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ABSTRACT: Simulation models are efficient tools to predict the fate of different solutes 
in agricultural soils. This work aimed to compare measured and predicted glyphosate 
and AMPA (aminomethyl phosphonic acid; its main metabolite) contents in a soil under 
no-tillage (NT), and conventional tillage (CT); and to compare the predictions considering 
constant and time-variable hydraulic properties. Additionally, we evaluated the ability of 
the model to predict glyphosate and AMPA accumulation during the crop cycle. Hydrus 
1-D code was used to predict the glyphosate and AMPA dynamics, considering constant 
and time-variable hydraulic properties during the studied crop cycle. In general, the 
prediction of glyphosate and AMPA distribution along the soil profile using HYDRUS 1-D 
was satisfactory; however, an overestimation of both compounds was observed in 
the first 0.20 m of the soil probably because of the preferential flow. Additionally, the 
accumulation process of glyphosate and AMPA in the soil during the crop cycle was 
underestimated by HYDRUS 1-D, as compared with the observed field data. Simulated 
data show that higher values of K0 increase the risk of glyphosate and AMPA vertical 
transport. The inclusion of temporal variation of hydraulic properties in glyphosate and 
AMPA simulation did not improve the simulation performance, showing that the model 
is more sensitive to the parameters related to the solutes. From the obtained results, 
HYDRUS 1-D code allowed to predict glyphosate and AMPA dynamics reasonably well 
in agricultural soils of the Argentinean Pampas region and is a potential model to give 
support in the analysis of the environmental risk of leaching and soil contamination.
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INTRODUCTION
The prediction of the impact of different tillage systems on the environment and the 
fate of different pesticides is a complex and necessary task to improve water and soil 
management. However, there is a knowledge gap in the prediction and modeling of the 
fate of different pesticides in agricultural soils under different tillage systems (Elias et al., 
2018). Glyphosate (N-[phosphonomethyl] glycine) is a broad-spectrum herbicide, used 
non-selectively in agriculture to control weeds and herbaceous plants, especially under 
no-tillage (NT) management systems. In Argentina, the use of this herbicide has increased 
drastically since its introduction, and it is the most commonly used herbicide in the country 
(Primost et al., 2017). In the last years, several authors reported the presence and the 
potential mobility of glyphosate and its main metabolite (aminomethyl phosphonic acid, 
AMPA) in Argentinian agricultural soils (Peruzzo et al., 2008; Lupi et al., 2015; Okada et al., 
2016; Soracco et al., 2018a); however, these results are site-specific. Furthermore, the 
procedure for the quantification of these molecules is time-consuming and expensive 
(Baer and Calvet, 1999). In this sense, the use of different simulation models provides 
an efficient alternative, which can be adapted to different soil types and management 
(van Genuchten et al., 1974; Walker, 1987; Armstrong et al., 2000; Jarvis et al., 2000; 
Pang et al., 2000; Worrall and Kolpin, 2004; Šimůnek et al., 2005; Köhne et al., 2006; 
Šimůnek and van Genuchten, 2008; Gupta et al., 2012).

In recent years, different models have been used to predict water flux and solute 
transport in soil. In general, these models solve the continuity of Richards’ equation 
and the convection-dispersion equation. A large number of simulation studies have 
been developed to predict the dynamics of a wide range of agrochemicals such as 
pyrethroids, Cyanazine, Metribuzin, Atrazine, isoproturon, among others (Sadeghi et al., 
1995; Ahuja et al., 2000; Bayless et al., 2008; Luo and Zhang, 2011; Filipović et al., 
2016). Additionally, agrochemicals registration and leaching risk are supported by 
different simulation models, such as PRMZ and PEARL (Dubus et al., 2003). In this sense, 
simulation models are a useful tool to support authorities in decisions concerning the 
approval of pesticide registration at the European Union level and in the United States 
(Scorza Júnior and Boesten, 2005). 

