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ABSTRACT: A series of 7-substituted coumarins incorporating various glycosyl moieties were
synthesized and investigated for the inhibition of the zinc enzyme carbonic anhydrase (CA, EC o
4.2.1.1). These coumarins were very weak or ineffective as inhibitors of the housekeeping, offtarget
isoforms CA I and II, but some of them inhibited tumor-associated CA IX and XII in the low o 0.0
nanomolar range. They also significantly inhibited the growth of primary tumors by the highly

aggressive 4T1 syngeneic mouse mammary tumor cells at 30 mg/kg, constituting interesting

candidates for the development of conceptually novel anticancer drugs. Because CA IX is

overexpressed in hypoxic tumors and exhibits very limited expression in normal tissues, such compounds may be useful for
treating cancers not responsive to classic chemo- and radiotherapy.

B INTRODUCTION Scheme 1. Formation of 2-Hydroxycinnamic Acids Al and

Coumarins were recently discovered to act as inhibitors of the B1 by the CA-Mediated Hydrolysis of Coumarins A and B

metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1)."” Their OH

mechanism of action has also been elucidated, this new class of )\/’\/@(\l N N
CA inhibitors (CAIs) being prodrugs and differing from all MeO oo ©\/l m
other known inhibitors of this enzyme."” Coumarins do not ° A "0 o oo
directly interact with the metal ion from the CA active site,

which is critical both for catalysis and for inhibition with other

classes of compounds, such as sulfonamides, metal-complexing

anions, phenols, and polyamines.l_7 As shown by kinetic and

X-ray crystallographic studies, coumarins are mechanism-based

inhibitors that undergo hydrolysis under the influence of the 0" 70 rt, pH 7.4

zinc hydroxide, nucleophilically active species of the enzyme, 4-6h
with generation of substituted 2-hydroxycinnamic acids."” For
example, the natural product coumarin A or the simple ©\/l @\/
nonsubstituted derivative B (but also many of their congeners 0”0 rt pH7.4

possessing various substitution patterns at the coumarin ring)2 4-6h
acts as an effective CAI against many of the mammalian
isoforms CA I-CA XV known to date, and the real enzyme shown to bind in a similar manner to the CAs.® Occlusion of
inhibitor was demonstrated to be the hydrolyzed coumarins, Al
and BI1, formed from the original derivatives A and B,
respectively (Scheme 1).?

the CA active site entrance by hydrolyzed coumarins (i.e., cis-

or trans-2-hydroxycinnamic acids)"? or fullerenes® thus

The adducts of CA II with coumarins A and B have been constitutes a totally novel mechanism of CA inhibition, which
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characterized by X-ray crystallography.”” These studies showed started to be exploited in the design of compounds with various

the 2-hydroxycinnamic acids Al and Bl to be bound to the 29
. e, applications.”

enzyme in an unprecedented way. Indeed, these inhibitors were

observed at the rim of the enzyme active site cavity, plugging its

entrance and thus blocking the catalytic activity of the Received: April 6, 2011

enzyme."” Only very recently were some fullerene derivatives Published: November 14, 2011
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Scheme 2. Example of the Synthesis of One of the Glycosyl Coumarins Investigated in This Study (6), Starting from
Umbelliferone [7-hydroxy coumarin (4)] and Pentaacetylated Sugars
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CAIs of the sulfonamide type have been used clinically for
decades,” for various classes of diuretics and systemically acting
antiglaucoma agents, but their main drawback is their potent
inhibition of CA I and II, ubiquitous enzymes playing
important physiological roles.>*'® Thus, critical barriers to
the use of CAls as therapeutic agents are related to the large
number of isoforms in humans (i.e., 15 CAs, of which 12 have
catalytic activity), their diffuse localization in many tissues and
organs, and the lack of isozyme selectivity for many of the
presently available inhibitors of the sulfonamide and/or
sulfamate type.>*'°™"> Thus, there is a stringent need for
CAIs with an inhibition profile more selective than those of the
classical sulfonamides and their isosteres, and the coumarins
represent an interesting such class because of the fact that
several isoform-selective CAls targeting CA isoforms IX, XII,
and XIII have been reported recently by our group.">’

Recently, we have also demonstrated'*'® that potent
sulfonamide CAIs (with selectivity for the tumor-associated
isoforms IX and XII over the cytosolic ones I and II) inhibit the
growth of the primary tumors and formation of metastases in
several mouse and human breast cancer cell lines. Furthermore,
the antimetastatic effects (but not the effects on primary
tumors) have also been observed with coumarin-based CAIs."?

