). The phosphorylation of specific targets of AMPK or PKA in the four

cellular destinations of glucose are indicated by the respective colored arrows.

Targets of OGT are indicated by G. Two transcription factors closely related to

glucose metabolism (cMyc and HIF-1α) are represented at the double-strand

DNA and five proteins whose expressions are regulated by these transcription

factors are indicated. G6PD, glucose-6-phosphate dehydrogenase; GFAT,

glutamine:fructose-6P aminotransferase; GLUT1, glucose transporter 1; GP,

glycogen phosphorylase; GPK, glycogen phosphorylase kinase; GS, glycogen

synthase; GSK, glycogen synthase kinase; HIF-1α, hypoxia-inducible

factor-1α; HK1, hexokinase 1; LDH, lactate dehydrogenase; PFK-1,

phosphofructokinase 1; PFKFB-3,

6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3; SNAT,

sodium-neutral amino acid transporter (type 3 or 5, in astrocytes).

did not reproduce this effect, indicating that the antioxidant
and/or structural features of GSH are essential to promote
elevations in cytoplasmic calcium levels (Freitas et al., 2016).
In cortical brain slices, GSH was able to evoke a depolarizing
potential that appears to be mediated by sodium ions. As
this potential was not blocked by antagonists of glutamate
receptors, GSH may act through its own receptor-mediated
channels (Shaw et al., 1996). In this regard, radioligand
binding assays have shown the presence of binding sites
for GSH in different neural cell preparations, including
brain synaptosomal membranes (Janáky et al., 2000) and
astrocytes (Guo and Shaw, 1992). GSH also seems to be
released upon calcium-dependent depolarization in brain slices
(Zängerle et al., 1992) and is able to modulate the release
of neurotransmitters, including GABA (Janáky et al., 1994;
Freitas et al., 2016) and dopamine (Janáky et al., 2007).
Interestingly, GSH can reverse aging−associated hippocampal
synaptic plasticity deficits (Yang et al., 2010). Together, these data

support an emerging role of GSH in signal transduction and
synaptic transmission.

THE RIGHT LEG CONTROLS THE
OTHER DESTINATIONS OF GLUCOSE IN
NEURAL CELLS BY PROTEIN
GLCNACYLATION

The Protein GlcNAcylation and
Hexosamine Pathway
The post-translational modification of proteins by O-linked-N-
acetyl-D-glucosamine (O-GlcNAc) is assumed to be a glucose-
responsive mechanism that modulates cellular signaling (see
Nagel and Ball, 2014 for a review). O-GlcNAc rapidly cycles
onto the serine or threonine residues of target proteins. This
process is equivalent to phosphorylation and occurs via the
activity of two enzymes: O-GlcNAc transferase (OGT) and
O-GlcNAcase (OGA), which add and remove GlcNAcetyl,
respectively (see Figure 5). GlcNAcetyl is derived from the
hexosamine biosynthetic pathway (HP), the right leg in our
X of metabolic glucose destination. It is estimated that 2–5%
of incoming glucose goes to the HP, which has UDP-GlcNAc
as its final product, the donor of GlcNAc (Ozcan et al.,
2010). In the liver, the levels of O-GlcNAc-modified proteins
fluctuate according to the nutrient status, i.e., they are regulated
by intracellular concentrations of UDP-GlcNAc that rise with
feeding and are increased in diabetes mellitus patients (Hanover
et al., 2010; Nagel and Ball, 2014). In the brain, under conditions
of hypometabolism of glucose, as observed in AD, the levels
of O-GlcNAc-modified proteins are reduced (Dos Santos et al.,
2018). However, it is necessary to identify specific changes
in protein GlcNAcylation to understand particular protein
alterations in physiological and pathological conditions. Herein,
we will discuss some aspects of HP regulation and specific targets
of O-GlcNAcylation in astrocytes, which modulate glucose
metabolism and synaptic communication.

The first reaction of HP is catalyzed by the glutamine:fructose-
6P aminotransferase (GFAT) enzyme. The glutamine transfers
the amine group to carbon 2 of fructose-6P, converting it to
glucosamine-6P (Yuzwa and Vocadlo, 2014). Note that neurons
depend on astroglial glutamine, since glutamine synthetase is a
glial enzyme. In the next step, acetyl-CoA transfers acetyl to the
amine group and then the phosphate from carbon 6 is transferred
to carbon 1. This compound, N-acetyl-glucosamine-1P, reacts
with UTP to release the end products UDP-GlcNAc and PPi. The
rate-limiting step of HP is the reaction catalyzed by GFAT, which
is negatively modulated by AMPK (Eguchi et al., 2009), like other
glycolytic key enzymes such as PFK-1 and PFKFB-3. Therefore,
besides glucose flow, GlcNAcylation of proteins is regulated by
GFAT, and also by the activities of OGT and OGA (Worth et al.,
2017).