For glyphosate and AMPA modeling, Mamy et al. (2008) studied their lixiviation under 
field conditions, comparing measured and predicted data obtained using the PRZM 
model, obtaining a good correlation. Klier et al. (2008) reported similar results in sandy 
soils from data obtained using LEACHP code. These authors mentioned that the risk of 
glyphosate lixiviation is very low due to its high adsorption coefficient and degradation 
rate. Candela et al. (2007) also suggested strong bounds of glyphosate and soil in their 
study based on laboratory test modeled with a non-commercial software; however, 
later in 2010 they detected, in a field condition experiment, the presence of glyphosate 
and AMPA in unexpectedly high depths suggesting preferential flow and/or colloidal 
mediated transport as the potential causes (Candela et al., 2010). Laitinen et al. (2007) 
reported that the observed and simulated glyphosate residues by PEARL model in soil 
did not correlate. These authors attributed their results to the fact that glyphosate 
residues must originate from exudation from plant roots, and that the translocation 
process could not be described by the model. In the Pampas Region, Peruzzo et al. 
(2008) used the SoilFug model to predict the glyphosate distribution in agricultural 
soils. These authors found a very good agreement between the model prediction and 
the measured field data. 

In recent years, HYDRUS code (Šimůnek et al., 2013) has been successfully used to model 
and predict soil water movement (Garg and Ali, 2000) and several solutes transport 
(Coquet et al., 2005; Dousset et al., 2007; Kodešová et al., 2008; Valdés-Abellán et al., 
2014; Alletto et al., 2015) in different scenarios. The popularity of the HYDRUS code within 
soil physics researches is reflected by its increasing use in a variety of applications and 
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publications (Šimůnek et al., 2016). Kodešová et al. (2008) studied the transport of the 
herbicide chlorotoluron in three different soil types. These authors found a good correlation 
between predicted and measured data, only when a dual-porosity model was included. 
Köhne et al. (2006) studied the transport of isoproturon and terbuthylazine (systemic 
herbicides) and observed a good prediction of their behavior using HYDRUS 1-D. On the 
other hand, Filipović et al. (2014), in a 6 years’ field trial, reported that HYDRUS 1-D 
predicted the isoproturon vertical transport, except when events of preferential flux 
were observed. 

The use of this model requires a good description of the soil water retention curve (WRC) 
and the hydraulic conductivity function [K (h)]. In general, these functions are taken as 
constant in time during the crop cycle in most simulation studies (Schwen et al., 2011a). 
However, several authors emphasized that soil physical properties show temporal variation 
(Alletto and Coquet, 2009; Hu et al., 2009; Schwen et al., 2011a; Jirků et al., 2013; 
Lozano et al., 2016; Villarreal et al., 2017; Soracco et al., 2018b) and that this temporal 
variation has often overshadowed any measured differences between management 
treatments and situations (Strudley et al., 2008). These temporal changes, especially in 
the near saturation range, could have a great impact on soil water and solute dynamics. 
Or et al. (2000) introduced a model to describe the temporal changes of the water retention 
properties after the tillage operation, based on the soil pore distribution. Xu and Mermoud 
(2003) used an empirical function to describe the decay of saturated hydraulic conductivity 
(K0) in the soil water movement simulation. Beyond the studies mentioned above, the 
inclusion of hydraulic properties temporal variability is, in general, not common when 
solute transport is predicted. In addition, despite the wide use of HYDRUS code to model 
and predict different solutes transport, there are few studies about the performance of 
this code on glyphosate and AMPA modeling under real field conditions. In this sense, 
the introduction of the temporal variation of soil hydraulic properties during the crop 
cycle could improve the performance of HYDRUS code to predict glyphosate and AMPA 
dynamics in agricultural soils. 

We hypothesized that it is possible to predict glyphosate and AMPA contents using 
HYDRUS 1-D, and that the prediction is improved considering the time-variable hydraulic 
properties. The objectives of this study were to compare measured and predicted 
glyphosate and AMPA content values in a soil under NT and CT; to compare the 
predictions considering constant and time-variable hydraulic properties. Additionally, 
we evaluated the ability of the model to predict glyphosate and AMPA accumulation 
through the crop cycle.

MATERIALS AND METHODS

Site and treatments

The experiment was carried out near the city of Chascomús, Argentina (located at 
35° 44’ 37” south and 58° 03’ 10” west). The soil was classified as a fine, illitic, thermic 
abruptic Argiudoll (Soil Survey Staff, 2006), which corresponds to a Luvic Phaeozem 
(IUSS Working Group WRB, 2007). The climate in the region is temperate without frost. 
The mean annual precipitation is 946 mm and the mean annual potential reference 
evapotranspiration is 929 mm. Daily precipitation and air temperature were recorded 
during the experiment period (June 2015-August 2016) (Figure 1). The total rainfall during 
the experiment period was 1,178 mm. 

