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Abstract The structural analysis of glycoproteins is a chal-

lenging endeavor and is under steadily increasing demand,

but only a very limited number of labs have the expertise re-

quired to accomplish this task. This tutorial is aimed at re-

searchers from the fields of molecular biology and biochemis-

try that have discovered that glycoproteins are important in

their biological research and are looking for the tools to eluci-

date their structure. It provides brief descriptions of the major

and most common analytical techniques used in glycomics and

glycoproteomics analysis, including explanations of the ratio-

nales for individual steps and references to published literature

containing the experimental details necessary to carry out the

analyses. Glycomics includes the comprehensive study of the

structure and function of the glycans expressed in a given cell

or organism along with identification of all the genes that en-

code glycoproteins and glycosyltransferases. Glycoproteomics

which is subset of both glycomics and proteomics is the iden-

tification and characterization of proteins bearing carbohy-

drates as posttranslational modification. This tutorial is de-

signed to ease entry into the glycomics and glycoproteomics

field for those without prior carbohydrate analysis experience.

Keywords Glycomics . Glycoproteomics . Mass

spectrometry .Glycananalysis .Glycopeptide .Glycosylation

site mapping

Introduction

The study of glycoproteins is a rapidly growing field, which is

not surprising considering that at least half of all proteins in

living organisms are equipped with oligosaccharide chains

(Bglycans^) [1]. These glycans influence many physiological

interactions, directly or indirectly impacting the functioning of

cells. To understand these functions, it is necessary to know

the precise glycan structure, their structural variability, their

sites of attachment to the protein, and the degree to which

these sites are occupied. These structural assignment tasks

are often made difficult by several factors characteristic of

glycoproteins, such as nontemplate-driven biosynthesis and

microheterogeneity [2]. The biosynthesis of glycans is driven

by a set of glycosyltransferase-based cascades, and therefore,

glycans on a particular site always exist as mixtures of similar

structures, often containing groups of isomers. Structural de-

termination of carbohydrates from complex biological sam-

ples is based on analytical methodologies such as nuclear

magnetic resonance (NMR), electrospray ionization-mass

spectrometry (ESI-MS), matrix-assisted laser desorption ioni-

zation MS (MALDI-MS), and capillary electrophoresis (CE),

developed as the most popular approaches in both academia

and industry [3]. While mass spectrometry is best suited for

the determination of chain length and composition of mono-

saccharide classes, linkage information and monosaccharide

identification are usually deduced using gas chromatography

(GC) (after chemical derivatization) or NMR. In order to en-

able high-throughput analysis of a complex glycome, these

complimentary techniques are often used together, and they

are often integrated with data analysis platform tailored for the

rapid sequencing of biomolecules based on certain key ana-

lytical signatures [4, 5].

However, since glycoproteins are usually available as a

heterogenic mixture in minute amounts, mass spectrometry
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has risen to the top of the techniques since it can in principle

be used for the analysis of complex mixtures and for low-

abundance samples. Although mammalian glycans consist of

a limited assortment of monosaccharides, these are often iso-

meric, having exactly the same molecular mass. The glycans

can be multiply branched and usually exist as mixtures of

various branching and substitution patterns [6]. Because of

the presence of several potential attachment points in each

monosaccharide, multitudes of structures are possible.

However, as mentioned above, stereoisomers, for example

mannose and galactose, are not distinguishable based on their

molecular mass. Although some of those stereoisomers pro-

duce slightly different ring cleavage pattern in tandem MSn

analysis, it is more common to combine other analytical tech-

niques to distinguish the stereoisomers, such as glycosyl link-

age or composition analysis by GC-MS of partially methylat-

ed alditol acetates (PMAAs) generated from glycans [7].

Glycans are usually found on the cells in the form of gly-

coproteins or glycolipids, where they are covalently attached

to either proteins or lipids, respectively. Since the focus of this

tutorial is on the structural characterization of glycans associ-

ated with proteins, only protein glycosylation is discussed.

The linkage connecting two monosaccharides is called

Bglycosidic bond.^ Glycans are attached to the proteins pri-

marily by one of two major linkages, the one involving link-

age of the glycan to the protein through the side chain nitrogen

of asparagine (N-linked glycans) and the other involving link-

age through the side chain oxygen of serine or threonine (O-

linked glycans). In the case of N-linked glycosylation,

glycosyltransferase-mediated en bloc transfer of oligosaccha-

ride takes place between a lipid-linked oligosaccharide to the

acceptor asparagine of nascent proteins containing the consen-

sus amino acid sequon Asn-X-Thr/Ser (X is any amino acid

except proline). The most common O-linked glycosylation is

initiated with the addition of a singlemonosaccharide GalNAc

(mucin-type glycosylation) or GlcNAc (O-GlcNAcylation) to

serine or threonine of proteins irrespective of any defined

sequence motif, and this monosaccharide is further elongated

in the case of GalNAc to form various core glycan structures

[6].

Since glycans play a part in almost all biological processes

such as intra- and intercellular signaling, organ development,

immunological responses, tumor growth, and even stability of

bioconjugates, a comprehensive analysis of cellular glycan

repertoire is essential for the study of underlying mechanisms

in these complex biological processes. Presently, various

levels of analytical characterization of glycosylation have

been proposed to understand this discrete and dynamic mod-

ification of biomolecules. The first level comprises the analy-

sis of the individual glycan structures in detail along with their

isomeric pattern (glycomics). The second level involves de-

tailed evaluation of site of glycosylation on glycoproteins and

glycopeptide characterization (glycoproteomics), including

the glycan variability and degree of occupancy of the site.

The third level consists of studying the glycomic profile in

different cellular and tissue systems and the influence of gly-

can structure in order to understand cellular communication

[6]. Only the first two levels are discussed in this tutorial.

Matrix-assisted laser desorption ionization-time-of-flight

mass spectrometry (MALDI-TOF-MS) (see BMatrix-assisted

laser desorption ionization-MS^ section), which is one of the

most common techniques for glycan characterization, enables

rapid and sensitive analyses of singly charged larger biomol-

ecules [8]. However, MALDI-TOF-MS analysis of native gly-

cans is challenging due to their structural complexity and low

ionization efficiency, which is a result of the hydrophilicity of

carbohydrates. Permethylation of glycans improves the sensi-

tivity for mass spectrometry detection by increasing the ioni-

zation efficiency of glycans up to 20-fold [9]. Further struc-

tural characterization of selected glycan ions is possible by

electrospray ionization mass spectrometry (ESI-MS) (see

BElectrospray/nanospray ionization-MS^ section) and tandem

(MSn) mass spectrometry fragmentation techniques. This

analysis allows differentiation between Bisobaric^ glycans

that have the same mass but different sugar compositions,

linkages, or structures [10]. Liquid chromatography-MSn

(LC-MSn) analysis (see BLiquid chromatography-MS^ sec-

tion) of permethylated glycans offers more leverage in

obtaining the fragmentation information and structural deter-

mination of isomers. More recently, techniques such as isomer

differentiation of permethylated glycans through LC by better

chromatographic separation system and trapped ion mobility

spectrometry (TIMS) was reported [10, 11].

This tutorial will provide a brief overview, as well as con-

cise explanations of the general approaches and individual

steps to determine glycan structure, sites of glycosylation,

site-specific glycan heterogeneity, and glycosylation site oc-

cupancy of glycoproteins by using mass spectrometric tech-

niques. References to published manuscripts that describe

established protocols in detail will be provided for each ex-

periment. In selecting the methods to be included here, we

limited ourselves to those protocols that we ourselves routine-

ly use in our service facility. These methods are time-tested

and robust and will provide reliable data in the vast majority of

cases . Anyone who is a t tempt ing glycomics or

glycoproteomics analysis using the methods presented in this

tutorial and is experiencing difficulties is invited to contact us,

andwewill do our best to guide them through the process. The

tutorial is not meant to be a comprehensive review covering

every method that has been developed recently, but rather as

an introductory guide to successful glycomics and

glycoproteomics. The goal of this tutorial is to provide a tool

to enable nonspecialists to determine whether glycans are im-

portant in their research, and if they are, how to get started in

obtaining a glycomic and glycoproteomic description of their

samples.
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Overview

The structural analysis of protein glycosylation is generally

performed with or without release of the glycan modification

from the glycoproteins: the former approach is termed

Bglycomics,^ and the latter is termed Bglycoproteomics^

(Fig. 1). Releasing the glycans in the glycomics approach

enables direct introduction into MS instrument and allows

higher dimensional MS analysis (MSn). It also provides an

opportunity to couple other derivatization and analytical tech-

niques such as fluorescence labeling followed by HPLC pro-

filing, NMR, permethylation followed by glycosyl linkage

analysis (see BLinkage analysis^ section) for in-depth struc-

tural characterization [12]. The downside of the glycomics

approach is that site-specific information, i.e., the attachment

site and occupancy rates, is lost once the glycan is released

from the protein. Conversely, in the glycoproteomics ap-

proach, the glycans are not released, and the glycan-peptide

bonds are carefully kept intact to obtain information about

glycosylation sites and site occupancies. While efforts are un-

derway to develop robust methods to perform both of these

parts on the same sample, such procedures still face challenges

in the determination of the exact structure of glycosylation on

glycoproteins. Even though analysis of intact glycopeptides

by LC-MS/MS is the most common way of rapid determina-

tion of glycosylation at specific site of peptides, this method is

currently not sufficient to understand exact glycosylation.