The OGT and OGA enzymes are evolutionarily well
conserved and have many targets involved in signal transduction,
transcription, translation, cell cycle control and apoptosis.
However, since these are just two enzymes (in contrast to the
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hundreds of protein kinases and phosphatases), there is still
little understanding of how their targets are recognized (Yang
and Qian, 2017). Moreover, Ser and Thr sites for GlcNAcylation
and phosphorylation co-exist in the same protein and these
modifications often share the same sites, establishing a complex
functional relationship (Wang et al., 2007; Hu et al., 2010).

Glucose Flow Regulates Its Own Fate
and Its Derivatives
The main protein targets of O-GlcNAcylation, which modulate
glucose flow and/or destination, are indicated in Figure 6. GFAT,
the regulatory enzyme of HP, is inhibited by phosphorylation,
catalyzed by AMPK, at Ser 243 (Eguchi et al., 2009). Therefore,
activated AMPK decreases UDP-GlcNAc levels. However, AMPK
is also able to phosphorylate (activate in this case) the OGT at
Thr 444, which in turn could lead to O-GlcNAcylation of AMPK,
resulting in a complex regulation that involves changes in the
activities of enzymes as well as their cellular localizations (Bullen
et al., 2014). It is possible, but has not yet been determined, that
this triangular interaction among AMPK, GFAT, and OGT occurs
in neural cells, particularly in astrocytes, where AMPK has a
crucial role (Bolaños, 2016).

Glutathione, as discussed above, has an important antioxidant
role in neurons. However, at higher concentrations in astrocytes,
it is exported not only to support neuronal synthesis, but also
to modulate ionotropic synaptic receptors. Glucose generates
NADPH in the PPP to recycle GSH in neurons and astrocytes.
The G6PD enzyme is the rate-limiting step of this pathway. G6PD
ismodulated byO-GlcNAcylation, as demonstrated in several cell
lines (Rao et al., 2015). In contrast to O-GlcNAcylation of GFAT,
this modification of G6PD activates the enzyme, increasing the
activity of the PPP and NADPH formation. Although this is
of importance in neurons to regenerate GSH, the effect of
O-GlcNAcylation on neuronal G6PD has not yet been analyzed.
However, it is possible to realize the importance of glutamine
from astrocytes to neuronal synthesis of glucosamine-6P, the
precursor of UDP-GlcNAc. Another important aspect of GSH
synthesis, particularly in astrocytes, is its modulation by AMPK
(Guo et al., 2018). AMPK positively regulates the expression
of the modulatory subunit of enzyme GCL through the
transcriptional co-activator peroxisome proliferator-activated
receptor gamma coactivator 1-alpha (PGC-1α), (Figure 4), which
catalyzes the first step (and regulatory step) of GSH synthesis.

Glycogen synthase (GS) is covalently modified by
phosphorylation (induced by catecholamines and insulin)
and O-GlcNAcylation, at least in adipocytes (Parker et al.,
2004). Phosphorylated GS is less sensitive to the allosteric
activator, glucose-6P. Insulin phosphorylates both GSK3 and
the glycogen-targeting protein through the PI3K/Akt pathway,
in turn activating protein phosphatase 1, PP1. Phosphorylation
of both GSK-3 and PP1 activates GS, which leads to glycogen
formation (Obel et al., 2012). Similarly, glucose flow in the HP
leads to O-GlcNAcylation and activation of the GS. This is an
example of mutual exclusivity, where O-GlcNAcylation acts
similarly to dephosphorylation, which cannot be generalized to
other conditions. Moreover, this relationship is more complex

because the upstream enzymes, Akt and GSK3, are also targets of
O-GlcNAcylation (e.g., Park et al., 2005).

Glycogen breakdown is also regulated by phosphorylation
of glycogen-targeting protein by protein kinase A (PKA)
at a different site of Akt (Bak et al., 2018). This PKA-
induced phosphorylation is triggered by neurotransmitters.
The resulting phosphorylation of glycogen-targeting
protein at the glycogen granule dissociates PP1, glycogen
phosphorylase (GP), glycogen phosphorylase kinase (GPK),
and GS. PKA phosphorylates/activates GPK, which in turn
phosphorylates/activates GP. This dissociation is an important
step because both GP and GPK are targets of PP1. Moreover,
PKA phosphorylates/activates the inhibitor 1 of PP1. It was
recently reported that the catalytic subunit of PKA is a
target of O-GlcNAcylation (Xie et al., 2016), but the direct
effect on glycogen breakdown remains unclear. Interestingly,
O-GlcNAc protein modification increases in tumor cells, in
response to glucose deprivation, through glycogen degradation
(Kang et al., 2009), contradicting the idea that an increase in
O-GlcNAcylation acts as a negative feed-back signal to ATP
generation from glucose. This phenomenon may involve changes
in GS/GP balance, due to changes in OGT and/or OGA, and not
UDP-GlcNAc levels (Taylor et al., 2008).