Before the treatments were applied, the plots were under CT and with the same crop 
rotation for more than 20 years. In the year 2000, an experimental design with two 
treatments (plots of 30 m wide and 50 m long for each treatment) was applied: (a) no 
tillage (NT), in which only a narrow (0.05 m) strip of the soil was drilled to deposit crop 
seeds; (b) conventional tillage (CT) in which the soil was ploughed (disc plough+tooth 
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harrow) at 0.20 m depth, and later smoothed using the tooth harrow each year in October. 
The experiment was developed during a glyphosate-resistant soybean period. 

During the studied period, glyphosate Roundup® UltraMax was applied three times 
(1.6 kg ha-1 active ingredient) on September 5th (before the CT plough), November 
26th, and December 19th, all in 2015. The preparation of the soil under CT took place on 
September 30th, 2015. The soybean seeding was carried out on November 20th, 2015. 
Soil sampling for glyphosate and AMPA was performed in June 2015 (after previous corn 
harvest), October 2015 (before soybean seeding), December 2015 (V2 soybean growth 
stage), January 2016 (R1 soybean growth stage), March 2016 (R5 soybean growth stage), 
and August 2016 (after soybean harvest). Soil hydraulic parameters were determined 
in June 2015, October 2015, December 2015, March 2016, and August 2016. A more 
detailed description of the experimental design can be found in Soracco et al. (2018a).

Field and laboratory measurements

Soil hydraulic parameters

The K (h) was measured in the field in both treatments using a disk tension infiltrometer 
with a 12.5 cm-diameter base. Infiltration tests were carried out at three soil water 
tensions: -6, -3, and 0 cm. The saturated hydraulic conductivity (K0) was calculated 
from the steady-state infiltration rates in accordance with the multiple-head method 
(Ankeny et al., 1991). Samples with a volume of 98 cm3 (5 cm height and 5 cm diameter) 
were taken from the A horizon, avoiding rows and visible wheel tracks to determine 
the soil WRC. Ten replicates from each treatment and moments were collected. Water 
retention data at tensions, h, values of 0, -10, -30, -50, -70, -100, -300, and -15000 cm 
were determined on the undisturbed soil cores using a sand box apparatus for h values 
between 0 and -100, and a pressure chamber for h values < -300 cm. The θs, α, and 
n parameters (called van Genuchten parameters, VG) of the soil water retention curve 
were optimized by using the RETC software (van Genuchten et al., 1991) by fitting the 
measured retention and hydraulic conductivity data. To reduce the amount of unknown 
variables, tortuosity parameter, l, and residual soil water content, θr, were set constant 
at 0.5 and 0, respectively. The average bulk density of the A horizon was measured by 
using five 500 cm3 soil cores (9 cm by 8.4 cm diameter) taken from each treatment and 
sampling moment. Water content in the field was measured at four layers: 0.00-0.10, 
0.10-0.20, 0.20-0.30, and 0.30-0.40 m in each treatment and sampling date.
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Figure 1. Precipitation and air temperature registered during the simulation period in the 
studied site.
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Glyphosate and AMPA determinations

To determine glyphosate and AMPA contents, the first 0.40 m of the A horizon was sampled 
and divided in four layers: 0.00-0.10, 0.10-0.20, 0.20-0.30, and 0.30-0.40 m. Glyphosate 
and AMPA quantifications were carried out according to Aparicio et al. (2013). The results 
were expressed as μg of glyphosate or AMPA per kg of dry soil. A full description of the 
methodology can be seen in Soracco et al. (2018a).

Numerical simulation

Glyphosate and AMPA transport simulations were carried out using HYDRUS 1-D code 
(Šimůnek et al., 2008) that predicts one-dimensional water flow and solute transport in 
unsaturated porous media. Non-steady water flux is described by the one dimensional 
Richards’ equation (Equation 1):

∂h∂
∂z∂z

= K(h)∂θ
∂t

+ 1 – A							          Eq. 1

in which θ represents volumetric water content (L3 L-3); h is pressure head (L); z is the 
vertical coordinate [L]; t is time [T], K is the unsaturated hydraulic conductivity (L T-1), 
and A (L T-1) represents a sink term (root water uptake). 