This is due to several factors such as relatively poor ionization
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Fig. 1 General workflows for glycomics and glycoproteomics analysis.

Glycomics involves the release of N-linked glycans (using PNGase F,

PNGase A, or hydrazinolysis) and O-linked glycans (by reductive alka-

line β-elimination or hydrazinolysis) and subsequent derivatization of

glycans (by permethylation or reductive amination with chromophores

such as 2-AP) and analysis by MALDI and ESI mass spectrometry.

Glycoproteomics comprises of determination of glycosylation at

glycopeptide through direct LC-MS/MS analysis of intact glycopeptide

and identification of site of glycosylation of O-glycans (BEMAD or

ETD) and N-glycans (18O-labeling, endo-H digestion, or ETD) by

tandem LC-MS/MS
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of glycopeptide with respect to peptide, the presence of a

multitude of glycan isomers (glycoforms), lack of a compre-

hensive structural database of glycans (including microbial

and plant-derived structures), and inability to obtain mass

spectrometric signature fragment ions needed for complete

structure determination. Also, although there are currently a

number of bioinformatics tools available for glycopeptide

analysis, searching for highly heterogeneous glycan attach-

ment on peptides is still extremely challenging [8, 13].

Consequently, these challenges make it currently necessary

to split the sample into two separate workflows for the com-

prehensive characterization of glycan structure on glycopro-

teins, through glycomic and glycoproteomic analysis.

Figure 1 outlines the steps that are included in these two

workflows. The first step in both involves proteolytic cleavage

of glycoprotein to obtain peptides and glycopeptides. This is

required for glycoproteomic analysis because glycopeptides

are the units that are being analyzed, but proteolysis is also

beneficial for glycomic analysis as a preliminary step for the

following enzymatic N-glycan release, because glycan release

is more efficient from glycopeptides than from intact or dena-

tured glycoproteins due to decreased steric hindrance [14, 15].

After this step, the sample is split into two parts: one for

glycomic and one for glycoproteomic analysis. For the

glycomic analysis, N-glycans are then released from the gly-

copeptides using an N-glycanase enzyme, which cleaves the

N-linked glycans from the asparagine residues of the peptide.

The released N-glycans, which are hydrophilic, can easily be

separa ted from the O-l inked glycopept ides and

nonglycosylated peptides using a C18 solid-phase extraction

(SPE) cartridge or nonporous graphitized carbon column [7].

Subsequen t ly, t he O- l inked g lycopep t ides and

nonglycosylated peptides are eluted from C18 SPE. Release

of O-linked glycans is usually accomplished chemically be-

cause of lack of the deglycosylation enzymes with wide spec-

ificity for O-linked glycans. The common chemical proce-

dures used for releasing O-glycan include reductive β-elimi-

nation, ammonia-based nonreductive β-elimination, or

hydrazinolysis [15–17]. In order to enable highly sensitive

detection, O-linked and N-linked glycan fractions are usually

derivatized prior to mass spectrometric analysis, either by

permethylation or by reducing-end labeling with chromo-

phores (e.g., 2-aminobenzamide (2-AB), 2-aminopyridine

(2-AP), 4-aminobenzoic acid, or anthranilic acid) [18].

Derivatization enhances the ionization of the released gly-

cans, and permethylation, in particular, enables extraction of

more detailed structural information from the MS/MS spectra

through both glycosidic and cross-ring cleavages [19]. Thus,

we are highlighting in this tutorial the glycan structural char-

acterization by employing permethylation as derivatization

approach, of which the procedures are essentially the same

for both N- and O-glycans. The portion of the permethylated

fractions that was not used for mass spectrometry can be

further manipulated for linkage analysis by GC-MS, which

identifies each of the glycan’s monosaccharides and their con-

nection points. During this step, the permethylated glycans are

acid hydrolyzed, reduced, and acetylated, and the resulting

PMAAs are analyzed by GC-MS [7].

Linkage analysis does not provide an accurate quantifica-

tion of monosaccharides, which can be accomplished by gly-

cosyl composition analysis, where monosaccharides derived

from glycans by acidic methanolysis are derivatized by

trimethylsilyl (TMS) groups and analyzed by GC-MS [20].

An alternate method for monosaccharide composition analy-

sis is high-performance anion exchange chromatography with

pulsed amperometric detection (HPAEC-PAD) of monosac-

charides derived from glycans by acid hydrolysis [21].

These procedures can be carried out at any stage before

permethylation.

Glycoproteomic analysis consists of two complimentary

workflows: glycosylation site mapping and glycopeptide anal-

ysis. Site mapping is usually performed first because it reveals

the potential glycosylation sites that are occupied. This infor-

mation is very useful for data analysis in the subsequent gly-

copeptide analysis. Since several analytical challenges are as-

sociated with deducing the glycosylation site from intact gly-

copeptides, notably lack of peptide fragmentation information

during MS/MS, many researchers prefer to perform analysis

on deglycosylated peptides or partially deglycosylated pep-

tides. Some of these techniques involve the enzymatic remov-

al of N-linked glycans with peptide-N-glycosidase (PNGase)

in 18O-labeled water or partial enzymatic degradation of the

N - l i nk ed s t r u c t u r e s f a c i l i t a t e d by endo -β -N -

acetylglucosaminidase (see BN-linked site mapping^ section)

[22]. On the other hand, in most cases, the sites of O-linked

glycans can be determined without release because O-glycans

are smaller in size than N-glycans in general, and therefore,

allow a greater chance to obtain peptide fragmentation, which

are essential for site determination by tandem MS analysis.

However, if the glycoprotein carries large O-glycans or is

heavily glycosylated (i.e., mucin), removal of O-linked gly-

cans may be necessary for site mapping. A site mapping meth-

od termed BEMAD (β-elimination by Michael addition with

dithiothreitol), a mildly alkaline β-elimination in the presence

of dithiothreitol (DTT), is one of the possible approaches to

accomplish release of O-glycans with simultaneous site label-

ing (see BO-linked site mapping by BEMAD^ section) [23].

The glycopeptides or deglycosylated and labeled peptides can

be analyzed directly by mass spectrometry (i.e., MALDI-

TOF-MS or ESI-MS) or they can be separated first by LC in

LC-MS. In LC-MS analysis, the peptides, glycopeptides, and

labeled peptides are first separated on LC and then injected

on-line into the high-resolution mass spectrometer for the

mass measurement of each component and its fragments.

Although it is possible to gain information about both the

glycans and their attachment sites from glycoproteomics data,
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a more complete characterization requires the use of

glycomics results. The information from the glycomic analy-

sis and the site mapping experiment can also be quite helpful

for glycoproteomic data analysis, narrowing the range of pos-

sible masses to look for in the glycopeptide analysis [19]. The

final important aspect in both glycomics and glycoproteomics

analysis is the data interpretation of multiple types of tandem

MSn data. This is achieved through various platforms of avail-

able bioinformatics tools comprising several databases curat-

ed through experimental data, in silico fragmentation predic-

tion tool, search algorithms, annotation tools, and glycan

structure drawing tools [24–28].