Here we report the discovery of 7-glycosyl coumarins as
potent and CA IX/XII-selective inhibitors. Furthermore, some
of these compounds show significant primary tumor growth
inhibitory effects in a mouse breast cancer model. Correlated
with the previous demonstration'® of their antimetastatic
effects, we claim that members of this class of compounds
possess important anticancer activity through a novel
mechanism of action that takes advantage of the fact that CA
IX and XII are overexpressed only in hypoxic tumors (which do
not respond to classical chemo- and radiotherapy) and exhibit
very limited expression in normal tissues. Thus, tumor CA IX/
XII inhibition may lead to significantly fewer side effects
compared to classical anticancer agents in clinical use.

B RESULTS AND DISCUSSION

Chemistry. 7-Hydroxy coumarin (umbelliferone) C and
some of its derivatives were shown recently’ to be selective,
though not very potent (submicromolar), inhibitors of tumor-
associated isoforms CA IX and XII, whereas they did not inhibit
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significantly CA I and II, offtarget, highly abundant CA
isoforms.” Thus, considering such derivatives as lead molecules
and continuing our interest in investigating coumarins as CAls,
we report here the synthesis and inhibition studies of a series of
derivatives that incorporate sugar moieties into their mole-
cules.'®

Glycosidic sulfonamide CAIs were explored previously by
our group and Poulsen’s group,'””'® and the presence of sugar
moieties in the molecules of such compounds was associated
with effective inhibition of physiologically relevant isoforms,
among which were also CA IX and XII. High selectivity for the
inhibition of the tumor-associated over the cytsolic isoforms has
not been, however, observed for most of the sulfonamide
glycoconjugates.'”'® However, interesting features of the sugar-
containing CAIs are related to the fact that they show good
water solubility, and because of the chemical diversity of sugars,
a wide range of different chemotypes could be generated
easily.'”"®

Thus, we applied this “sugar approach” to obtain glycosyl
conjugates of coumarins. The synthesis of the glycosyl
coumarins investigated here is exemplified in Scheme 2 for
the mannose derivative [all other derivatives investigated here
were obtained in a similar manner, starting from the
corresponding protected sugars (see Experimental Procedures
for details)]. We used 4-methyl-7-hydroxy coumarin (4-
methylumbelliferone) to prepare the sugar coumarin derivatives
because its phenol moiety can be easily derivatized,”'® leading
to novel chemotypes that have not been investigated previously
as CAIs."” Thus, pentaacetylated mannose 1 was treated with
morpholine for the selective deprotection at the 1-OH moiety,
and the key intermediate 2 transformed into the trichlor-
oacetimidate 3 by treatment with trichloroacetonitrile.
Coupling of intermediate 3 with 4-methylumbelliferone 4 led
to the tetraacetylated glycosylumbelliferone S, which was
deprotected with sodium methoxide in methanol leading to
the mannosylumbelliferone 6. Because of the participation of
the acetyl at C-2, the major compounds isolated were assigned
as a anomers for mannose and rhamnose and as f anomers for
the other sugar derivatives. This is supported by the coupling
constants of the anomeric protons in the 'H NMR spectra (see
Experimental Procedures for details). The coupling constants
reported here were also consistent with literature reports on
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analogous compounds.'® Both mono- and disaccharides were
derivatized by this procedure, leading to the glycosylumbellifer-
ones 6—12 (Table 1).

Table 1. Inhibition of hCA I, II, IX, and XII with Coumarins
4, 6—12, and A—C (as standard inhibitors) As Determined
by a Stopped-Flow, CO, Hydration Assay Method (6 h
incubation of enzyme with coumarin)'®

K
compd hCA I” hCA 11° hCA IX¢ hCA XII
4 >100 uM >100 uM 560 nM 8100 nM
6 >100 uM >100 uM 9.2 nM 43 nM
7 >100 uM >100 uM 201 nM 184 nM
8 >100 uM >100 yuM 3200 nM 53 nM
9 1.0 uM >100 uM 370 nM 54 nM
10 0.59 uM 77 uM 93 nM 8.5 nM
11 34 uM >100 uM 350 nM 105 nM
12 0.88 uM 0.59 uM 820 nM 101 nM
A 0.078 uM 0.059 uM 54500 nM 48600 nM
B 3.1 uM 92 uM >500000 nM >500000 nM
C 58.4 uM >100 uM 478 nM 754 nM

“Errors in the range of +5—10% of the reported value, from three
different determinations. bFull—length, cytosolic isoform. “Catalytic
domain, recombinant enzyme.