The one dimensional solute transport is described by the advection-dispersion equation 
(Equation 2):

∂c∂
∂z∂z

=∂s
∂t

θD – μwθc – μsρs+ ρ∂θc
∂t

– ∂qc
∂z

				       Eq. 2

in which:

s = Kdc										              Eq. 3

in which: c is the solute concentration in the liquid phase (M L-3); s is the solute concentration 
in the solid phase (M M−1), ρ is the soil bulk density (M L-3), q is the volumetric water 
flux density (L T-1), D is the effective dispersion coefficient (L2 T-1), μw is the first-order 
degradation rate in the liquid phase (T-1), μs is the first-order degradation rate in the solid 
phase (T-1), and Kd is the adsorption coefficient (L3 M-1). A Galerkin-type linear finite element 
scheme is used for the spatial distribution and an implicit finite difference scheme is 
used for the temporal variation of the variables in equations 1 and 2 (Gupta et al., 2012).

For each simulation, the considered soil depth was 0.50 m, dividing the soil profile in 
49 elements with 50 nodes. To guarantee numerical stability, smaller size elements were 
used close to the topsoil, where water conditions vary more rapidly. The initial time step 
was taken as 0.001 day. The time period for simulations was from 12th June 2016 to 4th 
August 2017, with a daily temporal discretization. 

The initial condition was the measured initial soil water content in the soil profile at 
time t = 0 at different depths. An atmospheric boundary condition was selected at the 
top of the soil profile and free drainage was considered at the bottom of the soil profile. 
Initial solute (Glyphosate and AMPA) concentration was set equal to the field measured 
values at time t = 0. Solute flux was applied as the upper boundary condition and zero 
concentration gradient was selected as the lower boundary condition (Gupta et al., 2012). 
Glyphosate uptake by roots was neglected, and decay was considered independent of 
soil temperature. 

Water flow and solute transport parameters

Soil hydraulic parameters required as input data for HYDRUS 1-D code were determined from 
the soil WRC and field infiltration data. For each treatment, two different water dynamics 
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and solute transport simulations were carried-out: with constant and time-variable hydraulic 
properties during the studied crop cycle. The constant hydraulic properties simulations were 
performed with the parameters measured in June 2015; the variable hydraulic properties 
simulations consisted of four different simulations corresponding to periods between 
sampling moments (Table 1). Obtained hydraulic output data from each simulation were 
connected with a subsequent simulation according to Schwen et al., (2011b), while the 
initial glyphosate and AMPA soil content were the final values obtained from the previous 
simulation to allow a continuous description. Adsorption coefficients for glyphosate and 
AMPA were calculated using the pedotransfer function proposed by De Gerónimo et al. 
(2018). Degradation rates for glyphosate and AMPA were obtained from Okada (2014) and 
Mamy et al. (2008), respectively (Table 1). Column miscible displacement experiments 
were carried out to obtain the dispersivity parameter (λ, L). Stainless-steel columns with 
a length of 5 cm and a diameter of 2 cm were used. The internal wall of columns was 
covered with a non-reactive material to provide good contact between the soil and the 
column wall. At both ends, 25 μm filters were used to avoid soil loss during the experiments. 
The columns were uniformly packed under vibration with air-dried and 2 mm sieved soil 
(OECD, 2000) and slowly saturated upward with the electrolyte solution (KNO3 0.05 mol 
L-1). A peristaltic pump was connected with polytetrafluoroethylene tubing to the columns, 
and a stainless-steel valve was used to switch between different inflow solutions. The 
experiments were conducted at a flux density of 3 cm h-1, similar to hydraulic conductivity 
values obtained in the field. A volume equivalent to the column porosity of LiBr [0.01 mol 
L-1 (C0)] as a conservative tracer was injected in each experiment. Effluent solutions from 
the column were collected in 2 mL aliquots using an automatic fraction collector every 
16 min. The electric conductivities of each effluent sample were measure using an EC 
electrode (Eijkelkamp®). From obtained electrical conductivity values of each sample and 
the LiBr solution, Br- concentration was determined following Larsbo et al. (2014). Three 
replicates were carried out. Finally, breakthrough curves (BTCs) were constructed from 
measured effluent concentrations. The Br- concentration values for different times were 
adjusted using HYDRUS 1-D code to obtain the soil λ.

All obtained BTCs were symmetric with a single peak, showing that bromide did not 
suffer any mechanism of adsorption, precipitation, nor anion exclusion during transport 
through the soil column (Candela et al., 2007). The single peak also certified the absence 
of preferential flow in the experimental setup.

