
Glycobiology studies the structure, biosynthesis and 
biology of glycans, which are widely distributed in nature. 
Most glycans are found on the outermost surfaces of 
cellular and secreted macromolecules and are remark-
ably diverse. Simple and highly dynamic protein-bound 
glycans are also abundant in the nucleus and cytoplasm 
of cells, where they exert regulatory effects. In fact, in 
addition to forming important structural features, the 
sugar components of glycoconjugates modulate or 
mediate a wide variety of functions in physiological and 
pathophysiological states1. Glycoproteins and polysac-
charides also have important functions in bacterial cells, 
and glycoproteins have central roles in the biology of 
most viruses.

Glycoconjugates are formed by the addition of sugars 
to proteins and lipids; 17 monosaccharides commonly 
found in mammalian glycoconjugates are shown in 
Supplementary Table 1 (ref.2). A vast number of naturally 
occurring sugars can be combined to create a variety of 
unique glycan structures on lipid and protein molecules 
that modulate their function. Multiple enzymatic site 
preferences, as well as the use of stereochemical α or β 
conjugations, create further diversity in where and how  
these sugars are linked to each other. In fact, altogether, these  
features imply the potential existence of ~1012 differ-
ent branched glycan structures3. Protein glycosylation 
includes the addition of N-linked glycans, O-linked glycans, 

phosphorylated glycans, glycosaminoglycans and 
glycosylphosphatidylinositol (GPI) anchors to peptide back-
bones as well as C-mannosylation of tryptophan residues 
(fIG. 1). Glycolipids are formed through the addition of 
sugars to lipids; this type of glycoconjugate includes 
glycosphingolipids (GSLs)4,5 (fIG. 1). Glycosylation of pro-
teins and lipids occurs in the endoplasmic reticulum 
(ER) and Golgi apparatus, with most of the terminal 
processing occurring in the cis-, medial- and trans-Golgi 
compartments. In these organelles, glycosyltransferases 
and glycosidases form carbohydrate structures in a series 
of steps that are controlled by substrate availability, 
enzyme activity, levels of gene transcription and enzyme 
location within the organelles (fIG. 2). In fact, the glycome 
of a particular cell reflects its unique gene-expression 
pattern, which controls the levels of the enzymes respon-
sible for glycoconjugation. Unlike the genome, exome or 
proteome, the glycome is produced in a non-templated 
manner and is intricately controlled at multiple levels in 
the ER and Golgi apparatus.

In this Review, we discuss fundamental concepts in 
glycobiology and integrate these with recent advances 
in understanding the key roles of the glycome in health 
and disease. We review how glycosylation patterns are 
altered in multiple human diseases, including congen-
ital disorders of glycosylation (CDGs) as well as auto-
immune, infectious and chronic inflammatory diseases, 
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and cancer. We also provide specific examples of how 
an improved understanding of abnormal glycosyla-
tion in various diseases might offer new diagnostic 
options and/or targets for glycan-mediated therapeutic 
interventions.

Main types of glycosylation in humans

N-linked glycosylation. Many proteins are modified 
by N-glycosylation, which refers to the attachment of 
N-acetylglucosamine (GlcNAc) to the nitrogen atom 
of an Asn side chain by a β-1N linkage. These Asn-linked 
glycoconjugates contain a GlcNAc2 mannose (Man)3 
core, to which a variable number of other monosaccha-
rides can be added or removed (fIGS 1,2). These additions 
include, for example, galactosylation, GlcNAclyation, 
sialylation and fucosylation, and they determine whether 
the final structure is classed as a high-mannose N-glycan, 
a hybrid N-glycan or a complex N-glycan (fIG. 2). N-glycans 
are found in most living organisms and have a crucial 
role in regulating many intracellular and extracellular 
functions. N-glycosylation depends on the formation 
of a lipid precursor in which GlcNAc and Man form 
a branched carbo hydrate structure that is attached to 
dolichol phosphate (Dol-P) on the cytoplasmic side of 
the ER6. This lipid precursor is then flipped to face the 
ER lumen, where Man and glucose units are added to 
form a 14-sugar structure — Glc3Man9GlcNAc2 (fIG. 2). 
Following completion of the Dol-P–carbohydrate struc-
ture, an oligosaccharyltransferase adds the carbohydrate 
chain to a protein at an Asn-X-Ser/Thr site (in which 
X denotes any amino acid except for Pro); the nascent 
carbohydrate–protein conjugate undergoes further pro-
cessing in the ER, which usually involves removal of the 
glucose residues as part of a quality-control process. 
The structure then moves to the Golgi apparatus (that 
is, the cis-Golgi), where the carbohydrate structures are 
trimmed further by a series of specific mannosidases 
before being transferred to the medial-Golgi for matu-
ration. It is within the medial- and trans-Golgi compart-
ments that hybrid and complex N-glycans are produced 

through the addition of GlcNAc, galactose, sialic acid 
and fucose sugars6 (fIG. 2).

O-glycosylation. Glycosylation can occur on amino acids 
with functional hydroxyl groups, which are most often 
Ser and Thr. In humans, the most common sugars linked 
to Ser or Thr are GlcNAc and N-acetylgalactosamine 
(GalNAc)7 (fIG. 1). GalNAc-linked glycans, often called 
mucin-type O-glycans, are abundant on many extracel-
lular and secreted glycoproteins8,9, including mucins, 
which form a crucial interface between epithelial cells 
and the external mucosal surfaces of the body. Mucins 
are characterized by a variable number of tandem repeats 
with a high content of Pro, Ser and Thr, which creates 
many sites for O-glycosylation. Moreover, these sites 
often have extended O-glycan cores that create a gel-like 
substance thought to protect both the glycoproteins and 
cellular surfaces from external stress, microbial infec-
tion and self-recognition by the immune system. This 
class of O-glycans contains six major basic core structures 
(that is, cores 1–4, terminal GalNAc (Tn) and sialyl-Tn 
antigens) and is integral, along with other O-linked gly-
coconjugates, to the classi fication of blood-group anti-
gens (Box 1). Mucin-type O-glycan synthesis is initiated 
by polypeptide GalNAc transferases (GALNTs)7. These 
GALNTs differ in their specificity for amino acid motifs, 
although they are often promiscuous, which adds a level 
of regulation to how and where O-glycans are attached. 
Non-templated sequential addition of glycans to the ini-
tial GalNAc gives rise to a diverse set of carbohydrate 
structures that are often highly clustered on certain glyco-
proteins, including mucins and human immuno-
globulin A1 (IgA1). These sugars are added as the protein  
moves through the cis-, medial- and trans-Golgi com-
partments and, unlike N-glycans, pre-processing and 
post-processing that trims existing sugar structures does 
not occur. Instead, the glycopeptide O-glycan chains 
are modified by distinct glycosyltransferases that can 
expand the existing structure with galactose, GlcNAc, 
sialic acid and, in some instances, fucose7.

GlcNAc linked to Ser or Thr is typically found on 
intracellular glycoproteins present in nuclear, mitochon-
drial and cytoplasmic compartments (fIG. 1). Unlike the 
mucin-type O-glycans, which are GalNAc-linked, addi-
tion of GlcNAc does not typically occur in the Golgi 
apparatus and is not extended; this synthesis is regulated 
through O-linked GlcNAc (O-GlcNAc) transferases 
(OGTs) and O-GlcNAcases (OGAs)10. Although differ-
ent forms of these enzymes exist depending on the sub-
cellular compartment, they all perform the same rapid 
cycle of addition and removal of GlcNAc from protein 
substrates. This dynamic process seems to be unique 
to this glycosylation motif and is thought to regulate 
many cellular functions, including cellular metabolism. 
Moreover, O-GlcNAc modification competes with pro-
tein phosphorylation at Ser and Thr residues, adding to 
the complexity of regulatory circuits11,12. This functional 
role of O-glycosylation can be controlled by the expres-
sion levels of the enzymes involved, as well as substrate 
concentrations. For the purposes of this Review, other 
glycoprotein conjugates will not be discussed in detail 
(reviewed in refS4,13–15).

Key points

•	Glycosylation is critical for physiological and pathological cellular functions; 

advances in analytical techniques have driven progression in the field of glycobiology 

over the past decade.

•	Congenital disorders of glycosylation have provided considerable insight into basic 

mechanisms underlying the associations of specific glycoconjugates with disease 

phenotypes.

•	Interactions between immune cells that are mediated by cell surface molecules and 

drive cellular activation are regulated by the glycosylation motifs of membrane-bound 

glycoconjugates and their binding to sugar-specific receptors.

•	Cancers often exhibit oncofetal phenotypes that are reflected in the nature of their 

glycoconjugates; these changes in glycosylation drive metastatic properties, 

inhibition of apoptosis and resistance to chemotherapy.

•	The pathogenesis of many autoimmune diseases, such as immunoglobulin A (IgA) 

nephropathy, systemic lupus erythematosus and inflammatory bowel disease, 

involves abnormal glycosylation of one or more glycoproteins; diabetes involves 

abnormal O-linked N-acetylglucosamine-mediated signalling and enhanced 

glycation of multiple proteins.

•	Immunoglobulin glycosylation controls the effector functions of antibodies, which 

creates opportunities for the therapeutic application of glycoengineering.
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Glycosphingolipids. GSLs comprise a sphingolipid to 
which a glycan is attached at the C1 hydroxyl position 
of a ceramide; they are one of the most abundant glyco-
lipids in humans and are typically found in the lipid 
bilayers of cellular membranes16 (fIG. 1). GSL glycosyl-
ation starts with the addition of glucose or galactose 
to the lipid moiety at the cytoplasmic side of the ER  
or the Golgi apparatus, but the structure is then flipped 
to the luminal side for further processing. The enzymes 
that initiate GSL glycosylation are specific for lipids, 
but further processing of the carbohydrate chain can be 
performed by more general glycosyltransferases. The 

distribution of different types of GSLs is controlled by 
functional competition between multiple glycosyltrans-
ferases16. GSLs perform critical cellular functions asso-
ciated with the formation of lipid rafts, and their glycan 
composition imparts specific GSL properties16.