Step-by-step description of workflows

Protein/glycoprotein extraction

A glycomics study can be accomplished from a single purified

glycoprotein, glycoprotein mixture, gel slices, and also ex-

tracts from cells, tissues, and culture supernatants. When

starting the glycomics study from cells or tissues, the material

should be homogenized first. There are several ways to ho-

mogenize the material, for example, dounce homogenization,

enzymatic digestion, use of detergent, use of liquid nitrogen,

or ultrasonication. After homogenization, proteins/

glycoproteins in the homogenate can be enriched by protein

precipitation by adding an organic solvent such as a mixture of

chloroform and methanol, or ethanol, or acetone to the ho-

mogenate. The protein-rich precipitate formed is recovered

by centrifugation and can be used for mass spectrometric stud-

ies [29].

Protease digestion

Most glycoprotein analysis follows the bottom-up approach,

i.e., the glycoprotein is cleaved into smaller units, rather than

the top-down approach that analyzes the whole glycoprotein.

Although advances in instrumentation have allowed progress

in top-down glycoproteomics, this tutorial is limited to the far

more common bottom-up approach. In this context, both

glycomics and glycoproteomics analysis involves cleavage

of the glycoprotein into smaller peptides by protease(s) at an

early stage in the workflow (Fig. 1) [7, 15, 30, 31]. In order to

favor complete protease digestion, disulfide bridges in the

protein are broken by reduction with DTT, tris(2-

carboxyethyl)phosphine (TCEP), or 2-mercaptoethanol. The

reduction is usually followed by alkylation with

iodoacetamide (Bcarbamidomethylation^) or iodoacetic acid

(Bcarboxymethylation^) to prevent reformation of disulfide

bond. The protease digestion is usually done by a protease

enzyme or combination of enzymes, such as trypsin, Glu-C,

chymotrypsin, etc., which should be selected based on the

protein sequence of the target protein if the sequence is avail-

able [32]. In the case of glycopeptide analysis, it is necessary

to select the enzyme that produces target peptides within the

optimum range in size, polarity, and charge state for mass

spectrometry detection [32, 33].

Protease digestion can be carried out in-solution or in-gel

[7, 34, 35]. For in-gel digestion, the gels are cut into small

pieces (∼1 mm3), destained by washing the gels through re-

peatedly swelling with ammonium bicarbonate buffer/

acetonitrile (for Coomassie-stained gels), followed by reduc-

tion and alkylation of the protein in gel. After washing out the

chemicals introduced, the protein in gel is digested with pro-

tease(s). The resulting peptides and glycopeptides can be ex-

tracted with increasing proportions of acetonitrile acidified

with formic acid. Before going to the next step, it is important

to deactivate the protease after protease digestion to prevent it

from degrading the N-glycanase. For in-solution digestion,

proteins are reduced, alkylated, and subsequently desalted

by dialysis, ultrafiltration, or SPE. The proteins are further

digested by protease(s) in a suitable digestion buffer. The pro-

tease(s) is inactivated after digestion by pH shift, ultrafiltra-

tion, or heating [7, 36].

Glycomics analysis

N-glycanase digestion

The N-linked glycan on the majority of glycoproteins/

glycopeptides can be released with PNGase F purified from

Flavobacterium meningosepticum, which cleaves the bond

between the first GlcNAc residue of the glycan and the gly-

cosylated asparagine (Fig. 2A) [14, 32, 34]. PNGase F does

not release N-glycans bearing a core α-1-3-fucose efficiently

and is also ineffective for many microbial N-glycans [37]. A

similar enzyme, PNGase A from almonds, can release core α-

1-3-fucosylated N-glycans, but the cleavage efficiency of

PNGase A is not as high as PNGase F. Thus, PNGase F is

usually the first choice if the source of the glycoprotein is

mammalian. On the other hand, PNGase A is recommended

if the protein is from plant or insect [7]. For the release of

glycans from bacteria or any organisms expected to have

unique glycosylation, a chemical procedure such as

hydrazinolysis is used instead of enzymatic procedures [38].

Solid-phase extraction

The N-glycanase digestion results in a mixture of released N-

glycans, peptides, and O-linked glycopeptides. This mixture

can be separated into two fractions: one containing only the

released N-glycans and one containing peptides and O-linked

glycopeptides. This separation is needed to obtain clean spec-

tra and leads to increased sensitivity, a critical parameter for

low-abundance glycans. It is easily accomplished with SPE

Glycomic and glycoproteomic analysis of glycoproteins 4487



using a C18 cartridge, or nonporous graphitized carbon col-

umn [7]. SPE is performed with 5% acetic acid as solvent and

initial extractant. The hydrophilic N-glycans are not retained

on the cartridge and are collected in the flow-through frac-

tions. The more lipophilic peptides and O-linked glycopep-

tides are retained and are eluted with increasing proportions of

2-propanol in 5% acetic acid [34]. Separation can also be done

using a nonporous graphitized carbon column, which effi-

ciently removes salts, SDS, and N-deglycosylated peptides,

but released N-glycans may coelute with O-linked glycopep-

tides [7]. Thus, graphitized carbon is complementary to C18,

and sometimes, it may be necessary to use both, e.g., for

samples with high salt content.

Reductive β-elimination

While most N-linked glycans can be released enzymatically,

commercially available enzymes for the release of O-glycans

have narrow site specificity. Therefore, O-linked glycan re-

lease is usually accomplished chemically, most commonly

by reductive β-elimination (Fig. 2B). The cleavage is base

catalyzed using sodium hydroxide (NaOH) [7, 35, 39].

However, the newly created reducing end of the released gly-

can is sensitive to base, which can cause degradation through

the Bpeeling reaction,^ a repetitiveβ-elimination type reaction

that can deconstruct the oligosaccharide from its reducing end.

This degradation is prevented by adding a reducing agent to

the mixture to convert the residue at the reducing end of the

glycan into an alditol, which is stable to base [19, 39].

Permethylation

Permethylation (replacing every hydroxyl proton with a meth-

yl group) is one of the most common derivatization techniques

for the mass spectrometric characterization of released N- and

O-glycans (Fig. 3) [19, 40]. Permethylation offers several ad-

vantages such as (i) reducing the hydrophilicity of glycans,

which leads to reduced ion suppression, making the analysis

more sensitive (10 to 20 times over native glycans); (ii)

converting negatively charged carboxylate residues on
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glycans to neutral methyl esters, enabling the complete

glycomic profile analysis in positive-ion mode; (iii) enabling

comprehensive structural characterization of glycans by en-

hancing cross-ring fragmentation during tandem MS proce-

dures; and (iv) tandem mass spectrometry of permethylated

glycans, unlike that of native glycans, also provides informa-

tion about the sequence of monosaccharides and through

which positions they are linked to each other in the glycan.

This is because linked positions of oligosaccharides do not

become methylated, creating a 14-mass unit (CH2) deficit

(Bscar^) that can be localized by MS/MS (Fig. 4). Sensitivity

enhancement can also be accomplished by reducing-end la-

beling the glycans with fluorescent tags, such as 2-AB, 4-

aminobenzoic acid, or anthranilic acid, but these labels do

not provide the same wealth of structural information as

permethylation does [18, 19].

The most widely used methylating agent is iodomethane,

which is employed under basic conditions. The choices of

base are NaOH powder [42], DMSO-NaOH pellet [40], or

methylsulfinyl carbanion [43]. The permethylation is carried

out inDMSO solution, by first deprotonating all the hydroxide

groups with the base and then methylating with iodomethane.

After this reaction, which is usually complete within 10 min,

water is added, and the permethylated glycans are desalted

and extracted by water/dichloromethane phase separation or

C18 SPE [7, 19, 34]. SPE separation is especially important for

sulfated glycans [44] because the sulfates are not methylated

and remain negatively charged and thus cannot be extracted

with dichloromethane. In contrast, phosphate groups are

mono- or di-methylated, allowing their differentiation from

sulfate groups [45], which is difficult on native phosphorylat-

ed or sulfated glycans since sulfate and phosphate have nearly

identical monoisotopic mass.