0O
OH o
HO_
HO O /
HO 0
O o.__0O
6 HO 2
7
Z HO
OH

Ho OH
o)
HO
OHg,

HO °

HO Owo
OH
=
12

CA Inhibition. Inhibition data for compounds 6—12
reported here and A—C as standards against four CA isozymes,
ie, hCA 1, II, IX, and XII, are listed in Table 1."° The following
structure—activity relationship (SAR) observations can be
drawn from the data in Table 1 for these glycosyl coumarin
derivatives.

(i) The cytosolic isoform hCA I (h, human enzyme) was
weakly inhibited by the parent coumarin 4 and umbelliferone
C, as well as by the mannose, rhamnose, and ribose coumarin
derivatives (6—8, respectively), with inhibition constants in the
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range of 58.4—100 uM. The glucose, galactose, xylose, and
melobiose coumarin derivatives (9—12, respectively) as well as
the unsubstituted coumarin B were medium-potency hCA I
inhibitors, with K values in the range of 0.59—3.4 uM. Only the
natural product coumarin A showed potent hCA I inhibition, as
reported previously (K; = 78 nM)."

(i) The ubiquitous, offtarget isoform hCA II was weakly
inhibited by most of the coumarins investigated here (i.e,, 4—11
and C), which showed K; values in the range of 77—100 uM.
Among the glycosyl coumarins reported here, only disaccharide
derivative 12 showed some level of hCA II inhibition (K; = 0.59
uM). The unsubstituted coumarin B is a weak hCA II inhibitor,
but the natural product A with a Kj of 59 nM is an effective
inhibitor of this isoform."

(iii) The tumor-associated isoform hCA IX was weakly or
not at all inhibited by coumarins A and B (K| values of 54.5 uM
for natural product A and >500 yM for B), whereas the simple
hydroxylated compounds 4 and C were medium-potency
inhibitors, with K; values in the range of 478—560 nM. The
glycosylated coumarins investigated here also showed very
interesting inhibitory properties against this isoform. Thus, the
ribose derivative 8 was a weak hCA IX inhibitor (K; = 3200
nM); rhamnose 7, glucose 9, xylose 11, and melibiose 12
coumarins were medium-potency inhibitors (K; values in the
range of 201—820 nM), whereas mannose 6 and galactose 10
derivatives were potent hCA IX inhibitors, with K values of 9.2
nM in the case of 6 and 93 nM in the case of 10. These
inhibition data illustrate very well one of the most salient
features of coumarin derivatives as CAls: for a congeneric series
of derivatives like those investigated here, a very large range of
activities are observed, from highly potent, low nanomolar
inhibitors to ineffective, micromolar (or millimolar) inhibitors.
As we have shown previously,"> this is primarily due to the
mechanism of inhibition with this class of compounds, because
the hydroxycinnamic acids formed by the active site-mediated
hydrolysis of the coumarin prodrug bind in an active site region
that is different in all CA isoforms."* Furthermore, very minor
variations in the original coumarin structure strongly influence
the inhibitory power of the compound, because the
hydroxycinnamic acids formed after hydrolysis may adopt cis
or trans conformations and interact with various amino acid
residues at the entrance of the enzyme active site cavity. This
type of behavior is rarely or never seen for the sulfonamide
CAlIs.?

(iv) CA XII is also present in many tumor types, being like
CA IX a transmembrane isoform, with an extracellular active
site, and involved in many physiologic and pathologic
processes.” It may be observed that coumarins A and B are
ineffective as hCA XII inhibitors, whereas the hydroxylated
simple derivatives 4 and C are weak inhibitors (K; values of
754—8100 nM). However, all glycosylated coumarins prepared
here showed a considerable inhibition of this isoform, with
inhibition constants in the range of 8.5—184 nM. CA XII was
thus the isoform most prone to inhibition with glycosyl
coumarins among the four CAs investigated here. The best
inhibitor was the galactose derivative 10, but effective inhibition
(K; < 60 nM) was also observed for the mannose 6, ribose 8,
and glucose 9 derivatives.