Proteoglycans and glycosaminoglycans. Proteoglycans  
are glycoproteins in the extracellular matrix that, 
in addition to containing canonical N-glycans and 
O-glycans, are characterized by the presence of long 
sugar repeats attached via O-linked glycosylation 
motifs17. These extended sugar chains are termed 
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Fig. 1 | Major types of glycosylation in humans. Glycans can be covalently attached to proteins and lipids to form 

glycoconjugates; glycans in these compounds are classified according to the linkage to the lipid, glycan or protein 

moieties. Glycoproteins consist of glycans and glycan chains linked to nitrogen and oxygen atoms of amino acid residues 

and are thus termed N-glycans and O-glycans, respectively. N-glycans consist of N-acetylglucosamine (GlcNAc) attached 

by a β1-glycosidic linkage to the nitrogen atom of the amino group of Asn (N) at the consensus glycosylation motif 

Asn-X-Ser/Thr (in which X denotes any amino acid except for Pro). These branched and highly heterogeneous N-glycan 

structures consist of a core glycan containing two GlcNAc residues and three mannose (Man) residues. Perhaps the most 

diverse form of protein glycosylation is O-glycosylation, in which glycans attach to the oxygen atom of the hydroxyl groups 

of Ser (S) or Thr (T) residues. O-glycans can be further subclassified on the basis of the initial sugar attached to the protein 

and the additional sugar structures added to the initial glycan. For example, mucin-type O-glycosylation denotes that the 

initial glycan is N-acetylgalactosamine (GalNAc); mucin-type glycans can be further classified on the basis of the glycans 

attached to the initial GalNAc6. Other types of O-glycans, such as O-linked fucose (Fuc) and O-linked Man, often occur in 

specific proteins or protein domains, such as epidermal growth factor (EGF) repeats, thrombospondin type I repeats (TSR) 

or dystroglycan. N-glycans and O-glycans are often capped with negatively charged sialic acid. O-GlcNAc is a unique type 

of O-glycosylation that is synthesized by O-GlcNAc transferase; it occurs in the cytosol and nucleus. Proteoglycans 

represent a major class of glycoproteins that are defined by long glycosaminoglycan (GAG) chains attached to proteins 

through a tetrasaccharide core consisting of glucuronic acid (GlcA)–galactose (Gal)–Gal–xylose (Xyl); this carbohydrate 

core is attached to the hydroxyl group of Ser at Ser-Gly-X-Gly amino acid motifs. Proteoglycan GAGs can be further 

classified according to the number, composition and degree of sulfation of their repeating disaccharide units; common 

GAGs include heparan sulfate, chondroitin sulfate and dermatan sulfate. Glycosylphosphatidylinositol (GPI)-anchored 

glycoproteins represent another major class of glycoconjugates. These glycoproteins are linked at the carboxyl terminus 

through a phosphodiester linkage to phosphoethanolamine attached to a trimannosyl-nonacetylated glucosamine 

(Man3-GlcN) core; the GlcN residue is linked to phosphatidylinositol, which is embedded in the cell membrane. 

Glycosphingolipids are a class of glycoconjugate in which glycans, such as Gal or glucose (Glc), are attached to cellular 

membrane lipids. Another major class of glycans is represented by GAGs that are not attached to protein cores, such as 

hyaluronan, which is synthesized at the plasma membrane by sequential addition of GlcA and GlcNAc. IdoA , iduronic acid. 

Adapted with permission from ref.277, Springer Nature Limited and from ref.278, Stanley , P. Golgi glycosylation. Cold Spring 

Harb. Perspect. Biol. 3, a005199 (2005), with permission from Cold Spring Harbor Laboratory Press.
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glycosaminoglycans and contribute to a substan-
tial proportion of the proteo glycan’s molecular mass. 
Whereas N-glycans typically include 5–12 monosac-
charides, a glycosaminoglycan motif can easily con-
tain more than 80 sugars (for example, keratan sulfate 
is a poly-N-acetyllactosamine chain that contains 
up to 50 disaccharide units)16. These long chains are 
constructed through disaccharide repeats formed by 

GlcNAc or GalNAc, combined with an uronic acid 
(that is, glucuronic or iduronic acid) or galactose. 
Glycosaminoglycans are functionally diverse and 
include heparan sulfate, chondroitin sulfate, keratan 
sulfate and hyaluronan18. Glycosaminoglycans are cru-
cial to the formation of the glycocalyx, an essential struc-
ture for the maintenance of the cell membrane that also 
functions as a reservoir for sequestered growth factors18.
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residues  are sequentially removed by two α-glucosidases (α-Glc I–II) and an initial Man residue is removed by the ER 

α-mannosidase (ER α-Man). After a quality-control checkpoint, the glycoprotein moves to the Golgi apparatus for 

additional trimming by α-mannosidase I and II (α-Man I–II) and further glycan modifications. A cis-to-trans distribution  

of glycosidases and transferases — GlcNAc-transferase I–IV (GnT-I–IV), β1,4 galactosyltransferases (Gal-T), 

α2,3 sialyltransferase (α2,3, Sialyl-T) and α2,6 sialyltransferase (α2,6 Sialyl-T) — facilitates further processing by these 

carbohydrate-modifying enzymes to create a plethora of N-glycoforms that often terminate with sialic acid moieties.  
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Extrinsic glycosylation events. Extrinsic glycosylation is 
the process by which soluble glycan-modifying enzymes, 
such as glycosyltransferases that circulate in the blood, 
conjugate a monosaccharide to an existing sugar struc-
ture extracellularly19–21. Common acceptor structures 
for extrinsic glycosylation on mammalian glycoconju-
gates are galactose (Gal)(β3)–GlcNAc, Gal(β3)–GalNAc, 
Gal(β4)–GlcNAc and GalNAc; β3 and β4 represent two 
different linkage positions on the conjugating sugar19–21. 
Circulating glycosyltransferases are generated by cleav-
ing the soluble portion of the membrane-associated 
enzyme and releasing it into the circulation; these soluble 
enzymes most often originate from liver hepatocytes and 
platelets. Platelets also contribute to extrinsic glycosyla-
tion processes by  providing activated sugar intermediates, 
such as activated sialic acid, galactose and/or fucose19–21. 
Extrinsic glycosylation processes can generate Lewis and 
sialyl Lewis antigens, which are fucosylated carbohydrate 
moieties, as well as Tn and sialyl-Tn antigens, which are 
O-glycans with a terminal GalNAc or sialylated GalNAc, 
respectively. These glycosylation motifs have an impor-
tant role in regulating leukocyte trafficking during 
inflammatory responses and in mediating the interac-
tions between haematopoietic cells and their progenitors 
in the bone marrow22.

Congenital disorders of glycosylation

Genetic defects in glycosylation are often embryonic 
lethal, underlying the vital role of glycans23–32; CDGs are 
classified as type I and type II32. Type I CDGs are caused 
by abnormalities in the formation of the oligosaccharide 
structure on the glycolipid precursor before the attach-
ment to the Asn residue of a protein (fIG. 2). Type II 
CDGs involve defects in the control of the N-linked 
branching structure on the nascent glycoprotein30,31.

CDGs are typically severe in their manifestations, 
as they affect many muscular, developmental and 
neuro logical functions (TABLe 1). In fact, these disor-
ders were originally discovered in children with pre-
viously unexplained multi-system disorders; detection 
of under-glycosylated serum transferrin in the affected 
children led to the identification of defective glyco-
sylation as the cause for the disease33. The test used 
in the diagnosis of CDGs was originally devised to 
detect alcoholism on the basis of the hyposialylation of 
liver-derived serum transferrin in patients with alcohol-
ism34. In some CDGs, the defect affects a single glycosyl-
ation step or pathway, whereas in other CDGs several 
pathways are affected. Depending on where the defect in 
glycosylation occurs, CDG phenotypes can result from 
altered activation, presentation or transport of sugar 
precursors; altered expression and/or activity of glyco-
sidases or glyco syltransferases; and altered expression 
and/or activity of proteins that control the glycosylation 
machinery or maintain the Golgi apparatus.

N-glycan-related CDGs. PMM2-CDG is caused by 
mutations in PMM2, which encodes phosphoman-
nomutase 2 (PMM2) and is the most common form of 
CDG; it can present with a neurological or multi-system 
phenotype29,35. PMM2 converts Man-6-phosphate 
(Man-6-P) to Man-1-P, a precursor for the synthesis 
of GDP-(Dol-P-Man). In turn, these compounds are 
substrates for the mannosyltransferases involved in the 
synthesis of the lipid-bound precursor of N-glycans, 
Glc3Man9GlcNAc2-P-P-Dol29,35. The type of gene muta-
tion affects the disease severity, which ranges from an 
embryonic lethal defect if the enzyme is completely inac-
tive to mild cognitive impairment if the enzyme is still 
partially active29,35. A long-term follow-up of 75 patients 
with PMM2-CDG indicated that there were no signif-
icant changes in the overall clinical severity over time 
and that some biochemical variables spontaneously 
improved35. Although there are currently no therapeutic 
options for patients with PMM2-CDG, new treatment 
strategies that involve the use of pharmacological chap-
erones to rescue PMM2 loss-of-function mutations are 
being explored36,37. This strategy is based on the ration-
ale that increasing the stability of mutant enzymes, 
which often exhibit destabilizing and oligomerization 
 properties, would improve the enzyme activity.

MPI-CDG, the second most common CDG, is 
caused by mutations in MPI, which encodes Man-6-P 
isomerase29. This enzyme is responsible for the intercon-
version of Man-6-P and fructose-6-phosphate. Man-6-P 
can also be generated directly by hexokinase-catalysed 
phosphorylation of Man, a pathway that is functional 
in patients with MPI-CDG. Thus, Man dietary supple-
mentation is an effective treatment for MPI-CDG and 
is well tolerated27,38.

O-glycan-related CDGs. Congenital muscular dys-
trophies, such as Walker–Warburg syndrome and 
muscle-eye-brain disease, involve abnormal Man 
O-glycosylation, primarily on α-dystroglycan39. 
O-Mannosylation of α-dystroglycan and similar pro-
teins is initiated in the ER by the attachment of Man to 

Box 1 | Blood-group sugars can be immunogenic

Many blood-group antigens on erythrocytes 

are glycans conjugated to lipids or proteins. 