Linkage analysis

In addition to analyzing the permethylated glycans by MS,

they can also be further derivatized for linkage analysis

(Fig. 5) [7, 48]. The permethylated glycans are hydrolyzed

with acid, which cleaves them into their constituent monosac-

charides, and the previously linked oxygens are converted to

hydroxyls, whereas the oxygens that were not involved in

linkages remain methylated. After reduction of all the mono-

saccharides into alditols, the free hydroxyls are O-acetylated,

generating PMAAs, with methylation and acetylation patterns

that are characteristic for each type of monosaccharide and
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each linkage position. In GC-MS analysis, the PMAAs frag-

ment preferentially between carbons bearing O-methyl

groups, which gives rise to fragmentation spectra that specify

the position of the O-acetyl group and hence of the linkage

positions. PMAAs originating from different monosaccha-

rides with the same linkage pattern are distinguished by their

characteristic retention times in GC [7].

Exoglycosidase digestions

The linkages present in a glycan can also be determined by

sequential removal of nonreducing end residues by means of

digestion with linkage-specific exoglycosidases. Practically,

released glycans are treated with exoglycosidases sequential-

ly. After each digestion, a small portion of the reactionmixture

is taken, cleaned by SPE using a C18 cartridge, permethylated,

and examined by mass spectrometry to observe the changes in

glycan composition. Together with the knowledge of each

enzyme’s specificity, this information is used to determine

linkages and monosaccharide sequence [7, 49, 50].

Glycoproteomics analysis

N-linked site mapping

There are two common ways to map the site of N-glycosyla-

tion. One is using endo-F or H enzyme, which releases N-

glycans but leaves a GlcNAc core attached to the glycopeptide

[19, 51]. By mapping the location of the remaining GlcNAc

by LC-MS, we can gain information of the site location as

well as the site occupancy. Due to the limited site specificity

of the endo-F or H enzymes, not all N-glycans are cleaved,

making this approach not generally applicable [52] [53].

By far, the most widely accepted way to map the site of N-

glycosylation is 18O-labeling (Fig. 2A). Enzymatic deglyco-

sylation converts asparagine residues at the N-glycosylation

site of the glycopeptide to aspartic acids via a deamidation

mechanism by the addition of an oxygen atom from the sur-

rounding water. This increases the mass of the peptide by

0.9840 Da on the N-glycosylation site and thus enables iden-

tification of sites of glycosylation. However, added confi-

dence may be attained by performing this deglycosylation

reaction in Bheavy^ water (18O water), causing a mass in-

crease of 2.9882 Da. The location of the 18O-labeled aspartic

acid residues is then mapped by LC-MS [22]. For successful
18O-labeling to map the N-linked sites, it is critical to ensure

that the mass shift is introduced only by PNGase F and to

minimize chemical deamidation. The latter is known to be

accelerated at high pH and high temperature, under which

conditions asparagine can be converted into aspartic acid

and iso-aspartic acid. To suppress such chemical deamidation

during 18O-labeling, the experiment should be performed un-

der slightly acidic conditions (pH 6.8) even though the opti-

mal pH of PNGase F is slightly basic. Another pitfall of 18O-

labeling is carry-over protease activity during the experiment,

which can result in a 5- or 7-Da instead of a 3-Da mass shift of

the labeled peptide, because the carry-over protease activity

introduces 18O into the carboxyl group at the C-terminus. To

prevent this, the sample should be treated with regular water

or protease with regular buffer again after 18O-PNGase F di-

gestion and before LC-MS analysis [19, 36].

O-linked site mapping by BEMAD

The reductive β-elimination of O-glycans leaves behind a

modified serine or threonine residue in the former
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glycopeptide. This residue is reactive toward the thiol func-

tionality, and this property is exploited in the BEMADmethod

in order to tag this residue for unambiguous MS detection.

The reagent of choice for this purpose is DTT, which intro-

duces a 136.0017-Da mass shift compared to non-O-

glycosylated serine or threonine (Fig. 2B) [23].

Glycopeptide analysis

The mixture of N- and O-linked glycopeptides and peptides

obtained in the protease digestion can be analyzed directly by

LC-MS [54, 55]. Glycopeptides are characterized by tandem

mass spectrometry, often referred to as BMS/MS^ or BMSn,^

through which fragmentation by appropriate dissociation tech-

niques is performed to obtain several key fragments charac-

teristic of the overall glycopeptide structure (Fig. 6).

Thorough elucidation of glycopeptide structure requires si-

multaneous determination of its amino acid sequence and ex-

haustive characterization of its carbohydrate(s), including the

site of attachment (Fig. 6B) and degree of site occupancy. Due

to microheterogeneity, where a glycoprotein may carry a va-

riety of glycan structures on a given glycosylation site, several

tandem MS methods such as collision-induced dissociation

(CID), higher-energy collisional dissociation (HCD), or elec-

tron transfer dissociation (ETD) (see BMS fragmentation

techniques^ section) either separately or in combination are

typically necessary for a comprehensive glycopeptide charac-

terization [56]. In order to detect glycopeptides in the presence

of many nonglycosylated peptides, the mass spectrometer

software can be programmed to detect glycan-specific frag-

mentation such as neutral loss of glycan mass and oxonium

ions of glycans (protonated carbohydrate fragments produced

from the glycans in the collision cell during fragmentation). A

drawback of LC-MS of peptide-glycopeptide mixtures is the

much lower ionization efficiency of glycopeptides, resulting

in missing a significant number of glycopeptides and hence

glycosylation sites. In order to alleviate this problem, glyco-

peptides can be enriched by lectin affinity chromatography,

hydrophilic interaction chromatography (HILIC), hydrazide

capture, or TiO2 (sialoglycopeptides) [19, 57–60].

Glycosyl composition analysis

Monosaccharide composition analysis can be carried out at

any point in the workflow up to the permethylation step.

The individual monosaccharides can be separated by various

methods, including HPAEC-PAD, GC, or CE.

High-performance anion exchange chromatography

with pulsed amperometric detection

At high pH, the hydroxyl groups of sugars become ionized, and

the resulting negative charge can be exploited for separation on

an anion exchange resin [21]. Neutral and amino sugars are

eluted isocratically with 16 mM NaOH, and acidic sugars, such

as uronic and sialic acids, are eluted with a gradient of 70–

300 mM acetate in 100 mM NaOH. The eluting monosaccha-

rides are detected with electrochemical PAD. The disadvantages

of HPAEC-PAD are low resolution and the absence of mass

spectra to identify the analytes. These drawbacks are usually

not prohibitive in the analysis of mammalian glycoproteins be-

cause they encompass a comparatively small variety of mono-

saccharides. In fact, HPAEC-PAD is the preferred method for

composition analysis of mammalian glycoproteins because it is

sensitive, provides accurate quantification, and does not require

a complicated derivatization scheme.

Gas chromatography-mass spectrometry

In order to make monosaccharides volatile enough to enter the

gas phase at practical temperatures and without decomposi-

tion, they require derivatization of all their hydroxyl groups

with nonpolar substituents. The most versatile such nonpolar

substituent is the TMS group, even though several other silyl-

based derivatization agents have also been developed. It can

be used to volatilize neutral, acidic, and amino sugars. Most

often, this derivatization scheme is started by acidic

methanolysis, which produces methyl glycosides, whose re-

maining hydroxyl protons are then replaced by TMS groups

[20]. The monosaccharides are not reduced in this method,

preserving their mutarotation equilibrium that includes α-

and β-anomers of both furanose and pyranose forms. As a

result, each monosaccharide is detected as a mixture of at least

four peaks (often more due to incomplete derivatization). This

can be an advantage because it largely precludes misidentifi-

cation of monosaccharides. On the other hand, the alditol ac-

etates (AA) [61] and peracetylated aldononitrile (PAAN) [62]

methods produce chromatograms with only one peak per

monosaccharide. This is accomplished by reduction in the

case of AA and by converting the sugar aldehyde into a nitrile

in the case of the PAAN method. The reduction in the AA

method converts the aldehyde into a primary alcohol that can

often not be distinguished from the primary alcohol already

present in many monosaccharides (e.g., primary alcohol at C-

6 in glucose). This can lead to conversion of two different

monosaccharides to the same alditol acetate. A widely

employed solution to this problem is to use a reducing agent

that transfers deuterium instead of hydrogen and thus intro-

duces a mass label into the AA. A disadvantage of both the

AA and the PAANmethods is that neither of them can be used

to detect uronic acids directly [20].