Effects of Glycosyl Coumarin CA IX Inhibitors on
Primary Breast Tumor Growth. CA IX is selectively
expressed in hypoxic tumors, including breast malignan-
cies,"¥">*°*™** and its presence is an independent poor
prognostic marker for patients with breast cancer, 5324
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We have shown recently that 4T1 syngeneic mouse mammary
tumors are hypoxic and overexpress CA IX and that 4T1 cells
induce biologically active CA IX in hypoxia in vitro.'
Furthermore, we have demonstrated that treatment of 4T1
tumors with certain novel ureido-substituted benzenesulfona-
mides'* results in attenuation of primary tumor growth and
metastasis in spontaneous15 and experimental metastatic
disease."*"> Novel CA IX-selective glycosyl coumarin inhibitors
were also found to limit the metastatic burden in a model of
experimental metastasis.'

To evaluate the effect of pharmacologic inhibition of CA IX
activity on primary tumor growth in vivo using the novel
glycosyl coumarin compounds described here, we treated mice
harboring established 4T'1 tumors with the glycosyl coumarin 6,
a compound that demonstrates excellent CA IX and XII
inhibitory activities in vitro, and a very good selectivity ratio for
inhibiting the tumor-associated CA isoforms compared to the
cytosolic CA isoforms, as discussed above. We implanted 4T1
cells into the mammary fat pad of mice and allowed the tumors
to establish. Subsequent to the establishment of tumor growth,
at a time when the tumors became hypoxic and expressed CA
IX,"S mice were treated with the inhibitor or equal amounts of
vehicle by intravenous administration. We observed significant
inhibition of tumor growth in mice treated with glycosyl
coumarin 6, compared to vehicle controls (Figure 1). The
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Figure 1. Treatment with the CA IX-selective glycosyl coumarin 6
attenuates the growth of mouse breast tumors. 4T1 murine mammary
tumor cells were implanted orthotopically into BALB/c mice, and
tumors were established. Treatment was initiated 11 days post-tumor
cell injection. Glycosyl coumarin 6 was administered by intravenous
injection via a lateral tail vein at a dose of 30 mg/kg. The dosing
schedule is given in the graph and involved injections every other day
for doses 1 and 2, followed by injections every third day for the
remaining doses. Tumor growth was monitored by caliper measure-
ment. The initiation and termination of treatment are indicated.
Vehicle-treated animals served as controls. n = 7 for each group.
Results are expressed as mean tumor volumes + the standard error of
the mean for each group. *P = 0.01, compared to vehicle controls.

inhibitor concentrations were well-tolerated, and no significant
weight reduction was noted in any of the treated mice for the
duration of treatment. It is noteworthy that the inhibition of
primary tumor growth observed in this study was somewhat

more modest than that seen with the sulfonamide-based

8274

inhibitors described previously.'*'> There are at least two
potential explanations for this observation. First, previous
studies used daily administration by intraperitoneal injection,
while the current set of experiments employed intravenous
injection, a clinically relevant but technically challenging mode
of administration in mice that resulted in the delivery of
substantively fewer doses of the inhibitor. Nonetheless,
statistically significant inhibition of tumor growth was achieved
in these mice, similar to previous data showing that novel CA
IX-selective glycosyl coumarin inhibitors effectively limit the
metastatic burden in a model of experimental metastasis.'®
Second, glycosyl coumarin 6 is not cytotoxic and is targeted to
CA IX, the expression of which may be variable among tumors
and depends on local levels of hypoxia, thereby exerting its
effect on a subset of the tumor cell population. Thus, selective
CA IX inhibitors such as glycosyl coumarin 6 may be best
applied in combination with conventional chemotherapy or
radiation to target hypoxic cells typically resistant to these
conventional therapies. Taken together, these data demonstrate
that one of the glycosyl coumarin inhibitors of CA IX reported
here is effective in attenuating primary tumor growth in a
model of aggressive, CA IX-positive breast cancer and provide
proof of principle for the use of CA IX-selective glycosyl
coumarins as anticancer/antimetastatic agents for the treatment
of hypoxic tumors.