The ABO(H) blood-group antigens were 

discovered in the early 20th century on the 

basis of the existence of antibodies in some 

individuals that agglutinated red blood cells 

from other individuals. Follow-up studies 

revealed that these antibodies recognized 

glycan epitopes on the cell surface of red blood 

cells that were also expressed in other cells of 

the same individual. These studies established for the first time that glycans can be 

antigenic. The ABO(H)-associated glycan epitopes are determined by the inheritance 

of glycosyltransferase	genes	in	ABO, FUT1 and FUT2 loci. Group O individuals  

express the H antigen, the precursor to A and B antigens. Group A individuals have 

α1,3-N-acetylglucosamine (GalNAc) attached to the galactose residue of the H antigen, 

whereas Group B individuals have α1,3-Gal. Additional blood-group antigens have been 

described, and many contain glycan epitopes such as Lewis antigen. Compatibility of 

ABO(H) and other antigens between donor and recipient is necessary for a successful blood 

transfusion268,269. Some blood-group antigens affect the binding of bacteria and viruses to 

host cell surfaces and represent risk factors in chronic inflammatory diseases270–273. For 

example, the blood-group O phenotype is associated with disease severity in patients 

infected with Vibrio cholerae274. Human noroviruses, which cause sporadic and epidemic 

gastroenteritis, also selectively bind ABO(H) and Lewis blood-group antigens275; some viral 

strains recognize the A and/or B and H antigens, whereas others recognize only the Lewis 

and/or H antigens. Thus, susceptibility to these viruses is influenced by the host’s 

blood-group antigens and the sequence variations of the capsid protein276.

GalFuc GalNAc GlcNAc

H antigen A antigen
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a Ser or Thr residue, a reaction that is catalysed by the 
O-mannosyltransferase complex that contains POMT1 
and POMT2 enzymes24,29. The Man linked to Ser or 
Thr is then further modified by multiple enzymes in 
the Golgi apparatus to generate an elongated glycan. 
The resultant polymeric glycan, matriglycan, is neces-
sary for the binding of laminin and other extracellular 
matrix proteins to α-dystroglycan24,29. The disruption of 
this interaction alters the properties of cell membranes  
and leads to the development of muscular dystro-
phy. Clinical manifestations of α-dystroglycanopathy 
frequently include alterations in the central nervous 
 system and ocular disease manifestations, in addition to 
 muscular dystrophy.

NGLY1 deficiency. NGLY1 deficiency is an autosomal 
recessive disorder of the ER-associated protein deg-
radation pathway. The level of protein loss (that is, 
loss of PNGase, encoded by NGLY1) correlates with 

neuro logical dysfunction, abnormal tear production 
and liver disease40; a nonsense mutation is associated 
with a particularly severe disease phenotype. PNGase is 
responsible for the translocation of misfolded proteins 
across the ER membrane into the cytosol for subsequent 
degradation by the proteasome41. A Drosophila model of 
PNGase deficiency led to the identification of various 
cellular processes associated with PNGase deficiency, 
including disruption of mitochondrial physiology, 
reduced cellular respiratory capacity and altered regu-
lation of bone morphogenetic protein42–44. These new 
insights might lead to novel therapeutic approaches for 
NGLY1-CDG.

Current and future therapies for CDG. The design or 
improvement of a diagnostic test, or therapeutic option, 
for a CDG requires a clear understanding of its patho-
physiological mechanisms. Dietary supplementation, 
such as Man therapy in MPI-CDG, can be very helpful as 

Table 1 | Selected examples of congenital disorders of glycosylation

CDGa or 
syndrome

Defective gene and protein Affected pathway Phenotypic outcome

ALG1-CDG ALG1, β1,4-mannosyltransferase N-glycan biosynthesis; ALG1 catalyses the 
first mannosylation step in the biosynthesis of 
the lipid-linked precursor oligosaccharide for 
N-glycosylation

Intellectual disability , hypotonia, seizures, 
microcephaly , infections and early death

B4GALT1-CDG B4GALT1, β1,4-galactosyltrans-
ferase 1

Two alternative transcripts: one encodes 
a trans-Golgi-resident protein involved in 
glycoconjugate biosynthesis whereas the 
second transcript encodes a protein that 
forms soluble lactose synthase

Intellectual disability , developmental 
delay , hypotonia, macrocephaly , 
Dandy–Walker malformation, coagulopathy 
and myopathy

COG7-CDG COG7, conserved oligomeric 
Golgi complex subunit 7

Retrograde transport from the Golgi complex 
to the endoplasmic reticulum; involved in 
multiple glycosylation pathways

Hypotonia, microcephaly , growth 
retardation, adducted thumbs, failure to 
thrive, cardiac anomalies, wrinkled skin and 
early death

MPI-CDG MPI, mannose-6-phosphate 
isomerase

Conversion of fructose-6-phosphate and 
mannose-6-phosphate; involved in multiple 
glycosylation pathways

Hepatic fibrosis, coagulopathy , 
hypoglycaemia, protein-losing enteropathy 
and vomiting; no neurological symptoms

NGLY1-CDG NGLY1, PNGase NGLY1 cleaves the β-aspartyl-glucosamine 
(GlcNAc) of the glycan and the amide side 
chain of Asn, converting Asn to Asp. This 
process assists in proteasome-mediated 
degradation of misfolded glycoproteins

Intellectual disability , developmental 
delay , seizures, abnormal liver function and 
hypolacrima or alacrima

PMM2-CDG PMM2, phosphomannomutase 2 Conversion of mannose-6-phosphate to 
mannose-1-phosphate; involved in multiple 
glycosylation pathways

Intellectual disability , hypotonia, seizures, 
strabismus, cerebellar hypoplasia, failure to 
thrive and cardiomyopathy ; 20% lethality in 
the first 5 years of life

SRD5A3-CDG SRD5A3, polyprenol reductase SDR5A3 enzyme converts polyprenol 
into dolichol, a key step in the synthesis 
of dolichol-linked monosaccharide 
and the oligosaccharide precursors for 
N-glycosylation

Intellectual disability , hypotonia, eye and 
brain malformations, nystagmus, hepatic 
dysfunction, coagulopathy and ichthyosis

CHIME syndrome PIGL, GlcNAc-PI de-N-acetylase PIGL catalyses the second step of GPI 
biosynthesis, de-N-acetylation of GlcNAc-PI

Coloboma, congenital heart disease, 
ichthyosiform dermatosis, mental retardation 
and ear anomalies syndrome (CHIME)

GNE myopathy GNE, bifunctional UDP-GlcNAc-
2-epimerase/ManNAc kinase

Biosynthesis of sialic acid Proximal and distal muscle weakness, 
wasting of the upper and lower limbs and 
selective sparing of the quadriceps

Walker–Warburg 
syndrome

Various genes, including 
POMT1 and POMT2 that 
encode two subunits of 
O-mannosyltransferase

Malfunction of various enzymes that modify 
α-dystroglycan

Defects in muscle, brain and eye 
development and elevated serum creatine 
kinase

CDG, congenital disorder of glycosylation; GlcNAc, N-acetylglucosamine; GPI, glycosylphosphatidylinositol; ManNAc, N-acetylmannosamine; PI, phosphatidylinositol. 
aCurrent recommended nomenclature for CDGs is used, XX-CDG, in which XX defines the specific affected gene.
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such approaches are generally inexpensive and broadly 
available. However, various dietary supplementation 
strategies have been tested in multiple CDGs and CDG 
disease models with varied results. Positive results were 
observed for dietary supplementation approaches in 
CAD-CDG, GNE-CDG, PGM1-CDG and SLC35C1-
CDG38. Other CDGs might benefit from a personal-
ized medicine approach based on the identification 
of relevant genetic mutations in individual patients. 
Characterizing the underlying mechanism of a CDG at 
a molecular level should enable the development of new 
therapeutic approaches.

Glycans in immunity and inflammation

Cells of the immune system, similarly to all other 
cells, express cell surface-associated glycoproteins and 
glyco lipids that, together with glycan-binding proteins 
and other molecules, sense environmental signals. 
Many immune receptors that are expressed on innate 
and adaptive immune cells recognize glycans found 
on the surface of microorganisms that are known as 
pathogen-associated molecular patterns. Examples of 
such glycan-containing molecules include bacterial 
lipopolysaccharides, peptidoglycans, teichoic acids, 
capsular polysaccharides and fungal mannans. The 
recognition of these glycosylated microbial patterns by 
the immune system has been exploited for the devel-
opment of vaccines45,46; pneumococcal vaccines, for 
example, are formulated using a mixture of capsular 
polysaccharides47. The recent progress in HIV-1 vaccine 
development has also been driven by a better under-
standing of the HIV-1 envelope (Env) glycoprotein 
and the effects of its glycan composition on immune 
responses and immune evasion48–53. Moreover, the inter-
actions between endothelial cells and leukocytes, which 
are crucial for leukocyte trafficking and recruitment to 
sites of tissue injury, are controlled by adhesion mole-
cules that are in turn regulated by cellular glycosylation. 
Pro-inflammatory cytokines can also induce changes in 
cell-surface N-glycosylation of endothelial cells, suggest-
ing that glycosylation might contribute to inflammatory 
vascular diseases54,55.

In the adaptive immune system, glycans also have 
crucial and multifaceted roles in B cell and T cell differ-
entiation. These functions involve multiple cell-surface 
and secreted proteins (such as CD43, CD45, selec-
tins, galectins and siglecs), different types of cell–cell 
interactions and the recognition of glycan-containing 
antigens56–58. The regulation of cellular glycosylation 
and its impact on the molecules that function as lig-
ands and receptors during an inflammatory response 
is controlled through various mechanisms and is 
dependent on the inflammatory insult and its location. 
These mechanisms, which include ERK and p65 sig-
nalling, are critical to understanding the failure to con-
trol chronic inflammation in multiple disease states55.  
Immunoglobulins, for example, are crucial components of  
humoral immunity, and altered glycosylation patterns 
of some immunoglobulin isotypes have been identified 
in chronic inflammatory, autoimmune and infectious 
diseases, such as rheumatoid arthritis (RA), systemic 
lupus erythematosus (SLE) and HIV infection59–68. 

In fact, glycosylation patterns differentially affect the 
effector roles of immunoglobulins69–73. Below, we pres-
ent several examples to illustrate various biological roles 
of glycans and glycan-recognizing molecules in B cell 
and T cell biology, including immunoglobulin effector 
functions.