Mass spectrometry

The advent of soft ionization techniques has made it pos-

sible to obtain mass spectra of intact macromolecules. Two
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soft ionization techniques, in particular, have risen to the

top in the analysis of carbohydrates and proteins. These

are MALDI and ESI. A newer development in ESI is the

usage of extremely low flow rates (on the order of nL/

min) liquid chromatographic system, in which case the

method is termed nanospray ionization (NSI). NSI has

been shown to be more sensitive and salt-tolerant than

ESI and thus facilitates the sensitive, rapid, and detailed

structural analysis by obviating tedious derivatization pro-

cedures such as reductive amination or permethylation

[63]. MALDI is usually combined with TOF mass ana-

lyzers, whereas ESI and NSI are frequently combined with

ion-trap, Orbitrap, quadrupole, or ion cyclotron resonance

(ICR) mass analyzers [19].

Matrix-assisted laser desorption ionization-MS

For MALDI-TOF-MS, the sample solution is mixed with a

Bmatrix^ solution, and a small portion of the mixture is trans-

ferred to a stainless steel sample plate, allowed to dry, and

analyzed [64]. The matrix, which is the key to a successful

MALDI, is usually an organic acid (Table 1) that co-

crystallizes with the sample and helps it to ionize when irra-

diated by intense laser pulses. Laser irradiation creates a

plume containing both matrix and analyte molecules and ions.

The analyte ions are mostly produced by protonation,

sodiation (both in positive-ion mode), or deprotonation (in

negative-ion mode) and are analyzed most commonly by

TOF, quadrupole, or ion-trap mass analyzers. The method
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Fig. 6 A An example MS/MS-

HCD spectrum of a glycopeptide

carrying a high-mannose type N-

glycan, Man5GlcNAc2 on

asparagine. It showed a series of

glycan oxonium ions in the low

mass region at m/z 163.0603,

204.0868, 366.1398, and

528.1929, respectively. A series

of fragment ions due to neutral

loss of the glycan moiety were

observed as the main fragment

ions in the HCD spectrum. Trace

amounts of y-type and b-type

peptide fragment ions were

detected, confirming the sequence

of the peptide backbone. B An

example of MS/MS-ETD spectra

from a glycopeptide carrying

Man5GlcNAc2, showing

fragment ions with minimal

neutral loss of glycan moiety. All

expected peptide c-type and z-

type fragment ions were detected

except c8 fragment ion,

confirming the peptide sequence

in high confidence as well as the

site and mass of the glycosylation

modification. An asterisk (*)

represents carbamidomethylation

of cysteine; at symbol (@)

represents the site of N-

glycosylation, respectively [55]
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requires very little material (if permethylated, nanogram scale

of oligosaccharides is detectable) and allows high-throughput

analysis. Minimal sample workup is required for MALDI as

the technique is relatively tolerant of salts and other

nonsurfactant additives or contaminants [70, 71]. However,

only one degree of tandem MS is usually possible in

MALDI-TOF-MS configuration, limiting the amount of struc-

tural information that can be obtained on the glycan/glycopep-

tide. Another limitation to the use of MALDI for native and

reductively aminated glycans is that due to relatively high

degree of vibrational excitation of the ions during the ioniza-

tion process, a significant degree of fragmentation occurs to

fragile glycan substituents such as sialic acid and fucose res-

idues and sulfate and phosphate groups. Nevertheless,

permethylated glycans (Fig. 7A), which are ionized typically

as sodium cationized ions, are relatively more stable during

MALDI process than native and reductively aminated glycans

[72, 73].

Electrospray/nanospray ionization-MS

In ESI and NSI, a solution of the analyte exits the end of a

capillary within a strong electric field. The solution forms

small, charged droplets that are propelled by the field toward

an ion transfer tube. On that trajectory, the droplets decrease in

size through solvent evaporation, and their charge density in-

creases until they become unstable and break apart. This pro-

cess repeats until eventually individual analyte ions are pro-

duced, which enter into the increasing vacuum of the mass

spectrometer through the ion transfer tube. In ESI, the solvent

evaporation is usually assisted by the flow of an inert gas

(Bsheath gas^). The ions thus stripped of solvent molecules

can then be analyzed in ion-trap, quadrupole, ICR, TOF, or

Orbitrap analyzers (Figs. 7B and 8). The solvents are usually a

mixture of water and methanol or acetonitrile [74]. Additives,

such as formic acid for positive-ion mode and sodium hydrox-

ide for negative-ion mode can improve the ionization efficien-

cy in ESI/NSI. As a result of the ionization mechanism in ESI/

NSI, multiply charged ions are often observed, and this allows

analysis of ions that are much heavier than the detectable

mass-to-charge range of the instrument. Combining ESI/NSI

with ion-traps also makes it possible to do multiple levels of

tandem mass spectrometry (MSn), by trapping fragments and

subjecting them to further fragmentation [75].

Direct infusion When the sample solution is introduced di-

rectly (via syringe pump) to the mass spectrometer without

prior column separation, the method is said to be run by

Bdirect infusion^ [34]. In direct infusion, the sample compo-

sition does not change over time, and signal scans can be

accumulated as long as the sample is available, increasing

sensitivity. This usually also allows enough time to obtain as

many levels of tandem mass spectrometry as desired. Direct

infusion is the preferred method for the analysis of

permethylated released glycans, as the glycan mixtures are

usually well resolved in the MS. However, in order to separate

isomeric glycans, LC-MS is required [19].

Liquid chromatography-MS LC-MS is used for glycopep-

tide analysis and to separate isomeric released glycan struc-

tures [76, 77]. In order to increase sensitivity, columns with

very small internal diameters are preferred. Packed capillaries

can also be combined directly with the spray capillary in a

single piece to reduce dead volume in NSI. The most common

column packing is C18, but C8, C4, HILIC, and other solid

phases can also be used. Due to the often small peak width

in LC-MS, the time to acquire spectra is limited. Normally, a

dependent scan program is designed to collect tandem mass

spectra on a specified number of the most intense peaks in the

spectra of each component or acquire MS/MS of maximum

numbers of intense ions possible within a user-defined time

period (Bdata-dependent scans^). Also, if the molecular mass

of the target ions is known, MS/MS can be set to target spe-

cific expected masses, provided by the user in a mass list

(Bdata-independent scans^). In order to limit the amount of

redundant peptide fragmentation spectra, glycopeptides can

be selected for specific fragmentation events by the presence

of oxonium ions in the preceding fragmentation of the same

glycopeptide [19, 63, 77].

Table 1 Common MALDI matrices used in glycomics and glycoproteomics

Chemical name Name Solventa Notes

2,5-Dihydroxybenzoic acid DHB 50:50 water/acetonitrile Glycans, glycopeptides [65]

2,4,6-Trihydroxyacetophenon THAP 50:50 water/acetonitrile with 0.1% TFA Glycoproteins, glycopeptides [66]

α-Cyano-4-hydroxycinnamic acid CHCA 50:50 water/acetonitrile with 0.1% TFA Glycopeptides [65]

3,5-Dimethoxy-4-hydroxycinnamic acid Sinapinic acid 70:30 water/acetonitrile with 0.1% TFA Large proteins [67]

3-Aminoquinoline/α-cyano-4-hydroxycinnamic acid 3-AQ/CHCA 9:9:2 water/acetonitrile with NH4H2PO4 Glycans [68]

2,5-Dihydroxybenzoic acid/N,N-dimethylaniline DHB/DMA (3:1) 1:1 water/acetonitrile Glycans [69]

aDissolve 10–20 mg in 1 mL of solvent; some matrices may not dissolve completely

Glycomic and glycoproteomic analysis of glycoproteins 4493



MS fragmentation techniques

Fragment ion nomenclature There are different types of

fragmentation methods, and each one of them preferentially

cleaves specific types of bonds within peptides and glycans.

Nomenclature conventions have been developed to designate

these fragmentation sites and resulting ions. The nomenclature

for peptide fragmentations [78] is summarized in Fig. 9A, and

that of glycan [79] is shown in Fig. 9B.

Collision-induced dissociation CID is the oldest and still

most common MS fragmentation technique. Here, the ions

are activated by acceleration and then allowed to collide with

a collision gas, such as helium, nitrogen, or argon. CID is an

ergodic process, which means that the energy supplied by the

collision is distributed within the whole ion and leads to break-

age of its weakest bond. In the case of glycopeptides, this is

usually a bond within the glycan moiety, and not a peptide

bond, so that the predominant losses are those of the glycan

chain. As a result, CID is not well suited to determine the

location of glycosylation sites [80]. The fragmentation of both

peptides and glycans by CID produces mostly b/B and y/Y

ions. CID of permethylated glycans produces glycosidic

cleavages, which allow monosaccharide composition and

some sequence determination. CID fragmentation also causes

cleavages of two bonds across a single monosaccharide unit

(cross-ring cleavages), and the resulting fragments are referred

to as A or X ions, and these are useful in linkage and

branching determination [81].