B CONCLUSION

A small series of 7-glycosylated 4-methyl coumarins was
prepared and investigated for the inhibition of four
physiologically relevant CA isoforms, CA I and II (cytosolic,
offtarget isoforms) and CA IX and XII (transmembrane, tumor-
associated enzymes). These compounds were generally
ineffective or weak inhibitors of CA I and II (activities in the
micro- to millimolar range), but many of them were effective,
nanomolar CA IX and XII inhibitors. One of these compounds,
7-mannosyl-4-methylumbelliferone, significantly inhibited the
growth of primary tumors by the highly aggressive 4T1
syngeneic mouse mammary tumor cells at a concentration
similar to that used previously in a setting of experimental
metastasis.'> Such compounds thus constitute interesting
candidates for the development of conceptually novel
anticancer drugs. In conjunction with the previous demon-
stration'® of the antimetastatic effects of some of these
coumarins, we claim that members of this class of compounds
possess important anticancer activity through a novel
mechanism of action that takes advantage of the fact that CA
IX and XII are overexpressed in hypoxic tumors (which do not
respond to classical chemo- and radiotherapy) and are present
in limited amounts in normal tissues. Thus, tumor CA IX and
XII inhibition may lead to significantly fewer side effects
compared to classical anticancer agents in clinical use or the
monoclonal antibodies (mAbs) targeting CA IX, which are in
advanced (Phase III) clinical trials.”® Indeed, this mAb
(Girentuximab and its radio-iodinated variant) seems to be
highly effective in treating patients with metastatic renal
carcinomas as well as other solid tumors.**

B EXPERIMENTAL PROCEDURES

Chemistry. Peracetylated sugar derivatives, umbelliferone, sol-
vents, and other reagents were of the highest available purity (Sigma
Aldrich). CA isoforms were recombinant ones prepared in house as
reported previously."” All compounds reported here were >98% pure,
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as determined by high-performance liquid chromatography and
elemental analyses.

Synthesis of 2,3,4,6-Tetra-O-acetyl-o-mannopyranose (2). p-
Mannose pentaacetate (1) (10.25 X 107> mol) was dissolved in dry
CH,Cl, (40 mL). Morpholine (41 X 107 mol) was then added, and
the mixture was stirred under an N, atmosphere at room temperature
overnight. The mixture was then washed twice with 40 mL of 1 N HCl
and 3 X 20 mL of water, dried (MgSO,), and concentrated under
vacuum to give the 2,3,4,6-tetra-O-acetyl-D-mannopyranose (2).

Synthesis of 2,3,4,6-Tetra-O-acetyl-p-mannopyranosyl Trichlor-
oacetimidate (3). The 2,3,4,6-tetra-O-acetyl-D-mannopyranose (2)
(431 x 107 mol) was dissolved in dry CH,Cl, (38 mlL).
Trichloroacetonitrile (43.1 X 10~ mol) was added, and the mixture
was stirred under an N, atmosphere at 0 °C for 1 h. Then
diazabicyclo[5.4.0]Jundec-7-ene (DBU) (0.86 X 107> mol) was added,
and the mixture was stirred under an N, atmosphere at 0 °C for 30
min and concentrated under vacuum. The crude 2,3,4,6-tetra-O-acetyl-
p-mannopyranosyl trichloroacetimidate (3) was used without further
purification in the next step.

Synthesis of 4-Methylumbellifer-7-yl-2,3,4,6-tetra-O-acetyl-a-o-
mannopyranose (5). The crude 2,3,4,6-tetra-O-acetyl-pD-mannopyr-
anosyl trichloroacetimidate (3) (4.31 X 107> mol) was dissolved in dry
CH,Cl, (38 mL). 7-Hydroxy-4-methyl coumarin (4) (4.31 X 107
mol) and boron trifluoride metherate (BF;-Me,O) (0.86 X 107> mol)
were then added, and the mixture was stirred under an N, atmosphere
at room temperature overnight. Twenty milliliters of CH,Cl, was
further added, and the solution was washed with water, dried over
anhydrous MgSO,, and concentrated under vacuum. The crude
product (5) was then purified by crystallization from MeOH or by
silica gel column chromatography [S/5 (v/v) EP/AcOEt] to give the
expected compound in 60% yield.