Lactate generation is strongly regulated by O-GlcNAcylation
because PFK-1 and PFKFB-3 are direct and indirect targets of
OGT, respectively. O-GlcNAc modification of PFK-1 at Ser529 is
induced by hypoxia in cancer cells and this modification inhibits
enzyme activity and redirects the flux of glucose to PPP (Yi et al.,
2012). The authors also observed a modest O-GlcNAcylation
of HK. PFKFB-3, which regulates PFK-1, is phosphorylated by
AMPK and Akt, which are targets of OGT, as mentioned above.
Therefore, it is possible to conceive an interaction between
AMPK, PFKFB-3, and OGT, that is just as complex or even
more than the interaction between AMPK-GFAT-OGT (Bullen
et al., 2014). Moreover, at least two transcription factors that
have been well studied in tumor cells and are connected to
glycolysis are modified by O-GlcNAcylation: c-Myc and HIF-1α.
Akt/c-Myc activation induces expression of GLUT-1, HK 1 and
2, PFK-1, lactate dehydrogenase A and glutamine transporters
(Miller et al., 2012; Swamy et al., 2016; Zhang et al., 2017). HIF-
1α induces GLUT-1 and 3, hexokinases, and PFK-1 (Chen and
Russo, 2012). Interestingly, also in cancer cells, lactate is able
to trigger changes in glutamine uptake and metabolism (Pérez-
Escuredo et al., 2016), which are necessary not only for cell
proliferation but also for protein O-GlcNAcylation. Considering
the importance of glutamine/glutamate in brain tissue and lactate
in neuron/astrocyte communication, it would seem that this
mechanism is worthy of investigation in the nervous system.

Finally, the interplay between AMPK and PKA in glucose
metabolism should be considered. Microdomains of cAMP
have been characterized to explain the localized action of
this intracellular messenger, at the membrane or on soluble
adenylyl cyclase. cAMP acts on PKA and is inactivated by
phosphodiesterase. Both enzymes (PKA and sAC) bind to
A-kinase anchoring protein (AKAP; Zippin et al., 2004; Oliveira
et al., 2010). A physical connection between PKA and AMPK,
via AKAP, has been proposed in muscle cells, where AMPK
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phosphorylates AKAP, releasing PKA (Hoffman et al., 2015). In
hepatocytes, PKA phosphorylates and reduces AMPK activity
(Hurley et al., 2006). Again, althoughmost data regarding protein
O-GlcNAcylation derive from tumor and/or non-neural cells,
protein O-GlcNAcylation may also occur in the brain. Therefore,
it is possible that a general cross-talk occurs between PKA and
AMPK (involving O-GlcNAcylation, because both are targets
of OGT) with a role in the metabolic regulation of glucose
destination and synaptic plasticity.

SUMMARY

The importance of glucose for brain activity is very clear, since
glucose provides ATP and replenishment of substrates, such
as glutamate and cholesterol. Additionally, glucose metabolism
provides derivatives such as lactate, MG and GSH, which regulate
synaptic communication. Herein, we propose an intersection in
an “X” that defines the four destinations of glucose in neural cells,
where astrocytes work as integrative and modulatory elements
in the synaptic communication. Such destinations depend on
the metabolic arrangement in each cell type, which in turn
depends on the glucose supply and neural activity. Extracellular
L-lactate released by astrocytes, either generated from recently
captured glucose or from glycogen, binds to HCAR1, a specific
perivascular and post-synaptic receptor, regulating synaptic
plasticity. Currently, lactate is being considered as a putative
gliotransmitter. MG results from a deviation of the glycolytic
pathway and is metabolized to D-lactate. Both MG and D-lactate
are released and modulate neuronal activity, possibly through
GABAA and HCAR1, respectively. The main cellular antioxidant
GSH, whose regeneration depends on the PPP, is also released

by astrocytes and alters the synaptic response by modulating
the redox and non-redox sites of ionotropic receptors and ion
channels. O-GlcNAcylation is an important post-translational
protein modification for cell signaling, and the glucose flow
through the HP regulates the content of UDP-GlcNAc. The
levels of UDP-GlcNAc, in part, are determinant for the GlcNAc-
modification of proteins, including the proteins that modulate
the glucose destinations. As discussed above, glutamine from
astrocytes is essential, literally, for the neuronal synthesis of
UDP-GlcNAc. Although the coupling between astrocytes and
neurons most often addresses the relationship of glutamate
or GABA with the glycolytic pathway, we should not forget
that other neurotransmitters also modulate glucose metabolism,
which then regulates neurotransmission through glycolysis-
derived products.
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