In triple quadrupole instruments, the collisions occur in the

second quadrupole, and in ion-trap instruments, the ion-trap

itself is the location of fragmentation. Since ion-traps can only

trap a limited range of masses at the same time, small frag-

ments cannot be trapped simultaneously with their precursor

ions. This leads to the Bone-third rule,^ according to which

only fragments withm/z greater than one third of the precursor

m/z are detected in ion-trap CID-MS/MS [82].

Higher-energy collisional dissociation HCD is a fragmenta-

tion technique that is most commonly performed in Orbitrap

mass spectrometers. In HCD, precursor ions are isolated in the

ion-trap and then transferred to a collision cell (C-trap) where
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they are fragmented by impact with a collision gas.

Fragmentation of the N-glycan during HCD tandem MS,

leaving behind a stub consisting of a single GlcNAc, enables

unambiguous assignment of N-glycosylation sites of glyco-

proteins [83]. Since the precursor ions are not measured in

the same cell, HCD is not subject to the one third cutoff and

can be used to measure small fragment ions, such as the diag-

nostic oxonium ions. Like CID, HCD is an ergodic process,

and the fragmentation patterns are similar to CID (Fig. 6A)

[56, 83].

Electron transfer dissociation ETD is a nonergodic frag-

mentation process and thus differs from CID and HCD in

the type of information it provides. ETD preferentially breaks

the peptide bonds in glycopeptides, leaving the glycans intact.

This makes it useful in determining the sites of glycosylation

in a glycopeptide [56]. Figure 6 shows the difference in frag-

mentation patterns between ETD and HCD, highlighting the

power of ETD for site mapping. ETD is accomplished by

colliding the positively charged glycopeptide precursor ions

with radical anions generated separately from an aromatic

reagent compound. Currently, the best reagent compound is

fluoranthene [84]. During the collision, an electron is trans-

ferred to the precursor ion turning it into a charge-reduced

unstable radical cation, which then breaks apart. Since the

charge after electron transfer is reduced by one, the precursor

ion of the analyte has to be at least doubly charged before the

transfer in order to remain in the ion-trap. This can be a
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significant limitation, especially for small glycopeptides.

Fragmentation occurs almost always between Cα and Nα of

each amino acid, producing c and z ions (Fig. 6B). ETD of

permethylated glycans generally produces more fragments

than CID in the presence of cations like Mg2+ [85], especially

those resulting from cross-ring cleavages, greatly enhancing

the potential for detailed structural analysis.

Recent advances in glycomics and glycoproteomics

The complexity and microheterogeneity continues to demand

technical progress for the structural elucidation of glycopro-

teins. The focus of most advances is still on MS and on novel

sample preparation methods for MS. In recent years, there has

been an increased effort to obtain quantitative data along with

the traditional qualitative analysis. In this context, methodol-

ogy developed in proteomics MS is now increasingly applied

in glycoprotein characterizations. Considerable advances have

been made in sample preparat ion, fract ionat ion,

preconcentration, and quantitation techniques such as the use

of label-free and isotopic labeling methods. Instrumental ad-

vances include ion mobility-mass spectrometry (IM-MS) and

flexible use of fragmentation modes. The increased complex-

ity and enormous data volumes obtained through these mod-

ern techniques in glycoprotein characterization necessitated

development of better and robust software and computer-

aided tools for the data analysis. Simultaneously, the individ-

ual steps in glycomics and glycoproteomics are being auto-

mated, leading to reduced volumetric and sampling errors,

thus improving overall reproducibility and analytical through-

put. However, comparison of Bnormal^ versus Baberrant^ gly-

cosylation levels of complex biological samples from different

sources is still challenging due to inconsistency and low re-

producibility in analytical procedures for the characterization

of glycoproteins which are often present in very low level in

comparison to cellular proteomes [86].

Analytical methodologies using a 96-well plate format to

characterize glycoproteins via multistep procedures including

protein denaturation, deglycosylation, desialylation,

permethylation, and subsequent MALDI-MS profiling were

achieved successfully in recent times [87]. Sophisticated gly-

can derivatization schemes have been incorporated into auto-

mated workflow platforms prior to mass spectrometric analy-

sis without affecting repeatability [88]. The traditionally te-

dious permethylation protocol has been automated recently,

and the workflow suitable for high-throughput analysis has

been used for the glycan profiling of monoclonal antibodies

and recombinant human erythropoietin [89].

Improvements in sample handling of histological tissues

and instrument sensitivity along with on-surface multiple en-

zymatic digestions and microfiltrations, followed by MS,

aided sensitive profiling of glycans from tissue samples as

small as 1.5 mm in diameter [90]. Research using MS-based

imaging enabled the study of spatial and temporal organiza-

tion of glycans in biological cells and tissues, and this carries

the promise of helping in the better understanding of the

protein-glycan interactome [86]. Mass spectrometry imaging

(MSI)-based research eliminates a lot of the tedious sample

handling issues involved in the analysis of isolated samples

[91]. Interestingly, these procedures were successfully tuned

for the reliable detection of the N-glycan structures on tissues

including elucidation of α-2,3 and α-2,6 linkages of their

sialic acids [91, 92].

Recently, comprehensive databases of antiglycan reagents

including lectins and antibodies are available, and with the

increased commercial availability of lectins, including recom-

binant lectin variants, they have been progressively used for

glycoprotein fractionation and glycan-epitope detection

[93–95].

The method which is widely used in the pharmaceutical

industry for glycan quantification is HILIC HPLC with fluo-

rescence detection of reductively aminated glycans with fluo-

rescent labels, and this procedure is easy to validate under

GMP regulations. In one recent report, the hydrophilicity of

HILICmaterials was improved by using branched copolymer-

modified hydrophilic material Sil@Poly(THMA-co-

MBAAm) with unique Bclaw-like^ polyhydric groups, and

the material showed promisingly improved retention of N-

linked glycopeptides [96]. In another recent report, optimized

dipeptide-based homo-polymers were employed for glyco-

peptide enrichment, and the researchers claim that the mate-

rials can be used for the separation of glycans with different

isomeric glycosidic linkages [97].

The shortcomings of both chemical and enzymatic release

of glycans were addressed recently in several innovative stud-

ies. Some interesting ones are the development of novel chem-

ical glycan release methods [98–101], optimization of

PNGase F release of N-glycans [102], immobilization of

PNGase F [103], discovery of broad substrate-specific N-gly-

cosidases [104], and high-throughput methods for glycan re-

lease [86].

A new chemical method of N-glycan release and tagging,

termed Bthreshing and trimming^ (TaT), was reported recent-

ly, where glycoproteins, tissues, or organs were treated with

protease pronase (Bthreshing^) and the generated pool of N-

glycopeptides with only one or a few amino acids long was

subsequently treated with N-bromosuccinimide (NBS) under

mild conditions, leading to oxidative decarboxylation

(Btrimming^) and release of glycans. This procedure of glycan

release is reported to be specific to N-glycans, and the glycans

with either nitriles or aldehydes at the reducing end were gen-

erated based on reaction conditions. The nitriles are then la-

beled with 2-AB or the aldehydes with 2-amino-N-(2-

aminoethyl)benzamide (AEAB) and are detected with

MALDI-MS or HPLC with fluorescence detection [101].

Another interesting method developed by the same group of

4496 Shajahan A. et al.



researchers enabled oxidative release of N-glycans, O-gly-

cans, and glycans from GSLs (glycosphingolipids) by the

treatment of samples with household bleach sodium hypo-

chlorite (NaClO). The bleach degrades the proteins while

leaving N-, O-, and GSL-associated glycans intact and the

liberated glycans are subsequently tagged with different fluo-

rescent tags. This strategy was used to release gram quantities

of glycans from various glycoproteins present in egg yolk and

porcine tissues. However, some loss of reducing-end N-acetyl

glucosamine (GlcNAc) of N-glycans was observed, and the

degradation was reported to be dependent on time and tem-

perature of treatment [98]. A process shown to be more effi-

cient than endo-H treatment, in cleaving N-glycans from the

peptide while leaving the core GlcNAc amide bond intact, was

reported recently which involves treatment of lectin-enriched

glycopeptides with a mixture of trifluoromethanesulfonic acid

(TFMS) and toluene [99]. A noteworthy recent strategy called

Bglycoblotting^ is a high-throughput technique effecting the

release of O-Glycans. The procedure involves treatment of

sample with ammonium carbamate at 60 °C for 40 h, followed

by washing steps, chemoselective capture on BlotGlyco H

hydrazide beads, and subsequent derivatization [105].