CD43 and CD45. The glycoproteins CD43 and CD45 
are abundantly expressed on the surface of B cells and 
T cells and contain both O-glycans and N-glycans. 
Glycosylation of these proteins is modulated during 
cellular differentiation and activation, and regulates 
multiple T cell functions, including cellular migration, 
T cell receptor signalling, cell survival and apopto-
sis74,75. CD45 has an active receptor-like protein tyros-
ine phosphatase domain that interacts with Src family 
kinases in B cells and T cells to regulate the signalling 
threshold for the activation of B cell receptors (BCRs) 
and T cell receptors75–77. CD45 also has non-catalytic 
functions, for example, in modulating the function of 
the inhibitory co-receptor CD22 on B cells78. CD43 is 
involved in the multiple functions of lymphocytes and 
other cells of haematopoietic origin, including T cell 
adhesion and activation. CD43 has an elongated extra-
cellular domain through which it interacts with multiple 
ligands, including ICAM1 (CD54), major histocom-
patibility class I (MHCI), siglec 1 (CD169), galectin 1 
and E-selectin. Crosslinking of CD43 with monoclonal 
antibodies can induce CD43 internalization, whereas 
phorbol ester-induced activation can lead to both pro-
tein internalization and proteolytic cleavage of the CD43 
ectodomain; in T cells, CD43 shedding is linked to the 
regulation of apoptotic cell death79.

The glycans present in CD43 and CD45 (namely, 
their types, size and sites of attachment) are regulated 
by controlling the expression levels of specific glycosyl-
transferases and glycosidases. Alternative splicing of the 
gene that encodes CD45 creates further diversity as it 
enables the translation of several protein isoforms with 
different potential glycosylation sites74. The affinity of 
the interactions between glycosylated CD43 or CD45 
ligands and their receptors is affected by the presence 
of core 2 O-glycans (that is, GlcNAcβ1–6(Galβ1–3)
GalNAcαSer/Thr) versus core 1 O-glycans (that is, 
Galβ1–3GalNAcαSer/Thr); the presence of sialic acid is 
another important factor74.

Galectins. Galectins are small soluble proteins that con-
tain one or two carbohydrate-binding domains specific 
for galactose-containing glycans80. The members of this 
family of 15 carbohydrate-binding proteins are involved 
in many processes in the immune system, including 
the regulation of T cell receptor signal strength as well 
as T cell and B cell death. For example, galectin 1 can 
induce apoptosis by binding to N-glycans or O-glycans 
present on CD45 (ref.81). Galectin 3 not only interacts 
with CD43 and CD45 but also binds to highly branched 
N-glycans on extracellular matrix glycoproteins such as 
laminin, fibronectin, vitronectin and integrin 1, thus 
affecting cellular adhesion80,82. In addition to binding 
to extracellular matrix proteins and cell-surface glyco-
conjugates in a carbohydrate-dependent manner, 

www.nature.com/nrneph

REV IEWS

352 | JUNE 2019 | VOLUME 15 



galectins can also establish carbohydrate-independent 
interactions with cytosolic or nuclear targets82. Galectins 
interact with glycopeptides present on the cell surface 
through the formation of oligomers; oligomerization 
facilitates receptor clustering, lattice formation and 
cell–cell interactions. The binding affinity of galectins 
varies according to the type of glycan it interacts with, 
and changes in glycan characteristics can regulate the 
signals induced by galectin binding. For instance, 
the  signal induced by the binding of galectin 1 to 
CD45 depends on several factors, including the CD45 
isoform, which affects its glycosylation potential; the 
presence of core 2 O-glycans, which are high-affinity 
ligands for galectin 1; the composition of the N-glycan 
branching; and the extent of sialylation80. The addition 
of sialic acid is dependent on the relative expression of 
α2,6-sialyltransferases or α2,3-sialyltransferases, and the 
presence of α2,6-sialic acid on multi-antennary N-glycans 
prevents binding to galectin 1 (ref.83). The multiple bio-
logical activities of galectins suggest these proteins are 
valuable potential therapeutic targets in inflammatory 
diseases and cancer; multiple galectin antagonists are 
currently under development84.

Siglecs. Siglecs are sialic acid-binding proteins expressed 
on many cells of the immune system that perform various 
functions, including the regulation of antigen-specific 
immune responses and cell homing85. CD22 is one of 16 
siglec proteins characterized in humans and is expressed 
on B cells, where it specifically binds α2,6-linked sialic 
acid-containing ligands; this interaction is crucial for 
the formation of nanoclusters in the cell membrane 
that control BCR signalling following antigen binding86. 
Moreover, CD22 can act as a homing receptor, direct-
ing cells to tissues that express high amounts of α2,6-
linked sialic acids87. The CD22–CD22L interactions 
are also essential for maintaining self-tolerance, and  

CD22-deficient mice produce higher amounts of somat-
ically mutated, high-affinity autoreactive IgG antibod-
ies than wild-type controls88. Thus, it seems that CD22 
is linked to the tight regulation of BCR signalling that 
maintains self-tolerance. Perturbations caused by CD22 
deficiency might increase the likelihood of developing 
autoimmune diseases, and CD22 might be a therapeutic 
target for the treatment of autoimmune diseases such as 
SLE89. Importantly, the success of such a therapy would 
require a method for targeting CD22-mediated signalling 
on pathogenic autoreactive B cells without compromising  
the responses of pathogen-specific B cells.

Another important member of the siglec family is 
CD169 (also known as sialoadhesin or siglec 1), a macro-
phage adhesion molecule that binds sialic acid linked by 
an α2,3 bond to Gal on N-linked and O-linked glycans 
and glycolipids90–92. CD169 binds to sialic acid with low 
affinity; therefore, its ligands must be heavily sialylated 
and multimeric to enable an effective interaction93. This 
siglec mediates cell–cell interactions and the binding of 
immune cells to sialic acid-containing pathogens. CD169 
is also used as a marker for a specific population of macro-
phages that not only have key roles in the initiation of 
antibacterial immune responses but are also involved in 
the transmission of some viruses and in the development 
of inflammation and several autoimmune diseases90,94–96.

Selectins. The selectin family of proteins consists of 
E-selectin, P-selectin and L-selectin, which are mainly 
expressed on endothelial cells, platelets and leukocytes, 
respectively; these cell adhesion molecules are critical 
for leukocyte rolling on the endothelium before tissue 
extravasation97. Selectins recognize sialylated and fuco-
sylated glycans but can also bind a subset of heparan 
sulfate glycosaminoglycans98. The finding that inhibi-
tion of selectin restored blood flow in a mouse model 
of sickle cell disease led to a trial of a small-molecule 
inhibitor of P-selectins and L-selectins, GMI 1070, in 
patients with sickle cell anaemia; the inhibitor reduced 
selectin-mediated cell adhesion and abrogated vascular 
occlusion and ‘sickle cell crisis’99. Another study demon-
strated that inclacumab, a recombinant monoclonal 
antibody against P-selectin, reduces myocardial damage 
after a percutaneous coronary intervention in patients 
with non-ST-segment elevation myocardial infarction100. 
These examples demonstrate that targeting selectins may 
be beneficial in some inflammatory diseases.

Immunoglobulin glycosylation. Immunoglobulin 
isotypes differ in the number of N-glycans present on 
their heavy chains62,64,66,73. Some immunoglobulins, 
such as IgA1 and IgD, also contain O-glycans, which 
are usually clustered in the hinge-region segments of 
these antibodies101,102. Immunoglobulin glycans impact 
the effector functions of antibodies depending on the 
branching of N-glycans and/or the terminal sugars 
of N-glycans or O-glycans, which include galactose 
and sialic acid. In fact, immunoglobulin glycosyla-
tion can determine whether an antibody glycoform is 
pro-inflammatory, such as IgG with galactose-deficient 
N-glycans, or anti-inflammatory, such as IgG with 
sialylated N-glycans.
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Fig. 3 | Functional impact of variable IgG Fc glycan composition. a | Immunoglobulin G 

(IgG) has two heavy and two light chains, and its crystallizable fragment (Fc) region can 

bind to Fcγ receptors and some proteins of the complement system. The IgG Fc region 

contains two N-glycans, one per heavy chain, attached at Asn297; these glycans 

contribute to the structural integrity of the Fc region and to its interactions with Fc 

receptors and complement. The Fc glycans in the IgG molecule are biantennary glycans 

with variable content of fucose (Fuc), bisecting N-acetylglucosamine (GlcNAc), galactose 

(Gal) and sialic acid; most IgG molecules are fucosylated. The glycan composition of IgG 

affects its biological activity ; for example, Gal-deficient IgG glycoforms, which have been 

associated with chronic inflammatory diseases, can activate the lectin complement 

pathway. b | IgG glycoforms with Gal-deficient glycans are pro-inflammatory. c | IgG 

glycoforms with sialylated glycans are considered to be anti-inflammatory. Man, mannose.
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All four human IgG subclasses have two variable 
biantennary glycans in their crystallizable fragment 
(Fc) region, attached at the conserved Asn297 site 
(fIG. 3a). Certain glycoforms of IgG, such as those defi-
cient in sialic acid and galactose (fIG. 3b), are particu-
larly abundant in some chronic diseases such as RA, SLE, 
inflammatory bowel disease (IBD), HIV and mycobac-
terial infections59–65; IgG1 galactose deficiency was also 
found in individuals with parasitic infection or asthma 
using population-wide immune activation studies66. 
Biochemical and immunological studies, as well as 
genome-wide association studies (GWAS), have iden-
tified specific genes, enzymes and pathways associated 
with the production of galactose-deficient IgG mole-
cules; these include β-galactoside α2,6-sialyltransferase 1,  
cytokine-signalling adaptor gp130 and T helper 17 
(TH17) cell-dependent pathways67,68. IgG glycoengineer-
ing in vitro69 and in vivo70 confirmed the pathogenicity 
of IgGs with galactose-deficient (and therefore, also 
sialic acid-deficient) N-glycans. Conversely, sialyla-
tion of pathogenic IgG autoantibodies attenuated their 
patho genic activity (fIG. 3c). In fact, N-glycosylation of 
the Fc region of IgG modulates its effector functions 
as it affects the binding efficiency of Fcγ receptors 
(FcγRs)103–105. On the basis of these and other findings, 
glycoengineering of therapeutic antibodies and intrave-
nous immunoglobulin (IVIG) has been used to produce 
therapeutic IgGs with tailored activity, such as sialylated 
IgG with anti-inflammatory properties71–73.