Mass recovery was over 95 %, showing that bromide behaved as an ideal conservative 
tracer. The obtained values of λ were in the same order than previous reports for similar 
soils (Ersahin et al., 2002; Montoya et al., 2006; Candela et al., 2007; Bedmar et al., 
2008; Okada et al., 2014) (Table 1). 

Table 1. Hydraulic (volumetric water content at saturation, θs; fitted van Genuchten parameters, α and n; saturated hydraulic 
conductivity, K0) and transport (adsorption coefficient, Kd; soil dispersivity, λ; first-order rate constant for chain reaction, μ; first-order 
rate constant, μ’) parameters used in the different simulation periods for different treatments [No-tillage (NT) and Conventional 
tillage (CT)]

Simulation 
period

θs α n K0 Kd
* λ μ** μ’***

NT CT NT CT NT CT NT CT NT CT NT CT NT CT NT CT

cm-1 cm h-1 L kg -1 cm day-1

Jun 15 - 
Aug 16 0.53±0.01 0.53±0.01 0.06±0.03 0.07±0.02 1.20±0.03 1.21±0.02 3.22±1.13 3.86±2.06 99.4 103.2 1.30 1.30 0.02 0.02 0.19 0.19

Oct 15-  
Dec 15 0.52±0.01 0.53±0.02 0.04±0.02 0.21±0.06 1.21±0.03 1.17±0.03 0.91±0.25 3.28±2.39 99.4 103.2 1.30 1.30 0.02 0.02 0.19 0.19

Dec 15 - 
Mar 16 0.53±0.02 0.55±0.02 0.15±0.06 0.10±0.07 1.18±0.04 1.20±0.02 2.27±1.10 3.20±0.24 99.4 103.2 1.30 1.30 0.02 0.02 0.19 0.19

Mar 16 - 
Aug 16 0.53±0.01 0.53±0.02 0.24±0.05 0.22±0.04 1.13±0.01 1.15±0.02 2.53±1.37 4.71±2.53 99.4 103.2 1.30 1.30 0.02 0.02 0.19 0.19

* Obtained from the pedotransfer function proposed by De Gerónimo et al. (2018). ** Obtained from Mamy et al. (2008). *** Obtained from Okada (2014).
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Model performance analysis 

From field measured values of glyphosate and AMPA contents during the studied crop 
cycle, the simulation performance of HYDRUS 1-D code was evaluated using different 
statistical indicators, according to Mamy et al. (2008): 

Correlation Coefficient (r) which is a measure of the degree of association between 
simulation and measurement:

r =
∑n

i = 1 (Oi – Ô)(Si – Ŝ)

[∑n
i = 1 (Oi – Ô)2]1/2 [∑n

i = 1 (Si – Ŝ)2]1/2
						        Eq. 4

in which Oi and Si are the observed and simulated values respectively, Ô and Ŝ are the 
mean observed and predicted values respectively, and n is the number of sampling dates.

Root mean square error (RMSE), calculated as:

RMSE = ∑n
i = 1

100
Ô

(Si – Oi)2

n
						          Eq. 5

Coefficient of residual mass (CRM), which indicates the consistent errors in the distribution 
of all simulated values across all measurements with no consideration of the order of 
the measurements:

CRM =
∑n

i = 1 Oi – ∑n
i = 1 Si

∑n
i = 1 Oi

							           Eq. 6

RESULTS 

Soil hydraulic properties during the crop cycle 

The temporal variation of soil hydraulic properties during the crop cycle and its relationship 
with glyphosate and AMPA content can be seen in detail in Soracco et al. (2018a). 
In general, higher values of K0 under CT during the crop cycle were observed, as compared 
with NT (Table 1). The K0 showed no significant differences between treatments during 
the fallow periods (June 2015 and August 2016), while this variable was significantly 
higher under CT during the growing season from October 2015 to March 2016 (Table 1), 
especially after the tillage (October 2015). Under NT, K0 values increased during the 
vegetative period. Regarding the VG parameters, CT treatment showed higher values of 
α as compared with NT only in October 2015, after tillage (Table 1). On the other hand, 
the n parameter showed constant values during the crop cycle, without differences 
between tillage systems (Table 1). 