Synthesis of 4-Methylumbellifer-7-yl-a-o-mannopyranoside (6).
The 2,3,4,6-tetra-O-acetyl-a-pD-mannopyranosyl coumarin (5) (0.59 X
1073 mol) was added to a solution of MeONa (0.88 X 107° mol) in
dry MeOH (S mL). The mixture was stirred at room temperature for
30 min. The product (6) was then purified by crystallization or by
silica gel column chromatography [5/S (v/v) EP/AcOEt]. The
reaction is quantitative.

4-Methylumbellifer-7-yl-a-D-mannopyranoside (6): 51%
overall yield; R, = 0.24 (9/1 CH,CL,/MeOH); mp 132-134 °C; 'H
NMR (400.13 MHz, DMSO-dg) & 2.4 (d, 3H, ] = 0.8 Hz), 3.33 (m,
1H), 3.47 (m, 1H), 3.51 (t, 1H, ] = 9.4 Hz), 3.57 (m, 1H), 3.69 (dd,
1H, J = 92 Hz), 3.86 (d, 1H, J = 1.2 Hz), 5.53 (d, 1H, ] = 1.6 Hz),
624 (d, 1H, J = 1.2 Hz), 7.09 (d, 1H, J = 2.4 Hz), 7.11 (dd, 1H, ] =
8.8, 2.4 Hz), 7.70 (d, 1H, ] = 8.8 Hz); >*C NMR (100 MHz, DMSO-
d) 8 18.82, 61, 66.95, 70.43, 71, 76.06, 99.48, 104.31, 112.38, 114.38,
114.79, 127.14, 160.80, 159.83, 155.02, 154.05; MS (ESI*) m/z 339.24
[M + HJ* 36129 [M + Na]*, 699.37 [2M + Na]*. Anal. Calcd for
C¢H,305: C, 56.80; H, 5.36. Found: C, 56.84; H, 5.33.

4-Methylumbellifer-7-yl-a-L.-rhamnopyranoside (7): 58%
overall yield; R, = 0.4 (9/1 CH,ClL,/MeOH); mp 207—209 °C; 'H
NMR (400.13 MHz, CDCl,) § 1.14 (d, 3H, ] = 6.4 Hz), 2.35 (d, 1H, J
= 1.2 Hz), 3.86 (q, 1H, J = 5.3 Hz), 5.10 (t, 1H, J = 10 Hz), 5.42 (d,
1H, J = 3.6 Hz), 5.44 (t, 1H, ] = 2.3 Hz, H,), 545 (t, 1H, ] = 2.2 Hz),
6.13 (d, 1H, J = 0.8 Hz), 7.02 (d, 1H, J = 2.4 Hz), 7.06 (dd, 1H, J =
8.8,2.4 Hz), 7.47 (d, 1H, ] = 8.8 Hz); *C NMR (100 MHz, CDCl,) §
21.05, 21.11, 69, 69.27, 69.51, 70.1, 95, 104.26, 113.23, 113.61, 125,
152.52, 155.10, 158.61, 170.15, 170.31; MS (ESI*) m/z 345.31 [M +
Nal*, 667.39 [2M + Na]*. Anal. Calcd for C;H,30,: C, 59.62; H,
5.63. Found: C, 59.58; H, 5.65.