Human IgA exists in two subclasses, IgA1 and IgA2. 
Both subclasses have several N-glycans in the Fc region, 
but IgA1 typically also has a cluster of 3–6 O-glycans in 
the hinge region (fIG. 4). IgA and IgM are found in the 
circulation and in mucosal secretions. Circulating IgA 
is predominantly monomeric IgA1 (~90%), whereas the 
remaining IgA is polymeric and consists of two or more 
monomers connected by a J chain. Secretory IgA is poly-
meric and includes the secretory component, a heavily 
N-glycosylated polypeptide that is derived from the 
poly meric immunoglobulin receptor and is added to IgA 
during transcytosis through mucosal epithelial cells106. 
IgA glycans have multiple biological roles, including 
glycan-mediated antigen-nonspecific binding to bacte-
ria102,107. IgA1 has core 1 O-glycans (that is, GalNAc with 
β1,3-linked galactose), but in some diseases, includ-
ing IgA nephropathy (IgAN), patients have elevated 
 circulatory IgA1 with galactose-deficient O-glycans108.

Glycosylation in cancer

Mechanisms. Tumour growth depends on the ability 
of cancer cells to bypass cellular division checkpoints, 
evade death signals and immune surveillance and 
migrate to metastatic sites; glycosylation has a role in all 
of these processes. For example, abnormal growth fac-
tor signalling is a critical component of cancer develop-
ment that can be controlled by the specific glycosylation 
motifs on the relevant ligands, receptors and molecu-
lar scaffolding109. Glycosylation patterns were one of 
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the first biomarkers of cancer and continue to be used 
to identify cells with stem-cell-like phenotypes, both 
within cancer and in healthy tissue110–112. Glycosylation 
changes that are often observed in cancer cells include 
an increase in sialyl Lewis structures, abnormal core 
fucosylation, increased N-glycan branching or exposure 
of the mucin-type O-glycan, Tn antigen. Many of these 
altered glycosylation patterns found in cancer have been 
termed ‘oncofetal’ as they resemble patterns often seen in 
early development113,114. As cancer cells evolve through 
multiple stages of disease, glycan composition can 
change in parallel with changes in cellular metabolism. 
This pheno menon includes incomplete synthesis, which 
refers to truncated glycosylation that produces the Tn 
antigen in O-glycans, and neo-synthesis, which produces 
abnormal glycosylation patterns such as sialyl Lewis X. 
These glyco-neoantigens, normally reserved for lympho-
cyte extravasation from the blood, are commonly found 
in cancer cells and facilitate metastatic spread115,116.

The number of studies concerning the functional 
implications of altered glycosylation in cancer has 
increased over the past decade, but the field still lacks 
good mechanistic studies of the processes that lead to 
cancer-associated changes in glycosylation. Proteins 
from the epidermal growth factor receptor family have 
both O-glycosylation and N-glycosylation sites that are 
modified in many types of cancer through altered expres-
sion of glycosyltransferase enzymes, such as polypeptide 
GALNT3 and Gal 3(4)-l-fucosyltransferase (FUT3). 
Receptor tyrosine-protein kinase erbB2 (also known as 
HER2) is overexpressed in a number of cancers, includ-
ing prostate, breast and gastric cancers, and its functional 
properties are modulated through a range of complex 
post-translational modifications, including glycosyla-
tion117,118. Loss of GALNT3 can lead to increased pro-
duction of pro-growth and pro-metastatic carbohydrate 
antigens, such as T and Tn antigens on HER2, whereas 
suppression of FUT3 can have an anti-metastatic and 
growth-suppressing effect by preventing Lewis Y anti-
gen (LeY) production on HER2 (refS119,120). In addi-
tion, HER2 can also be regulated through glycoprotein 
GalNAc 3β-galactosyltransferase 1 (C1GalT1) activity, 
as increased mucin-type O-glycosylation enhances 
galectin 4 binding, which leads to HER2 activation118,121. 
Abnormal promoter region methylation in some glyco-
syltransferase genes, such as GALNT3, can also lead to 
aberrant enzyme expression122.

Currently, there is a dearth of studies in the cancer field 
that assess the intracellular mechanisms that drive changes 
in expression and activity of specific glycosyltransferases 
with respect to their targets. An exception is mucin 1 
(MUC1), one of the most studied glycoconjugates in the 
cancer field, partly owing to its increased expression and 
altered glycan composition in many adenocarcinomas, and 
partly owing to its use as a cancer-vaccine antigen123–125. 
MUC1 contains a large extracellular domain (that is, the 
mucin domain) with five potential O-glycosylation sites 
in each of its multiple repeats that consist of ~20 amino 
acid residues. Studies of glycosyltransferase enzymes 
implicated the dysregulation of several enzymes in 
altering O-glycosylation of MUC1, including C1GalT1, 
β-galactoside α-2,3-sialyltransferase 1 (ST3GalI) and 

α-GalNAc α-2,6-sialyltransferase 1 (ST6GalNAcI); 
altered localization of GALNTs in the ER also has a role 
in changing MUC1 glycosylation126–129. GALNTs typically 
initiate O-glycosylation in the Golgi apparatus, but in 
cell-culture models these enzymes can translocate to the 
ER via a process that involves aberrant Src signalling, lead-
ing to an increased density of O-glycosylation of MUC1 
repeats128,130; MUC1 produced by cancer cells also exhib-
its increased sialyl-Tn antigen129,131,132. In addition, altered 
glycosylation motifs on MUC1 can affect cancer immune 
surveillance, typically through co-opting cell-surface 
lectins such as CD169, which enhances macrophage 
 activation after binding to sialylated MUC1 and promotes  
tumour growth133–135.

The glycosylation of specific proteins in serum 
and/or tumour tissues can be used as a diagnostic bio-
marker and to assess patient prognosis and responses 
to treatment; examples of such glycoproteins include 
CEA, MUC1, MUC16 and prostate-specific antigen 
(PSA)136–141. Carbohydrate antigen 19-9 (CA19-9) is 
detected with a specific mouse monoclonal antibody that 
recognizes the sialyl Lewis A (sLea) carbohydrate motif 
(that is, Neu5Acα2,3Galβ1,3(Fucα1,4)GlcNAcβ1-R) on 
a monosialoganglioside first identified in gastrointestinal 
cancer142. Synthesis of this sLea antigen is controlled by 
Lewis, a gene involved in ABO(H) blood-group deter-
minants143 (Box 1). CA19-9 is often, but not always, ele-
vated in the serum of patients with a variety of cancers, 
including pancreatic, gastric and colorectal cancers; the 
mechanisms that lead to this increase in serum lev-
els in cancer are poorly understood, but it seems to 
be associated with dysregulated sialyltransferases,  
such as Gal-β-1,3-GalNAc-α-2,3-sialyltransferase 2 
and 4 (ST3GalII and ST3GalIV, respectively)144. The 
presence of CA19-9 across multiple cancers highlights 
abnormal glycosylation as a fundamental feature of 
 cancer pathobiology136,143.

Another important glycosylation pattern is the 
α2,6-linked sialic acid in N-glycans, which is com-
monly elevated in pancreatic and colon cancers and 
has pro-tumour effects; this sialic acid is added to the 
glycan backbone by β-Gal α-2,6-sialyltransferase 1  
(ST6GalI), also upregulated in these cancers145–147 
(fIG. 5). Increased expression of ST6GalI is associated 
with pro-survival pathways, and its sialylated products 
can inhibit tumour cell apoptosis and activate growth  
factor pathways110,111,148–150.

Glycome profiles. Although the use of a single bio-
marker for the diagnosis and monitoring of disease pro-
gression is an attractive prospect, research shows that 
whole glycome profiles might be better than a single 
glycosylation pattern for the assessment of disease pro-
gression. In one study, glycome profiling of prostate can-
cer biopsy samples enabled the identification of indolent 
versus metastatic disease with 91% accuracy; conven-
tional assessment was 72% accurate151. Matrix-assisted 
laser desorption ionization mass spectrometry imag-
ing (MALDI-MSI) of hepatocellular carcinoma biopsy 
samples identified increases in fucosylation across a 
panel of N-glycosylation structures in 95% of patients; 
the specific glycome profiles correlated with median 
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patient survival time152. Transcriptional analysis of mel-
anoma biopsy samples indicated that expression of β1,
6-N-acetylglucosaminyltransferase (GCNT2) in these 
samples was decreased compared with those of healthy 
epidermal melanocytes. This decrease led to a decrease 
in Asn-linked I-branched glycans (that is, glycans that 
have additional GlcNAc-Gal branches, also termed 
‘adult I’ blood-group antigen), a novel marker of met-
astatic melanoma progression153. Collectively, these 
studies highlight the advantages of whole glycome pro-
filing over the detection of traditional single markers of 
 glycosylation in cancer.

Xenotransplantation

The major bottleneck for organ transplantation con-
tinues to be the shortage of available viable organs. 
Xenotransplantation (for example, from pig donors) is a 
proposed solution for this problem154 but it has been hin-
dered by several factors, including the presence of donor 
carbohydrate antigens that are not present in humans 
and can trigger immune rejection. Examples of such 
antigens include the Gal-α(1,3)-Gal epitope present on 

glycoproteins and glycolipids and N-glycolylneuraminic 
acid (Neu5Gc).

The Gal-α(1,3)-Gal epitope is synthesized by 
an α1,3-galactosyltransferase in New World pri-
mates and many non-primate mammals. However, 
the gene that encodes this enzyme, GGTA1, is inac-
tivated in humans and Old World primates, which 
leads to the production of antibodies that recog-
nize Gal-α(1,3)-Gal-containing glycoconjugates155. 
It is thought that these antibodies are induced by 
Gal-α(1,3)-Gal-containing compounds present in the 
microbiota and from dietary sources. The antibodies 
bind to vascular Gal-α(1,3)-Gal antigens of xenotrans-
plants and induce complement-mediated endothelial cell 
cytotoxicity that results in graft rejection156. Importantly, 
deletion of GGTA1 from the pig genome revealed the 
presence of additional endothelial cell xenoantigens  
that could contribute to graft rejection156.