Measured glyphosate and AMPA contents

Overall, >60 % of glyphosate and 80 % of AMPA content along the studied soil profile 
for all sampling dates was found between 0.00-0.20 m (Figures 2 and 3). However, 
comparing two consecutive measuring dates, vertical transport was detected, especially 
when high precipitations occurred near the application. Glyphosate accumulation during 
the crop cycle under both tillage systems was observed due to high rates of glyphosate 
applications. A more detailed description can be found in Soracco et al. (2018a).

Glyphosate and AMPA simulation

In general, glyphosate and AMPA vertical distributions were well described by the model 
(Figures 2 and 3). For both tillage systems, was observed a good description of the soil 
profile distributions of glyphosate and AMPA (r >0.7), except in March 2016 under CT and 
in August 2016 under CT and NT (Figures 2 and 3). Under both tillage systems, the lower 
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Figure 2. Observed (line) and simulated (bars) vertical glyphosate distribution during the crop cycle for no-tillage (NT) and conventional 
tillage (CT) using constant (Pred-fix) and time variable (Pred-var) hydraulic parameters. Tillage operation for CT treatment was carried 
out on September 30th, 2015.
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Figure 3. Observed (line) and simulated (bars) vertical AMPA distribution during the crop cycle for no-tillage (NT) and conventional 
tillage (CT) using constant (Pred-fix) and time variable (Pred-var) hydraulic parameters. Tillage operation for CT treatment was 
carried out on September 30th, 2015.
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values of r were observed towards the end of the crop cycle, for both studied molecules, 
showing a low prediction capacity in long simulation periods. Furthermore, the values of 
the CRM indicator were lower than zero, showing an overestimation of glyphosate and 
AMPA contents (Table 2). This overestimation was higher for the glyphosate content under 
CT, due to the absence of measured glyphosate in August 2016. For both molecules, the 
overestimation was observed in the first 0.20 m of the soil profile, while between 0.20 and 
0.40 m, the simulated concentrations were lower than the measured data. Lixiviation 
events, where the measured glyphosate contents were higher in the deeper depths 
as compared with the top soil, were not correctly predicted by the model (Figures 2d, 
2e, 2f, 2j, and 2k). The RMSE values observed for glyphosate and AMPA were relatively 
high, attributed to the overestimation observed in October 2015 and August 2016 for 
glyphosate and AMPA, respectively.

Simulations with time-variable soil hydraulic properties did not improve the simulation 
performance, as compared with time-constant parameters, showing similar RMSE, CRM, 
and r values (Table 2 and Figures 2 and 3). However, a little higher performance in the 
prediction of glyphosate and AMPA contents when lixiviation occurred was observed 
with time-variable hydraulic properties, showing lower retention of glyphosate and AMPA 
in the first 0.10 m and higher values between 0.10 and 0.20 m in January, March, and 
August 2016 under NT and CT (Figures 2 and 3), associated with the higher values of 
K0 and macroporosity. 

Total masses of glyphosate and AMPA, expressed in kg ha-1, for each sampling date 
measured and obtained from time-variable hydraulic properties simulation, are shown 
in table 3. Measured values show similar behaviors between tillage systems for both 
compounds. For both tillage systems, the total mass of glyphosate decreased between 
June and October 2015, increased between October and December 2015 and decreased 
again between December 2015 and January 2016. From January 2016, different behaviors 
were observed; under NT glyphosate total mass decreased in March 2016 and increased 
in August 2016, while under CT glyphosate increased in March 2016 and decreased in 
August 2016. AMPA showed the same temporal trend between tillage systems during 
the whole studied period. The total mass of AMPA decreased between June and October 
2015, increased between October and December 2015, decreased again in January 
2016 and increased until August 2016. Simulated values showed a different behavior; 
under both tillage systems, an increase of glyphosate between June 2015 and January 
2016, followed by a decrease until the end of the crop cycle. On the other hand, AMPA 
decreased between June 2015 and January 2016, and increased between January and 
August 2016, under both tillage systems.