Derivatization of glycans with a fluorophore enhances the

sensitivity of analysis with both spectroscopic and MS detec-

tors. Moreover, fluorophores increase the hydrophobicity of

highly hydrophilic glycans and thereby increases their chro-

matographic retention in reversed-phase liquid chromatogra-

phy. In yet another novel strategy, monosaccharides were la-

beled with the fluorescent tag, 2-pyridylfuran (2-PF), intro-

duced by reaction with 1,3-di(2-pyridyl)-1,3-propanedione

(DPPD). HPLC analysis of these derivatives achieved sub-

femto mole levels of detection [106]. Another recent study

reported a new improved label, RapiFluorMS (RFMS), which

enables rapid labeling of N-glycans, released as

glycosylamine, at their reducing end immediately after

PNGase F treatment. The label bears dual functional centers:

a quinone moiety as fluorophore and a tertiary amine for

strong positive-mode ionization [107]. The common problem

of fucose migration in LC-MS tandem MS fragmentation of

native or reductively labeled glycans from the antenna to the

core or vice versa was recently addressed by reducing-end

labeling with procainamide hydrochloride. Moreover, during

LC-MS analysis, it improved ionization of labeled glycans

10–50 times in comparison to 2-AB labeling [108]. The chem-

ical release of O-glycans viaβ-elimination results in a reduced

form of glycan which are not easy to be derivatized. This

problem was addressed in a study where a one-pot simulta-

neous release and labeling of O-glycans was achieved by

performingβ-elimination in the presence of 1-phenyl-3-meth-

yl-5-pyrazolone (PMP), leading to PMP-labeled O-glycans

[109]. A technique for the selective enrichment of O-

GlcNAc-modified proteins was developed by Griffin et al.,

in which an az ide-bear ing monosacchar ide was

chemoenzymatically attached to O-GlcNAc modifications of

proteins and the azide functional groups of introduced azide-

bearing monosaccharides were subsequently probed by a link-

er via copper(I)-catalyzed azide-alkyne cycloaddition

(CuAAC) [110].

Quantitative techniques are increasingly applied in the field

of glycomics and glycoproteomics, and numerous researchers

in academia and industry have currently shifted their attention

to MS-based relative and absolute quantification of

glycoconjugates. Chemical labeling with an isotope tag is

one of the most popular method for MS-based relative quan-

titation because the isotope tag does not affect chromatograph-

ic separation or ionization in MS while providing an isotopic

mass shift to differentiate the labeled molecules. The Blight^

and Bheavy^ isotope-labeled glycans, where isotopic tags with

lower mass and higher mass are used, respectively, are mixed

at 1:1 ratio and the corresponding MS peak height is moni-

tored for the estimation of relative quantity. Commonly, the

isotope tags are incorporated into glycans chemically during

either permethylation of N- and O-linked glycans (using re-

agents such as CD3I or
13CH3I vs

12CH3I) or reductive

amination of N-glycans [111]. Incorporation of 18O isotope

on N-glycans and at the site of N-glycans attachment to gly-

copeptide via enzymatic de-glycosylation with PNGase F in

H2
18O is also a common method of isotopic labeling [112].

Metabolic labeling of glycans with sialic acid and GalNAc

analogues bearing isotopic atoms and the relative quantitation

of glycans which are tagged by these isotopes via LC-MS/MS

analysis (IsoTag) was another recent endeavor for the glyco-

peptide enrichment and isotope tagging [113]. Introduction of

multiplex aminoxyTMT reagents enabled efficient relative

quantitation of carbohydrates by improving glycan ionization

efficiency and analytical throughput [114]. Similarly, tags

termed Quaternary Amine Containing Isobaric Tag for

Glycan (QUANTITY) which can completely label glycans

and generate strong reporter ions were also reported for the

labeling of up to four samples at a time (4-plex) and simulta-

neous analysis for the relative quantification of glycans [115].

Multiple reaction monitoring (MRM) and label-free quantita-

tion, which does not involve laborious derivatization proce-

dures, are the emerging novel ways for the relative quantita-

tion of glycans and glycoforms of glycoproteins [116].

The most common modes of ionization in glycan and gly-

copeptide characterization currently are MALDI and ESI.

However, each of them has their own disadvantages. One of

the most common disadvantage of ESI is in-source fragmen-

tation, which can lead to misinterpretation and poor sensitiv-

ity. In order to address this problem, a new technique of using

subambient pressure ionization with a nanoelectrospray

(SPIN) source was developed. Here, the ESI emitter which

was kept at atmospheric pressure was moved to the first vac-

uum stage of the mass spectrometer and placed at the entrance

of the electrodynamic ion funnel to enhance the collection of
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the entire electrospray plume [117]. Since this technique im-

proves the MS sensitivity and makes the ionization conditions

gentler, glycan coverage was reported to be increased by 25%

relative to conventional ionization techniques. This modifica-

tion enabled the detection of heavily sialylated and

polysialylated glycans from human serum [86, 118].

Another robust technique developed recently in MS-based

fragmentation is electronic excitation dissociation (EED) that

occurs at an electron energy of >9 eVand provides rich struc-

tural information through MS, in comparison to CID-based

fragmentation of permethylated and reducing end-labeled gly-

cans [119]. The collision energy required for the optimal frag-

mentation of glycan and peptide portion of a glycopeptide

differs considerably, and one recent technology termed colli-

sion energy stepping CID allows simultaneous acquisition of

MS/MS spectra of glycopeptide at lower and higher collision

energies [120].

Despite using multiple tandem fragmentation techniques,

glycopeptideMS data interpretation is mostly ambiguous, and

thus, in order to lower false discovery rates (FDR), data-

dependent decision trees of sequential fragmentation steps of

glycopeptides such as HCD-product dependent-ETD/CID

workflow utilizing tribrid Orbitrap mass spectrometers are

currently employed. The data interpretation was facilitated

by such improved tandemMS data and development of novel

algorithms that employs machine-learning to predict N-

glycopeptides [86, 121].

Other notable recent progresses in MS-based instrumenta-

tions for glycoprotein characterization are as follows: devel-

opment of spectral libraries of sodiated oligosaccharides by

sequential MS fragmentation in the positive-ion mode [122];

introduction of novel fragmentation method such as ultravio-

let photodissociation (UVPD) for the improved spectral data

of glycans [123]; employing negative-ion mode in glycan

fragmentation in order to obtain more diagnostic cross-ring

fragments [124]; development of promising applications of

IM-MS in the discrimination of linkage and position isomers,

identification of glycosylation sites, and information on po-

tential conformational changes that are induced from protein-

glycan interactions; introduction of CID prior to ion mobility

separation for the discrimination of epimeric oxonium ions

from D-GalNAc and D-GlcNAc glycoforms; discrimination

of sialic acid linkage isomers (α-2-3 and α-2-6 linked sialic

acid) by the use of traveling-wave ion mobility spectrometry

(TW-IM-MS) [125]; and finally, increased use of capillary

zone electrophoresis for the unprecedented separation effi-

ciencies, resolution, and sensitivities in the characterization

of glycoconjugates from charged biomolecules [88].

In order to promote critical evaluation of experimental pro-

tocols, dissemination of data sets for reproducibility, and com-

parison of results obtained in different laboratories, an initia-

tive termed minimum information required for a glycomic

experiment (MIRAGE), was established in 2011. MIRAGE

provides guidelines for data reporting of mass spectrometry,

liquid chromatography, sample preparation, and data handling

[126–128].