Neu5Gc is another relevant xenoantigen, and 
it is synthesized by CMP-N-acetylneuraminic acid 
hydroxy lase. This enzyme is present in most mammals, 
including pigs, but it is inactive in humans, although 
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increases the expression and activity of ST6GalI, leading to enhanced α2,6-sialylation; in turn, increased sialylation 

upregulates HIF1α and the expression of pro-survival HIF1α target genes, such as growth factors and glucose transporters. 

b | The death receptor FAS, also known as CD95, is a target of ST6GalI, and its sialylation inhibits the initiation of apoptotic 

signalling and subsequent receptor internalization. Increased expression of ST6GalI prevents FAS ligand (FASL)-induced 

apoptosis through FAS. c | Increased expression of ST6GalI in cancer cell lines enhances the α2,6-sialylation of epidermal 

growth factor receptor (EGFR), which increases its tyrosine kinase activity and the phosphorylation of its targets279. 

α2,6-Sialylation enhances the activity of EGFR , both at baseline and after cell activation, and leads to increased activation 

of pro-growth and survival genes. Moreover, cells in which ST6GalI is overexpressed, leading to enhanced α2,6-sialylation, 

are protected against cell death induced by the anticancer drug gefitinib, an EGFR inhibitor. d | In cells with low ST6GalI 

expression and reduced α2,6 sialylation, prolonged activation of tumour necrosis factor (TNF) receptor 1 (TNFR1) by TNF 

leads to receptor internalization, caspase activation and cell death. This apoptotic cell death pathway is prevented by 

enhanced α2,6-sialylation of TNFR . e | α2,6-Sialylation of β1 integrin in the Golgi apparatus by ST6GalI results in 

hypersialylation, which inhibits β1 integrin binding to matrix proteins such as type I collagen and fibronectin and prevents 

downstream signalling. These signals maintain cell quiescence, and their disruption due to enhanced sialylation leads to 

increased cell motility and invasion, which promotes cancer cell metastasis.
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Neu5Gc can be obtained from dietary sources and 
metabolically incorporated into many human glyco-
conjugates157,158. Neu5Gc, also termed Haganutzui–
Deicher antigen, has been identified as the antigen in 
horse serum that causes serum sickness in humans159. 
A third example of an important xenoantigen found 
in pig tissues is terminal GalNAc, also known as the 
SDa blood-group antigen, which is synthesized by 
β1,4-N-acetylgalactosaminyltransferase 2, encoded 
by B4GALNT2. Although SDa is expressed in vari-
ous human cells, anti-SDa IgM is commonly detected 
in human serum160.

It is hoped that modern approaches based on 
CRISPR–Cas-mediated gene editing might be used 
to remove these xenoantigens and aid the develop-
ment of animal tissues and organs that are suitable for 
 transplantation in humans155,157.

Autoimmunity and chronic inflammation

The immune system routinely recognizes and responds 
to foreign carbohydrate epitopes, such as lipopolysaccha-
rides; however, loss of tolerance and autoimmunity might 
also occur, for example, if the glycosylation patterns of the 
host and the pathogen overlap, perhaps owing to abnor-
mal enzymatic activity. Changes in the glycosylation 
patterns of proteins can also result in immune detection 
of these neo-glycan epitopes and lead to autoimmun-
ity. In addition, IgG effector functions are controlled 
by N-glycosylation. Altered sialylation, galactosylation  
and/or fucosylation, as well as changes in glycan com-
position, can contribute to immune  dysregulation and a 
range of autoimmune and chronic inflammatory diseases.

Rheumatoid arthritis. RA is an autoimmune disease that 
results in chronic inflammation of joints and other asso-
ciated tissues; it is characterized by the presence of serum 
rheumatoid factor and anti-cyclic citrullinated peptide 
antibodies161. Early studies of collagenous tissues from 
patients with RA found considerable immune aggre-
gates consisting of IgG and IgA162. Moreover, IgG from 
patients with RA has overall and site-specific changes in 
glycosylation that affect the composition of Fc-associated 
and antigen-binding fragment (Fab)-associated glycans. 
In addition to an increased proportion of Gal-deficient 
Fc glycans, Fab-portion glycans contain high amounts 
of bisecting GlcNAc and core fucose163. Changes in the 
glycosylation of antigen-specific IgGs precede disease 
onset, and the degree of these changes correlates with 
disease severity164,165. Altogether, these findings suggest 
that changes in the glycosylation of IgG are a critical 
component of RA pathogenesis.

Inflammatory bowel disease. IBD refers to chronic 
inflammatory diseases that affect the gastrointestinal 
tract and includes Crohn’s disease and ulcerative coli-
tis. In IBD, both decreased secretion of mucins and 
structural changes to mucins themselves can occur; the 
mucins of the gastrointestinal tract form a physical bar-
rier between the intestinal microbiota and the intestinal 
epithelium166. Chronic inflammation in the gastrointes-
tinal tract is thought to involve gut microbiota-induced 
changes in the glycosylation patterns of the host that 

result in enhanced entry of bacteria or dietary lectins 
into the host tissue167–170. This process leads to increased 
inflammation that can lead to ulcer development and 
cancer171. In addition to potential changes in glycosyl-
ation associated with alterations in gut mucosa and 
the epithelium, changes in N-glycosylation of IgG 
are also observed. Patients with IBD have decreased 
galactosylation of IgG N-glycans, and the extent of 
under-galactosylation correlates with disease severity60. 
Specific changes in antibody glycosylation could be used 
to discriminate between patients with ulcerative colitis 
and those with Crohn’s disease172.

Systemic lupus erythematosus. SLE is a systemic 
autoimmune disease characterized by the presence of 
polyreactive autoantibodies that bind to different host 
targets, including proteins, nucleic acids and their com-
plexes. Similarly to other autoimmune diseases, reduced 
galactosylation and sialylation of IgG are associated with 
SLE63,173. Furthermore, a decrease in core fucosylation 
and an increase in bisecting GlcNAc of N-glycans is 
observed. Together, these findings show that alterations 
in the IgG glycome in SLE limit the negative feedback 
loops that rely on complete IgG glycosylation and pro-
mote an inflammatory glycan profile. It is unknown 
whether the changes in glycosylation of IgG associated 
with SLE correlate with a loss of B cell tolerance and the 
production of autoreactive antibodies. Interestingly, 
treatment with sialylated IgG protected against disease 
symptoms in a mouse model of SLE174.

Tn syndrome. Originally called permanent mixed-field 
polyagglutinability, Tn syndrome is a rare blood disor-
der characterized by the presence of Tn antigens on all 
haematopoietic cell lineages175. In this syndrome, the 
Tn antigen-containing glycoconjugates are recognized 
by IgM antibodies, which leads to varying degrees of 
anaemia, leukopenia and thrombocytopenia in affected 
patients. Tn syndrome is a disorder of O-glycosylation in 
which Tn antigen is over-represented owing to a decrease 
in the galactosylation of terminal GalNAc by C1GalT1. 
This syndrome is an acquired and permanent disease 
that can occur in males and females at any age175 and 
results from a clonal somatic mutation in COSMC (also 
known as C1GALT1C1), which encodes a molecular 
chaperone specific for C1GalT1 (refS176,177). Mutations 
in COSMC reduce the amount of active C1GalT1, thus 
decreasing GalNAc galactosylation.

Granulomatosis with polyangiitis. Patients with gran-
ulomatosis with polyangiitis (GPA; formerly called 
Wegener granulomatosis) often have circulating IgG 
anti-neutrophil cytoplasmic antibodies (ANCAs), 
typically specific for proteinase 3; these antibodies are 
thought to activate resident and/or infiltrating macro-
phages in the vasculature, leading to inflammation. GPA 
affects small-to-medium-sized blood vessels; there-
fore, the lung and kidney are particularly vulnerable to 
macrophage-mediated damage. Several studies reported 
that abnormal glycosylation of the IgG Fc region 
(namely, low galactosylation and sialylation) corre-
lates with driving the enhanced macrophage activation. 

Rheumatoid factor
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Anti-proteinase 3 IgG antibodies, which are significantly 
elevated in patients with GPA, are less sialylated than 
IgG from healthy individuals178–180. These hyposialylated 
autoantibodies lead to enhanced macrophage activation 
when compared with antibodies with normal sialylation, 
and increased levels of hyposialylated autoantibodies are 
associated with disease activity178–181.

IgA nephropathy. IgAN is a unique autoimmune disease 
in which the autoantigen is an antibody itself — specif-
ically, IgA1 antibodies that contain galactose-deficient 
O-glycans and terminal GalNAc182 (fIG. 6). GWAS183,184 

and biochemical studies185,186 identified an association 
between several glycosyltransferases, and related pro-
teins, with galactose deficiency of IgA1 in IgAN. In 
fact, patients with IgAN have elevated levels of serum 
IgA1 with altered mucin-type O-glycans in the hinge 
region; serum levels of galactose-deficient IgA1 and the 
corresponding autoantibodies are predictive of disease 
progression182 (fIGS 4,6). Disease pathogenesis is not 
completely understood but is thought to involve altered 
expression and activity of key enzymes in IgA1-secreting 
cells, which, in genetically susceptible individuals, lead 
to the production of IgG autoantibodies. Consequently, 
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(GalNAc-T) to form the terminal GalNAc (Tn) antigen. Premature sialylation of the terminal GalNAc by α-GalNAc α-2, 

6-sialyltransferase 2 (ST6GalNAcII) can block subsequent glycosylation; however, most often GalNAc is galactosylated by 

the glycosyltransferase GalNAc 3β-galactosyltransferase 1 (C1GalT1). The chaperone C1GalT1C1 is required for 

appropriate expression and function of C1GalT1. After galactosylation, GalNAc, Gal or both sugars may be sialylated; 
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glycan of circulatory IgA1 is a tetrasaccharide. In many patients with IgAN, the number of O-glycosylated residues in the 

hinge region of IgGA1 is also increased82,83. Increased initiation of glycosylation by GalNAc-Ts, premature sialylation of 

GalNAc by ST6GalNAcII and decreased galactosylation by C1GalT1 might each contribute to the formation of Gd-IgA1, 

the key autoantigen in IgAN. b | Hit 2: production of IgG autoantibodies that are specific for Gd-IgA1. c | Hit 3: formation  
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formation of the pathogenic immune complexes that are deposited in the glomeruli, activate resident mesangial cells and 

cause renal injury. ECM, extracellular matrix.
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circulating immune complexes form in blood, some 
of which deposit in the mesangium and activate 
 mesangial cells, leading to renal injury; approximately 
half of patients with IgAN progress to end-stage renal  
disease182 (fIG. 6).