From simulation data, no evidence of glyphosate and AMPA accumulation during the crop 
cycle along the studied soil profile was found. This accumulation was determined as the 
difference of total extractable glyphosate (TEG) between the initial (June 2015) and final 
(August 2016) dates. The mean simulated values were: NT: 2.21 and CT: 1.41 kg ha-1 in 
June 2015; and NT: 1.95 and CT: 1.47 kg ha-1 in August 2016. This implied a decrease 
of 11.45 % under NT and an increase of 4.77 % under CT during the crop cycle. These 

Table 2. Statistical indicators values for HYDRUS 1-D predictions of vertical distribution in the 
soil profile of glyphosate and AMPA, with constant (Fix) and time-variables (Variable) hydraulic 
parameters during the crop cycle

Indicators Compound
NT CT

Fix Variable Fix Variable

RMSE
Glyphosate 167.60 165.67 268.70 265.82

AMPA 201.87 201.77 235.53 235.43

CRM
Glyphosate -0.07 -0.07 -0.40 -0.40

AMPA -0.07 -0.06 -0.04 -0.03
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results are in disagreement with field measured data, which indicated an increase of 
54 and 82 % during the crop cycle for NT and CT, respectively.

DISCUSSION

Soil hydraulic properties during the crop cycle 

Higher values of K0 under CT as compared with NT after the tillage can be attributed 
to the loosening effect, also reported by several authors (Angulo-Jaramillo et al., 1997; 
Strudley et al., 2008; Villarreal et al., 2017). These results are in agreement with several 
reports from the Pampas region, which showed that tillage effects on soil pore system 
configuration do not persist after harvest (Sasal et al., 2006; Soracco et al., 2010; 
Villarreal et al., 2017). The decrease of K0 values in both treatments after harvest can 
be attributed to high traffic intensity associated with the harvest operations, which have 
been shown to damage the soil structure (Soracco et al., 2012). Under NT, increasing K0 
values during the vegetative period, which is in agreement with Schwen et al. (2011a) 
who mentioned that K0 and water-conducting macroporosity increase in spring and 
summer due to higher biological activity and root growth. In addition, the decrease of 
K0 values observed under both treatments after harvest can be attributed to high traffic 
intensity associated with the harvest operations, which have been shown to damage 
the soil structure (Soracco et al., 2012).

The behavior observed for VG parameters are in agreement with previous reports. Several 
authors reported that the α parameter is related to soil structure and it is affected by 
soil loosening (Schwen et al., 2011a; Jirků et al., 2013; Peña-Sancho et al., 2016). On the 
other hand, the n parameter showed constant values during the crop cycle, without 
differences between tillage systems (Table 1). This parameter is related to soil texture, 
showing small temporal variation (Jirků et al., 2013; Peña-Sancho et al., 2016). A more 
detailed discussion of the temporal variation of soil hydraulic properties can be found 
in Soracco et al. (2018a).

Measured glyphosate and AMPA contents

Glyphosate and AMPA vertical transport observed during the studied period, especially 
when high precipitations occurred near the application, is in agreement with several 
previous reports (Borggaard and Gimsing, 2008; Peruzzo et al., 2008). The results showed 
that the temporal dynamics of glyphosate and AMPA were related to the temporal 
variation of soil hydraulic properties. High values of K0 may lead to lower retention of 
glyphosate and AMPA in the topsoil, favoring vertical transport to deeper soil layers. 
Glyphosate accumulation during the crop cycle under both tillage systems was observed 

Table 3. Total mass of glyphosate and AMPA during the crop cycle for no-tillage (NT) and conventional tillage (CT) observed (Obs) 
and simulated with time-variable hydraulic properties (Sim)

Date
NT CT

Glyphosate AMPA Glyphosate AMPA
Obs Sim Obs Sim Obs Sim Obs Sim

kg ha-1

Jun 15 0.11 0.12 1.20 1.21 0.10 0.10 0.93 0.94
Oct 15 0.06 0.13 0.42 1.20 0.03 0.14 0.45 0.93
Dec 15 0.11 0.13 0.78 1.14 0.15 0.14 0.74 0.88
Jan 16 0.10 0.13 0.34 1.13 0.12 0.14 0.52 0.87
Mar 16 0.06 0.12 0.83 1.15 0.16 0.13 0.79 0.89
Aug 16 0.15 0.11 1.91 1.15 0.00 0.11 1.86 0.89
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due to high rates of glyphosate applications. A more detailed discussion can be found 
in Soracco et al. (2018a).

Glyphosate and AMPA simulation

In general, glyphosate and AMPA vertical distributions were well predicted by the model 
(Figures 2 and 3). The RMSE values observed for glyphosate and AMPA were relatively 
high, attributed to the overestimation observed in October 2015 and August 2016 for 
glyphosate and AMPA, respectively, as mentioned before. 