4-Methylumbellifer-7-yl-g-p-ribopyranoside (8): 60% overall
yield; Ry = 045 (8/2 AcOEt/MeOH); 'H NMR (400.13 MHz,
DMSO-dg) & 2.38 (d, 3H, J = 1.2 Hz), 3.91 (m, 1H), 4.03 (m, 1H),
470 (t, 1H, J = 5.4 Hz), 5.07 (d, 1H, ] = 6 Hz), 5.61 (d, 1H, ] = 2 Hz),
623 (s, 1H), 6.77 (d, 1H, J = 2 Hz), 6.96 (dd, 1H, ] = 8.4, 2 Hz), 7.68
(d, 1H, J = 8.4 Hz); '*C NMR (100 MHz, DMSO-dy) & 18.09, 62.518,
70.40, 74.46, 84.81, 10327, 105.05, 111.55, 113.36, 113.84, 126.46,
153.32, 155.3, 159.32, 160.05; MS (ESI*) m/z 331.26 [M + Nal*,
639.25 [2M + Na]*. Anal. Calcd for C;sH,s0,: C, 58.44; H, 5.23.
Found: C, 58.40; H, 5.23.
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4-Methylumbellifer-7-yl-g-p-glucopyranoside (9): 55% over-
all yield; Ry = 0.39 (8/2 CH,Cl,/MeOH); mp 210-212 °C; 'H NMR
(400.13 MHz, DMSO-dg) 6 2.41 (s, 3H), 3.17 (dd, 1H, J = 142, 8.8
Hz), 3.29 (dd, 2H, ] = 11.9, 7.4 Hz), 3.40—3.53 (m, 2H), 5.08 (d, 1H,
J = 5.3 Hz), 625 (s, 1H), 7.03 (d, 1H, J = 2.4 Hz), 7.05 (dd, 1H, ] =
9.2, 2.4 Hz), 7.71 (d, 1H, J = 9.2 Hz); '*C NMR (100 MHz, DMSO-
dg) 5 18.35, 60.86, 69.85, 73.35, 76.70, 77.36, 100.21, 103.42, 111.92,
113.60, 114.29, 126.63, 153.56, 154.61, 160.33, 160.37; MS (ESI*) m/
z 361.38 [M + Na]*. Anal. Calcd for C;;H,;O4: C, 56.80; H, 5.36.
Found: C, 56.85; H, 5.41.

4-Methylumbellifer-7-yl-g-p-galactopyranoside (10): 64%
overall yield; Ry = 035 (8/2 CH,Cl,/MeOH); mp 248 °C; 'H
NMR (400.13 MHz, DMSO-d,) & 2.41 (s, 3H), 3.44 (ddd, 1H, [ = 9.2,
5.5, 3.3 Hz), 3.48—3.65 (m, 3H), 3.68 (t, 1H, ] = 6.3 Hz), 3.72 (t, 1H,
J=3.8Hz),4.99 (d, 1H, ] = 7.7 Hz), 6.25 (s, 1H), 7.02 (d, 1H, J = 2.4
Hz), 7.05 (dd, 1H, ] = 9.1, 2.4 Hz), 7.70 (d, 1H, ] = 9.1 Hz); *C NMR
(100 MHz, DMSO-dg) & 18.15, 60.39, 68.13, 69.87, 73.22, 75.71,
100.60, 103.15, 112.24, 112.85, 114.79, 126.17, 153.89, 154.75, 160.19,
160.19; MS (ESI*) m/z 361.35 [M + Na]*. Anal. Calcd for C;¢H,4Og:
C, 56.80; H, 5.36. Found: C, 56.75; H, 5.31.

4-Methylumbellifer-7-yl-g-p-xylopyranoside (11): 45% over-
all yield; Ry = 0.58 (8/2 CH,ClL,/MeOH); mp 223 °C; 'H NMR
(400.13 MHz, DMSO-d;) & 2.40 (s, 3H), 3.27 (d, 2H, J = 2.3 Hz),
3.40 (m, 2H), 3.76 (m, 1H), 5.12 (d, 1H, ] = 3.9 Hz), 6.25 (s, 1H),
7.01 (d, 1H, J = 2.4 Hz), 7.03 (dd, 1H, ] = 9.2, 2.4 Hz), 7.70 (d, ] = 9.2
Hz, 1H); *C NMR (100 MHz, DMSO-d,) & 18.13, 62.73, 69.27,
72.95, 76.32, 100.32, 102.74, 112.74, 113.36, 114.13, 126.47, 153.32,
155.3, 159.32, 160.05; MS (ESI*) m/z 331.32 [M + Na]". Anal. Calcd
for C;sH;40,: C, 58.44; H, 5.23. Found: C, 58.49; H, 5.20.