In IgAN, several factors might contribute to increased 
levels of Tn and sialylated Tn (sTn) antigens on IgA1, 
including decreased expression of C1GalT1 or C1GalT1C1 
as well as increased expression of ST6GalNAcII,  
leading to premature sialylation of GalNAc185 (fIG. 6). 
Alternatively, changes in the activity of GALNTs might 
alter the sites and/or densities of initial GalNAc attach-
ment and thereby contribute to the formation of Tn 
and sTn antigens. Technological advances in glycocon-
jugate analysis have enabled researchers to recognize 
that there is restricted heterogeneity in the glycosylation 
pattern of the IgA1 hinge region, which not only var-
ies between patients but can also vary within individ-
uals187 (Box 2; Supplementary Table 2). Together, these 
mechanisms demonstrate the critical role of correct 
glycan composition during glycoprotein production 
and demonstrate that altered glycosylation can result in 
the presentation of glycan autoantigens and the onset 
of autoimmunity.

Diabetes mellitus. Diabetes mellitus is commonly 
characterized by excess glucose in the blood, which pre-
dictably leads to various glycosylation abnormalities in 
patients with both type 1 and type 2 diabetes. The most 
widely used marker for monitoring the long-term man-
agement of diabetes is glycated haemoglobin (HbA1c), 
which is a surrogate for the average blood glucose levels 
in the previous 3 months188–190. Non-enzymatic glyco-
sylation (also known as glycation) based on reactions 
between haemoglobin and glucose can produce mul-
tiple glycoforms, but, in the case of HbA1c, it requires 
a multistep reaction between the amino-terminal Asp 
on the haemoglobin β-chain and a condensation reaction 
at the 1-hydroxyl of the glucose molecule followed by 

an Amadori rearrangement191–193. A similar non-enzymatic 
glycosylation process produces advanced glyca-
tion end products, which are glycated proteins and 
lipids that are elevated in diabetes and are linked to  
disease pathology194,195.

O-GlcNAc glycosylation has an important role in many 
cellular control mechanisms in general and in diabetes 
specifically, including the cellular response to insulin196; 
it is catalysed by OGT, which adds GlcNAc to Ser and/or 
Thr residues197–199. OGT uses UDP-GlcNAc as a substrate, 
which is a product of the hexosamine biosynthesis path-
way. This pathway functions in part as a glucose sensor 
and regulates cellular responses to insulin by controlling 
the levels of UDP-GlcNAc-mediated glycosylation of 
targets related to insulin activity200,201. The hexosamine 
biosynthesis pathway is highly responsive to glucose 
levels, and its flux is significantly increased in some 
tissues of patients with diabetes, leading to increased 
levels of UDP-GlcNAc and, thus, elevated O-GlcNAc 
glycosylation202–204. For example, O-GlcNAc glycosyl-
ation of the transcription factor NeuroD1 is crucial for 
its nuclear translocation, which leads to insulin produc-
tion by pancreatic β-cells in response to high glucose 
levels205. Long-term exposure to high glucose increases 
O-GlcNAc modifications and, thus, its biological effects; 
in the context of diabetes, increased O-GlcNAc glyco-
sylation of proteins, such as AKT, can lead to enhanced  
β-cell death206,207.

Cardiomyocytes can be damaged by high blood glu-
cose levels, leading to the high rates of systolic or dias-
tolic dysfunction in patients with diabetes (~16.9%)208; 
in animal models of diabetes, contractility deficits in 
the heart are associated with O-GlcNAc glycosylation 
levels209. In a rat model of streptozotocin-induced dia-
betes, ventricular arrhythmias were associated with 
O-GlcNAc modification of the sodium channel protein 
type 5 subunit-α (HH1). Decreasing O-GlcNAc addi-
tion to HH1 during high-glucose stress improved the 
function of this sodium channel210. In addition, using 
an adenovirus injection to the heart to increase the 
expression of protein OGA, the enzyme that removes 
O-GlcNAc adducts, improved cardiomyocyte con-
tractility and decreased O-GlcNAc-protein levels in 
the same model of diabetes211. However, in a model of 
myocardial ischaemia–reperfusion injury, decreased 
O-GlcNAc-protein levels were associated with increased 
infarct size in diabetic mice when compared with 
controls. Recovery of O-GlcNAc levels via miR-24 acti-
vation of OGT prevented the increase in infarct size 
in diabetic mice212. In the context of cardiac function, 
appropriate regulation of O-GlcNAc glycosylation is 
crucial as, depending on the cardiac insult, glycosyla-
tion that is either increased by OGT or reduced by OGA 
might be beneficial.

N-glycosylation defects can also cause diabetes, 
as demonstrated by a mouse model in which inactive 
N-acetylglucosaminyltransferase-IVa (GnT-IVa) led to 
impaired insulin release and hyperglycemia213. A mass 
spectrometric analysis of glycosylated proteins in the 
kidneys of two mouse models of diabetes, caused by 
leptin receptor-deficiency (db/db) or by administra-
tion of streptozotocin, showed significant differences in 

Box 2 | Techniques for glycoconjugate analysis

Over the past two decades, many different technologies have been developed for 

the analyses	of	glycans	and	glycoconjugates.	Many	of	the	initial	glycan	analyses	were	
carried out using lectins that recognize a specific glycan or glycans, often combined 

with pretreatment with glycosidases to selectively remove monosaccharide residues 

or larger	components	of	extended	glycoconjugates.	For	more	detailed	analysis,	mass	
spectrometric techniques are now commonly used for global and individual molecular 

analyses. The advent of chemo-enzymatic techniques for the synthesis of glycans 

has driven	the	more	widespread	use	of	glycan	array	technologies	that	enable	the	
simultaneous screening of hundreds of individual glycan structures. Improved glycan 

synthesis has also enabled the development of glycan-specific antibodies, which have 

become more readily available. Standard ‘-omics’ technologies have been applied to 

the study of patterns of gene expression and levels of glycan synthetic enzymes to help 

identify novel clinical disorders that involve altered glycans. In terms of 3D structural 

analysis of glycans, NMR has been used heavily throughout the years as a means of 

understanding the shape of glycoconjugates in solution; molecular dynamics 

simulations have complemented these structural analyses by modelling glycans on 

protein structures. There are now many different techniques at the disposal of 

researchers for the analysis of glycoconjugates. Supplementary Table 2 provides a list of 

methodologies used for the analysis of glycoconjugates, examples of the techniques 

and reagents used, and referenced examples of how these methods have been applied 

in biomedical research.
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general protein N-glycosylation between diabetic mice 
and healthy controls, with some similarities between 
the two models of disease214. Another study of serum 
samples from 818 patients with diabetic kidney disease 
reported that HbA1c positively correlated with the degree 
of complex and branched N-glycan content on IgG215.  
In addition, hyposialylated IgG, which is often present in  
the serum of patients with type 2 diabetes216, activates 
endothelial FcγRIIb, which leads to insulin resistance in 
obese mice. Further studies are required to understand 
the mechanisms underlying N-glycosylation changes  
in diabetes.

Glycans and glomerular filtration

Glycans have many roles in physiological kidney func-
tion, including several major roles in glomerular filtra-
tion. The most relevant glycoconjugates are found in 
the glycocalyx of the fenestrated glomerular endothelial 
cells, in the glomerular basement membrane (GBM), 
formed by extracellular matrix proteins, and in the 
podocyte slit diaphragm (fIG. 7).

The first barrier that blood encounters in the glomer-
uli is the fenestrated endothelium, which determines the 
glomerular filtration rate217,218. The fenestrated endothe-
lium also acts as a crucial barrier that prevents proteins 
from entering Bowman’s space; however, the pore size of 
the fenestrated endothelium cannot alone prevent albu-
min and other macromolecules from entering Bowman’s 
space217,218. Rather, the endothelial glycocalyx, which 
covers the endothelial fenestrae, probably contributes to 
the high permselectivity of glomeruli219. The glycocalyx 
is composed of negatively charged glycoproteins, glyco-
saminoglycans and membrane-associated and secreted 
proteoglycans that form an interlinking network of 
 proteins and glycans.

One of the most evident roles of glycans in renal 
function relates to the formation and maintenance 
of the GBM, which connects the basal lamina of the 
fenestrated endothelial cells to the foot processes of 
podocytes. The GBM consists of three layers: the lam-
ina rara interna, which is adjacent to the endothelial 
cells and is composed of negatively charged heparan 
sulfate proteoglycans; the lamina densa, a dark central 
zone composed of collagen IV and laminin; and the 
lamina rara externa, adjacent to podocyte foot pro-
cesses and composed of heparan sulfate proteoglycans. 
The heavily sulfated glycans of proteoglycans, such as 
agrin and perlecan, are responsible for the negative 
charge of the GBM, which may have a role in regu-
lating complement activation in the glomeruli220. Loss 
of heparan sulfate chains from agrin is observed in 
several glomerulopathies, including lupus nephritis, 
membranous nephropathy, minimal change disease 
and diabetic kidney disease, suggesting a prominent 
role for heparan sulfate in GBM function221. Although 
multiple mechanisms might account for this decrease 
in heparan sulfate, increased activity of heparanase, an 
endo-β(1–4)-d-glucuronidase that degrades heparan 
sulfate, has been observed in both rodent models and 
patients with diabetic kidney disease, minimal change 
disease, membranous nephropathy and IgAN222,223; 
heparanase treatment dramatically increases the 
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glomerular diseases, including minimal change disease and membranous nephropathy. 
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components of the glycocalyx have a key role in maintaining its mechanical and 

structural integrity and enabling its proper function as part of the glomerular filtration 

unit. Hyaluronan extends from the cell surface, whereas chondroitin sulfate and heparin 

sulfate are attached to extracellular matrix proteins, such as versican and perlecan, or 

membrane proteins such as syndecan and glypican. Together, these molecules make a 

dense negatively charged glycocalyx. c | The structure of the slit diaphragm, the key 

component of the glomerular molecular filter, relies heavily on the cell-surface adhesion 

protein nephrin; appropriate N-glycosylation of nephrin is critical for its surface 

expression and function. Sialylation of the cell-surface sialoglycoprotein podocalyxin 

also has a key role in podocyte morphogenesis and structural integrity. Many other 

cell-surface glycoproteins are involved in the formation of the slit diaphragm, including 

P-cadherin, podocin, nephrin-like proteins 1–3 (NEPH1–NEPH3), protocadherin fat 1 

(FAT1) and transient receptor protein 6 (TRPC6). CD2-associated protein (CD2AP) is an 

adaptor molecule that can bind to the cytoplasmic domain of nephrin.
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permeability of the GBM224. In addition to heparan 
sulfate, O-mannosyl glycans of α-dystroglycan mediate 
the interface between podocyte foot processes and the  
GBM through direct interactions with agrin and 
laminin 11 (ref.225). Deglycosylated α-dystroglycan 
can no longer bind agrin, which might lead to the 
detachment of podocytes from the GBM and impaired 
glomerular filtration in vivo226.