Resources

General resources

The Complex Carbohydrate Research Center at the University

Georgia has comprehensive analytical service, collaboration,

and hands-on training resources in the area of glycoproteins,

polysaccharides, and proteoglycans derived from animal,

plant, and microbial origin, as well as databases of PMAA

GC-MS spectra for linkage analysis [129], and a modular

software tool, GRITS Toolbox [130], for help in processing,

annotating, and archiving of glycomics data (see BMass spec-

trometry software and tools^ section). The Consortium for

Functional Glycomics (CFG) is a comprehensive resource

for functional glycomics research that contains data from ex-

periments that have been performed by the CFG, including

glycan array screening, glycan profiling, glycogene microar-

ray screening and phenotyping of glycogene mouse strains,

and detailed information about glycan structures, glycan-

binding proteins, and glycosyltransferases [131]. Essentials

of Glycobiology, a comprehensive textbook in glycobiology,

is a useful book published by the Consortium of Glycobiology

in collaboration with the National Library of Medicine/

National Center for Biotechnology Information (NLM/

NCBI) and Cold Spring Harbor Laboratory (CSHL) Press

[6]. This book is freely accessible online [132] and is an in-

valuable resource for understanding the background and con-

text of glycoproteins. A third and significantly updated edition

of this book is scheduled to be released later this year.

Common representation of glycans

In order to represent the carbohydrate structures in a simple

and accurate way, different graphical representations or

Bcartoons^ for glycan structures were proposed. Two common

notation schemes are CFG nomenclature scheme [46] and the

Oxford-Dublin system (Fig. 10) [47]. In CFG notation, differ-

ent geometric symbols are used to represent different mono-

saccharides, and different monosaccharides that have same

mass are assigned the same shape. For example, hexoses are

represented by circles and the isomers of hexoses are indicated

by different colors, such as blue for glucose, green for man-

nose, and yellow for galactose. Likewise, derivatives of a

given monosaccharide are assigned the same color but differ-

ent shapes; for example, glucose as blue circle and GlcNAc as

blue square. Since some confusion may arise when using

black and white images of these CFG notations, the Oxford-

Dublin system uses different shapes for each monosaccharide

(Table 2).
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Mass spectrometry software and tools

Several tools are available that assist in predicting/interpreting

glycan structure from MALDI or ESI-MSn data or glycopep-

tide structure from LC-MS/MS data. The following open

source tools are commonly used for characterization of glyco-

sylation by mass spectrometry.

GlycoWorkbench [133] is a tool used for the drawing of

glycan structures and automatically matching these models

and their theoretical fragments with the experimental mass

spectra. This tool provides complete support to the routine

interpretation of glycomic mass spectrometric data and com-

prises several features to annotate MS data. The visual editor

module of GlycoWorkbench, the GlycanBuilder, supports

rapid assembly of graphical representations of glycan struc-

tures. GlycanBuilder enables sequential addition of monosac-

charides starting from the reducing end, addition of modifica-

tions or reducing-end markers, and simultaneously computing

of corresponding theoretical m/z value of glycan structures.

Chemical der iva t iza t ions of the glycan such as

permethylation, sulfation, phosphorylation, and acetylation

can also be incorporated into glycan structures and calculate

their theoretical m/z. GlycoWorkbench can also compute var-

ious possible monosaccharide compositions, with or without

modifications, for the unknown theoretical m/z values with a

defined set of parameters, match them with the experimental

m/z value from a database and generate report in which com-

positions are listed together with the m/z accuracy. The soft-

ware is available publicly for download from the

EUROCarbDB web site [26].

GRITS Toolbox [130] is a modular software suite that

helps in processing, annotating, and archiving of glycomics

data, and thereby assists in determining structures of glycans

from the MS and MS/MS data. GRITS Toolbox can process

different types of open file formatMS data of released glycans

with different chemical derivatives such as permethylation

and various reducing terminal modifications and annotate

them using the integration annotation module Glycomics

Elucidation and Annotation Tool (GELATO). It proposes gly-

can structures as annotations by using a set of databases which

have been curated using Qrator software from a combination

of external literature and database references, user annota-

tions, and canonical trees [25].

Online web tools such as GlycoMod are also useful in

determining all possible compositions of both free glycans

and glycans attached to the peptides, based on their experi-

mentally determined masses [28]. The program also predicts

the composition of oligosaccharides derived from any glyco-

peptide comprised of either underivatized, methylated, or

acetylated monosaccharides, or with a derivatized reducing

terminus. The composition of a glycan on a glycopeptide

can also be computed if the sequence or mass of the peptide

is known. The program matches the experimentally deter-

mined masses against all the predicted protease-produced pep-

tides of known protein amino acid sequences or proteins on

Uniprot databases, which have the potential to be glycosylated

with either N- or O-linked glycans, and generate glycan com-

positions. GlycanMass [134] is another web-based program

which calculates the mass of a glycan structure from its oligo-

saccharide composition.

Commercial software such as Byonic and SimGlycan are

powerful tools for the rapid detailed analysis of complex N-

and O-linked glycan structures from the LC-MS/MS data of

glycopeptides. Byonic enables search for tens or even
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hundreds of variable modification types on peptides simulta-

neously, including unanticipated or even unknown modifica-

tions. Glycopeptide search using Byonic allows the identifi-

cation of glycopeptides without prior knowledge of glycan

masses or glycosylation sites [24]. SimGlycan predicts the

structure of glycans and glycopeptides using experimental

mass spectrometric MS, MS/MS, and Multi Stage/Sequential

mass spectrometry data (MSn, n > 2); matches them with its

own database of theoretical fragments; and generates a list of

probable candidate structures. It can also analyze mass spec-

trometry data for released glycans that are underivatized,

permethylated, and reducing-end modified, and assists in re-

solving heterogeneity, branching patterns, and isobaric oligo-

saccharide structures through MSn data analysis.

Carbohydrate residues that are modified with substituents

such as sulfate, phosphate, ethanolamine, etc. can also be

identified from complex glycan structures including glycos-

aminoglycans [27].

Tools such as NetNGlyc [135] and NetOGlyc [136] are

valuable web servers that work on trained artificial neural

networks for the prediction of sites of N-linked and O-linked

glycosylation, respectively, on glycoproteins.

Concluding remarks

The field of analytical glycobiology has evolved substantially

during the past decade. Recent discoveries about key roles that

protein glycosylation plays in cellular physiology and disease

processes have drawn the attention of more researchers toward

the identification and characterization of the glycome associ-

ated with proteins. Scientific endeavors, such as (i) the pursuit

of novel disease biomarkers, (ii) recombinant glycoprotein

therapeutics, (iii) cell signaling and immunology, and (v) mi-

crobial and plant biology, necessitated the development of

high-throughput and in-depth analysis methodologies for the

characterization of protein glycosylation.

This tutorial has summarized the most common and reli-

able, yet challenging, analytical techniques prevalent in the

fields of glycomics and glycoproteomics. Emphasis has been

placed on the enrichment and fractionation of highly hetero-

geneous glycoprotein samples, enzymatic and chemical treat-

ments, high sensitive detection via derivatizations, detailed

analysis through technologically advanced instrumental

methods, and finally, the interpretation of glycan structure

on glycoproteins through valuable resources and bioinformat-

ics tools.

Implementation of advanced analytical methodologies that

can help in the hyphenation of complementary approaches

like glycomics and glycoproteomics would pave the way for

future explorations of physiological interactions associated

with glycomes and glycoproteomes.
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Table 2 A glossary of glycoscience terms used in this tutorial

Monosaccharide nomenclature Glc Glucose

GlcNAc 2-N-acetylglucosamine

Gal Galactose

GalNAc 2-N-acetylgalactosamine

Man Mannose

Fuc Fucose

NeuAc 5-N-acetylneuraminic acid

Sialic acid A general term for neuraminic acids

Hex Hexose (e.g., Glc or Gal or Man)

HexNAc N-acetylhexosamine (e.g., GlcNAc or GalNAc)

dHex Deoxyhexose (e.g., Fuc)

Other terminologies Reducing end The reducing end of a glycan is the monosaccharide with a

free anomeric carbon that is not involved in a glycosidic bond and

is thus capable of converting to the open ring form

Permethylation Derivatization of all OH to O-methyl and NH to N-methyl

Glycosidic bond Covalent bonds associated with carbohydrates

Cross-ring cleavage Fragmentation across a monosaccharide ring

Scar A nonmethylated hydroxyl group of glycan exposed by tandem MS

fragmentation of a glycosidic bond in a permethylated glycan

β-Elimination Release of O-glycosidic linkages between glycans and the β-hydroxyl

groups of serine or threonine
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