4-Methylumbellifer-7-yl-g-p-melibiopyranoside (12): 47%
overall yield; Ry = 0.1 (8/2 AcOEt/MeOH); mp 103—105 °C; 'H
NMR (400.13 MHz, DMSO-dy) 6 2.41 (s, 3H), 3.18 (dd, 1H, J = 25.6,
13.2 Hz), 3.32 (m, 3H), 3.40 (dd, 2H, J = 10.7, 6.3 Hz), 3.55 (m, 6H),
4.65 (d, 1H, ] = 3.4 Hz), 5.00 (d, 1H, J = 7.3 Hz), 6.26 (s, 1H), 7.04
(d, 1H,J = 2.4 Hz), 7.10 (dd, 1H, ] = 8.8, 2.4 Hz), 7.71 (d, 1H, ] = 8.8
Hz); *C NMR (100 MHz, DMSO-dy) & 20.66, 59.99, 60.08, 68.25,
68.35, 69.88, 70.09, 71.14, 74.32, 75.05, 77.26, 98.89, 100.02, 104.67,
111.38, 112.53, 114.23, 126.55, 154.17, 160.28, 166.57, 173.79; MS
(ESI") m/z 523.16 [M + Na]*. Anal. Calcd for C,,H,30;: C, 52.80;
H, 5.64. Found: C, 52.75; H, S.61.

CA Inhibition. An Applied Photophysics stopped-flow instrument
has been used for assaying the CA-catalyzed CO, hydration activity.
Phenol red (at a concentration of 0.2 mM) has been used as indicator,
working at the absorbance maximum of 557 nm, with 20 mM Hepes
(pH 7.5) as a buffer and 20 mM Na,SO, (for maintaining a constant
ionic strength), following the initial rates of the CA-catalyzed CO,
hydration reaction for a period of 10—100 s. The CO, concentrations
ranged from 1.7 to 17 mM for the determination of the kinetic
parameters and inhibition constants. For each inhibitor, at least six
traces of the initial 5—10% of the reaction have been used for
determining the initial velocity. The uncatalyzed rates were
determined in the same manner and subtracted from the total
observed rates. Stock inhibitor solutions (0.1 mM) were prepared in
distilled—deionized water, and dilutions of up to 0.01 nM were made
thereafter with distilled—deionized water. Inhibitor and enzyme
solutions were preincubated together for 15 min to 72 h at room
temperature (15 min) or 4 °C (all other incubation times) prior to the
assay, to allow the formation of the E—I complex or the eventual active
site-mediated hydrolysis of the inhibitor. Data reported in Table 1
show the inhibition after incubation for 6 h, which led to the
completion of the in situ hydrolysis of the coumarin and formation of
the 2-hydroxycinnamic acids."> The inhibition constants were
obtained by nonlinear least-squares methods using PRISM 3, as
reported previously,"” and represent the mean from at least three
different determinations. CA isofoms were recombinant ones obtained
in house as reported previously."”

Pharmacological Inhibitors. For in vivo studies, the glycosyl
coumarin 6 was dissolved in a 37.5% PEG400/12.5% ethanol/50%
saline mixture prior to injection. Solutions were heated gently (~40
°C) to completely dissolve the compound. Solutions of the inhibitor
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were prepared in batches, distributed into single-use aliquots, and
stored frozen at —80 °C prior to being used. Fresh aliquots were
thawed daily just before being administered. The inhibitor and vehicle
were administered by intravenous injection via a lateral tail vein using a
volume of 200 uL for a 20 g mouse. Specific dosing schedules are
described in Figure 1.

Syngeneic Orthotopic Breast Tumor Model. All animal
studies and procedures were performed in accordance with protocols
approved by the Institution Animal Care Committee at the BC Cancer
Research Centre and the University of British Columbia. 4T1 cells (1
X 10° cells/mouse) were implanted orthotopically into the fourth
mammary fat pad of 7—9-week-old female BALB/c mice, and tumor
growth rates were calculated from caliper measurements using the
modified ellipsoid formula (LxW?)/2 as described previously.'>>
After initial implantation of cells, tumors were allowed to establish, and
then treatment was initiated. Tumors were measured, and animals
were mixed just prior to the onset of treatment to ensure a similar
average tumor volume between the treatment groups. Glycosyl
coumarin 6 was administered by intravenous injection via a lateral
tail vein at a dose of 30 mg/kg. The dosing schedule involved
injections every other day for doses 1 and 2, followed by injections
every third day for the remaining doses. Caliper measurements were
taken three times per week. n = 7 for each group. Data were subjected
to statistical analysis using the Data Analysis ToolPack in Excel. Two-
tailed P values were calculated using a Student’s t test. Data were
considered significant for P < 0.0S.
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