Glycans also have important roles in the forma-
tion of the slit diaphragm, a specialized intracellular 
junction between adjacent podocyte foot processes 
that is formed by a complex network of proteins and 
mediates intracellular and extracellular interactions227. 
Nephrin is a membrane glycoprotein expressed on the 
surface of podocytes at the intersection of podocyte–
podocyte foot processes228; it functions as an adhesion 
and scaffolding receptor and a signalling molecule. 
N-glycosylation of up to ten potential glycosylation 
sites is critical for the appropriate folding, transport, 
surface expression and function of nephrin229,230. In fact, 
N-glycan defects in nephrin result in poorly formed slit 
diaphragms and compromised kidney function231,232.

Mutations in a key enzyme involved in sialic acid bio-
synthesis, bifunctional UDP-N-GlcNAc 2-epimerase/ 
N-acetylmannosamine (ManNAc) kinase, cause glo-
merular proteinuria in mice, which can be rescued with 
ManNAc administration. Analysis of renal tissue sec-
tions from these mice showed segmental splitting of the 
GBM and effacement of podocyte foot processes as well 
as decreased sialylation of O-glycans in the podocalyxin 
protein233. Podocalyxin is a sialoglycoprotein and a major 

constituent of the glycocalyx of podocytes in the glomer-
ulus, where the negatively charged sialic acid is believed 
to separate adjacent foot processes and retain space for 
glomerular filtration234. In vivo, removal of α2,6-linked 
sialic acid from the glomerular filtration barrier results 
in proteinuria and renal failure, along with the appar-
ent formation of irreversible tight  junctions between 
adjacent podocytes235.

Glycomedicine: glycans in therapeutics

Developments in the field of glycobiology have enabled 
the development of a variety of glycan-based thera-
peutics (TABLe 2). For example, envelope glycoprotein 
gp120 is expressed on the surface of HIV-1, and its var-
iable glyco sylation facilitates viral escape from immune 
detection236,237. Adding new glycan-dependent epitopes 
to the recombinant gp120 used for vaccination increased 
the ability of broadly neutralizing monoclonal antibodies 
to recognize HIV-1, suggesting that this approach can be 
used to optimize vaccination protocols and antigens238,239. 
Moreover, HIV-1 envelope glycoproteins not only differ-
entiate HIV-1 clades but can also be used to estimate the 
efficacy of vaccine regimens on the basis of antibody 
binding to a panel of gp120 glycan-dependent epitopes240.

As outlined previously, glycosylation plays a critical 
role in regulating functional immune responses through 
complex receptor–glycan motif interactions. This aspect 
is now being exploited in immunoglobulin thera-
pies241–243. One study found that IgG can create hexameric 
structures on the cell surface to increase Fc-mediated 
complement activation244. This information led to the 

Table 2 | Glycan-based therapeutics currently available or under development

Disease Treatment Outcome Refs

Glycan-supplementation therapeutics

PGM1-CDG Oral d-galactose 
supplementation

Improved liver function and normalized 
glycosylation markers and UDP-galactose 
levels

38

MPI-CDG Oral mannose 
supplementation

Significant reduction in disease activity 38

CAD-CDG Oral uridine 
supplementation

Significant reduction in disease activity 38

Vaccine therapeutics

Non-metastatic castration- 
resistant prostate cancer

Recombinant Tn-rmMUC1 
peptide vaccine

PSA doubling time improved in phase I and 
phase II clinical trials

281

Breast cancer MUC1 glycopeptide vaccine Clinical trials in progress to evaluate 
immunogenicity and anticancer effects

125

HIV-1 Increased high-mannose 
glycans of gp120 antigen

Enhanced binding of broadly neutralizing 
antibodies to HIV gp120

239

Streptococcus pneumoniae Bacterial strain-specific 
polysaccharide vaccine

Increased production and affinity of 
antigen-specific IgG in mouse model

47

Therapeutic antibodies

Adult T cell lymphoma Defucosylated anti-CCR4 
antibody

Overall response rate of 50% 249

Rheumatoid arthritis Aglycosylated anti-CD4 
antibody

Modest reduction in disease activity 257

Type 1 diabetes Aglycosylated anti-CD3 
antibody

Moderate efficacy to stabilize insulin 
secretion levels over time

255

CCR4, CC-chemokine receptor 4; IgG, immunoglobulin G; PSA , prostate-specific antigen; rmMUC1, recombinant mucin 1; Tn, 
terminal N-acetylgalactosamine.
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creation of an hexamer composed of fused Fc segments 
from IgG; this multimer, termed Hexa-Fcs, enhanced Fc 
receptor avidity, which is co-dependent on IgG glyco-
sylation. Furthermore, addition of new N-glycosylation 
sites to Hexa-Fcs increased the overall sialic acid content, 
which could potentially enhance its immunomodulatory 
function245. Specifically, enhanced sialylation of IgG Fc 
glycans decreases complement-mediated cytotoxicity by 
reducing C1q binding to IgG1 Fc246; these observations 
have important implications for the treatment of patients 
using IVIG therapy.

Glycan-dependent IgG effector functions are recog-
nized as critical components of therapeutic antibodies 
in cancer247, which are now tailored through glycoen-
gineering. For example, removal of fucose increases 
antibody-dependent cell-mediated cytotoxicity, which 
is very important for certain antibodies used to treat 
patients with cancer248,249. Increased galactosylation of 
the Fc in rituximab, an anti-CD20 antibody, enhances 
complement-dependent cytotoxicity250,251. Moreover, 
IgG with elevated content of α2,6-linked sialic acid has 
an anti-inflammatory effect, a property that could be 
exploited for the treatment of autoimmune diseases252,253. 
This anti-inflammatory activity is dependent on bind-
ing of CD209 (also known as DC-SIGN) on dendritic 
cells to sialylated IgG, which leads to the upregulation 
of FcγRIIb and regulatory T (Treg) cell expansion252,253. In 
addition to the modification of N-glycosylation motifs, 
the effector function of antibodies that lack glycosylation 
(that is, aglycosylated IgG) is also being investigated254. 
Some examples of aglycosylated biologics are mogam-
ulizumab, an anti-CD194 for treatment of T cell lym-
phoma; otelixizumab, an anti-CD3 for the treatment of 
type 1 diabetes; and MTRX-1011 A, an anti-CD4 for the 
treatment of RA249,255–258.

The therapeutic use of sugars, or drugs that directly 
target glycosylation, has eluded clinical application, 
with the exception of the use of heparin to prevent 
blood clotting and the use of nutritional supplements 
to alleviate the symptoms of certain CDGs, as discussed 
earlier. Targeting the glycosylation pathways of galec-
tin 1 with drugs such as anginex259 and OTX001 (ref.260) 
has also been tested for the reduction of angiogenesis in 
cancer; preliminary results showed a modest decrease 
in angiogenesis after treatment with anginex, whereas 
OTX001 had a better effect and is now in phase I clinical 
trials. Ex vivo treatment of T cells from patients with 
ulcerative colitis with addition of GlcNAc increased 

levels of N-glycosylation branches on the T cell receptor 
and led to a decrease in pro-inflammatory cytokines261. 
Thioglycosides, which are S-glycoside GlcNAc mimetics, 
have been studied for their anti-inflammatory effects 
along with O-glycosides and shown to significantly 
decrease sialyl Lewis X levels on endothelial cells and  
E-selectin-induced leukocyte rolling262. In vitro, thioglyco-
sides also blocked SGLT1 and SGLT2 (also known as  
SLC5A1 and SLC5A2, respectively), which are targeted 
in diabetes to prevent the reabsorption of glucose in 
the kidney263.

An animal model of minimal change disease revealed 
that angiopoietin-related protein 4 (ANGPTL4) is 
hyposialylated and has a causative role in proteinuria. 
Oral treatment with the sialic acid precursor, ManNAc, 
rescued the hyposialylation of ANGPTL4 and prevented 
proteinuria264,265. In a mouse model of unilateral ure-
teral obstruction, glucosamine hydrochloride supple-
mentation protected against renal fibrosis; glucosamine 
hydrochloride decreased N-glycosylation of transform-
ing growth factor-β (TGFβ) receptor type 2 (TGFR2), 
the receptor for TGFβ1, thus inhibiting its translo-
cation to the cell surface membrane and initiation of 
pro-fibrotic pathways266. Most therapeutics that target 
glycosylation pathways and/or synthetic saccharides for 
the treatment of non-CDG pathologies are still at an 
experimental stage, but they hold considerable prom-
ise given the key role of glycosylation in numerous 
pathobiologies.

Conclusions

Glycosylation is a common modification of proteins 
and lipids that involves non-templated dynamic and 
complex processes. Glycans have multiple crucial roles 
in cellular responses to environmental stimuli as well 
as cellular growth and differentiation; specific changes 
in glycan composition are directly linked to many dis-
eases. Technological advances are beginning to over-
come many of the challenges posed by the complexities 
of glyco conjugates, improving our understanding of 
the physiological and pathological processes that are 
regulated by glycans (Box 2). Such efforts are further 
supported by improvements in research tools as well as 
training in glycosciences1,267, both of which facilitate the 
advancement of glycomedicine, in which glycobiology is 
applied to the development of novel therapies.
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