The overestimation in the topsoil and the underestimation in the subsoil was also reported 
by Klier et al. (2008). Lixiviation events, when the measured glyphosate contents were 
higher in the greater depths as compared with the topsoil, were not correctly predicted 
by the model (Figures 2d, 2e, 2f, 2j, and 2k), probably because the model did not consider 
the preferential fluxes. Several authors have reported similar results and mentioned that 
isoproturon (Filipović et al., 2014) and glyphosate and AMPA (Mamy et al., 2008) distribution 
along the soil profile were well described by different models, except when preferential 
flux was observed. However, preferential flow may also keep the concentrations in the 
topsoil layer higher, since the preferential flow of water bypasses the soil matrix where 
glyphosate and AMPA are found. Furthermore, in this study, input parameters related to 
solute transport (i.e., Kd, degradation rates and partition coefficients) were obtained from 
pedotransfer functions and the literature, and may lead to the observed underestimation. 
Another possible reason is the underestimation of the λ values, due to the small length of 
the soil columns as compared with the studied soil profile. Vanderborght and Vereecken 
(2007) mentioned that soil dispersivities increase with increasing transport distance and 
scale of the experiment. 

From the total simulated masses in each sampling date (Table 3), it was observed that 
during the applications, glyphosate increased, followed by a decrease until the end of 
the crop cycle. Coupled with the glyphosate decay, simulate AMPA values increased 
due to the degradation. However, this prediction by HYDRUS did not correlate with the 
measured values. Glyphosate and AMPA increments observed in March 2016, despite 
the absence of application, could be attributed to the release of retained herbicide in 
soybean and weeds residues (Mamy et al., 2016) and the roots exudation. Laitinen et al. 
(2007), using the PEARL model, observed that the simulated and observed values of 
glyphosate did not correlated, mentioning the importance of the translocation process 
in glyphosate fate. Also, these authors suggested that plant translocation of glyphosate 
to roots should be included in simulation models.

The slight improvement in the prediction with time-variable hydraulic properties when 
lixiviation occurred can be related to the higher values of K0 and macroporosity. Higher 
values of K0 and macroporosity may lead to lower retention of glyphosate and AMPA 
in the topsoil, favoring vertical transport to deeper soil layers during the crop cycle 
(de Jonge et al., 2000; Kjær et al., 2005; Stone and Wilson, 2006; Soracco et al., 2018a).

Regarding glyphosate and AMPA accumulation, the HYDRUS 1-D predictions are in 
disagreement with field measured data. These results show that the model underestimates 
the glyphosate and AMPA accumulation along with the soil profile, as reported by several 
authors in different soil types under field conditions (Bento et al., 2016; Primost et al., 
2017; Soracco et al., 2018a).

Although HYDRUS 1-D predictions overestimated glyphosate and AMPA values in the 
topsoil, and underestimated those values in the subsoil, in general, the predicted 
values were satisfactory, showing similar values of r and RMSE as compared with other 
authors (Mamy et al., 2008). On the other hand, the performance of the simulation did 
not improve with time-variable hydraulic parameters. Several authors found that the 
performance of the simulation of water content dynamics improved using time-variable 
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hydraulic parameters (Schwen et al., 2011b; Feki et al., 2018). However, Klier et al. 
(2008) mentioned that solute transport models are more sensitive to the solute 
transport parameters than to hydraulic parameters. In addition, this predictive capacity 
decreased towards the end of the studied period, together with an underestimation 
of the accumulation process of glyphosate and AMPA along with the soil profile. 
However, despite not taking into account important processes such as preferential 
flow or glyphosate degradation dependence with soil temperature, the HYDRUS 1-D 
code, in general, allowed to predict reasonably well glyphosate and AMPA dynamics 
in agricultural soils of the Argentinean Pampas region. 

CONCLUSIONS
HYDRUS 1-D code represents a simple and useful tool to study and predict the glyphosate 
and AMPA dynamics in agricultural soils under different tillage systems. Simulated 
data show that higher values of K0 increase the risk of glyphosate and AMPA vertical 
transport. However, the prediction did not improve considering the time-variable 
hydraulic properties, indicating that the model is more sensitive to the parameters 
related to the solutes.

HYDRUS 1-D, the most popular simulation code within soil physics research, is a 
potential model to give support in the analysis of the environmental risk of leaching 
and soil contamination.  
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