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GlyR alpha3: an essential target for spinal PGE2-mediated

inflammatory pain sensitization

Abstract

Prostaglandin E2 (PGE2) is a crucial mediator of inflammatory pain sensitization. Here, we demonstrate

that inhibition of a specific glycine receptor subtype (GlyR alpha3) by PGE2-induced receptor

phosphorylation underlies central inflammatory pain sensitization. We show that GlyR alpha3 is

distinctly expressed in superficial layers of the spinal cord dorsal horn. Mice deficient in GlyR alpha3

not only lack the inhibition of glycinergic neurotransmission by PGE2 seen in wild-type mice but also

show a reduction in pain sensitization induced by spinal PGE2 injection or peripheral inflammation.

Thus, GlyR alpha3 may provide a previously unrecognized molecular target in pain therapy.



GlyR �3: An Essential Target for

Spinal PGE2-Mediated

Inflammatory Pain Sensitization
Robert J. Harvey,1,8* Ulrike B. Depner,2* Heinz Wässle,3

Seifollah Ahmadi,2 Cornelia Heindl,2 Heiko Reinold,2

Trevor G. Smart,4 Kirsten Harvey,1 Burkhard Schütz,5

Osama M. Abo-Salem,5 Andreas Zimmer,5 Pierrick Poisbeau,6

Hans Welzl,7 David P. Wolfer,7 Heinrich Betz,8†

Hanns Ulrich Zeilhofer,2 Ulrike Müller8†

Prostaglandin E2 (PGE2) is a crucial mediator of inflammatory pain sensitization.
Here, we demonstrate that inhibition of a specific glycine receptor subtype
(GlyR �3) by PGE2-induced receptor phosphorylation underlies central inflam-
matory pain sensitization. We show that GlyR �3 is distinctly expressed in
superficial layers of the spinal cord dorsal horn. Mice deficient in GlyR �3 not
only lack the inhibition of glycinergic neurotransmission by PGE2 seen in wild-
typemice but also show a reduction in pain sensitization induced by spinal PGE2
injection or peripheral inflammation. Thus, GlyR �3 may provide a previously
unrecognized molecular target in pain therapy.

An exaggerated sensation of pain is a cardinal

symptom of inflammation. It can result from

either increased excitability of primary affer-

ent nociceptive nerve fibers (peripheral sen-

sitization) or changes in the central process-

ing of sensory stimuli (central sensitization)

(1, 2). Prostaglandins, namely PGE2, are key

mediators of both central and peripheral pain

sensitization (3–5), and different cellular

mechanisms have been proposed for their

pronociceptive actions (6, 7). However, their

relative contributions in vivo, their precise

molecular target(s), and the importance of

peripheral versus central sensitization have

remained elusive.

We found that the �3 subunit (8–11) of

strychnine-sensitive glycine receptors (GlyRs)

(8–11) is distinctly expressed in the superficial

laminae of the mouse dorsal horn (Fig. 1A and

fig. S2). Staining consecutive sections with an-

tibodies specific for GlyR �3 (12) and calcito-

nin gene–related peptide (CGRP) showed

punctate GlyR �3 immunoreactivity predomi-

nantly in lamina II (Fig. 1B), where most noci-

ceptive afferents terminate. All GlyR �3 sub-

unit immunoreactive puncta were found to

colocalize with gephyrin (Fig. 1, A and C to E),

which clusters GlyRs and GABAA receptors at

postsynaptic sites (12). This indicates that �3

GlyRs are synaptic and clustered by gephyrin.

Costaining for GlyR �1 subunits [a component

of the major GlyR isoform (�1�) in adult spinal

cord (13)] and �3 subunits revealed 54 � 3%

colocalization (in eight sections, each contain-

ing �500 puncta; Fig. 1, F to H, and fig. S1).

Thus, both subunit-specific glycinergic syn-

apses (i.e., those that contain either �1 or �3)

and mixed glycinergic synapses (those that con-

tain both �1 and �3) exist.

To determine the physiological role of the

GlyR �3 subunit, we disrupted the murine

gene (Glra3) by homologous recombination

in embryonic stem (ES) cells (Fig. 2, A to C).

Whereas wild-type spinal cord exhibited in-

tense �3 staining (Fig. 2D), no GlyR �3

immunoreactive puncta were detected in

Glra3
�/� mice (Fig. 2E). Costaining with the

GlyR �1 subunit–specific antibody mAb2b

(14) produced punctate GlyR immunoreac-

tivity in both knockout and wild-type litter-

mates (Fig. 2, F and G, and fig. S1).

Glra3
�/� mice were obtained at Mendelian

frequency and were fertile. They exhibited

normal body weight and showed no gross

histopathological abnormalities of the brain

or spinal cord. A primary behavioral screen

of Glra3
�/� mice revealed no notable alter-

ations in posture, activity, gait, motor coordi-

nation, tremor, or startle response (table S1).

Hence, Glra3
�/� mice do not display a neuro-

motor phenotype comparable to that of mice

with GlyR mutations in Glra1 or Glrb (15–17).

The distinct expression of the GlyR �3

subunit in the superficial laminae of the dor-
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Fig. 1. Colocalization
of the GlyR �3 subunit
with spinal synaptic
markers. Transverse
sections through wild-
type thoracic spinal
cord are shown. (A)
Double labeling shows
that GlyR �3 (green)
is restricted to the
dorsal horn, and
gephyrin (red) is ex-
pressed throughout
the gray matter. (B)
Triple immunostaining
shows CGRP (green),
the GlyR �3 subunit
(blue), and the GlyR
�1 subunit (red).
CGRP immunoreactiv-
ity decorates the out-
er rim (lamina I) of the
dorsal horn, whereas
GlyR �3 staining is
found in lamina II.
High-resolution images
showing (C) 65 GlyR
�3–positive puncta and (D) 76 gephyrin-immunoreactive puncta. (E) Superposition of (C) and (D)
reveals a high degree of colocalization. High-resolution images show (F) 40 GlyR �3 and (G) 57 �1
subunit puncta. (H) Superposition of (F) and (G) shows that 21 (54%) of the GlyR �3 puncta coincide
with GlyR �1 clusters. The yellow hue is only found in puncta of equal intensity. Arrows in (F) to (H)
indicate two colocalized puncta. Details of colocalization analysis are described in the supporting
online material.
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sal horn suggested a role in spinal nociceptive

processing (18). PGE2 is known to inhibit

glycinergic neurotransmission in the dorsal

horn by means of a postsynaptic cyclic aden-

osine monophosphate–dependent protein ki-

nase (PKA)–mediated pathway (7). There-

fore, we investigated whether �3 GlyR defi-

ciency would affect PGE2 modulation of

glycinergic neurotransmission (Fig. 3). Am-

Fig. 2. Generation of Glra3�/� mice by homologous recom-
bination. (A) Schematic representation of the GlyR �3 sub-
unit gene (I) and targeting strategy. Exons are represented
by gray boxes; membrane-spanning domains are shown by
black rectangles. (II) The targeting vector with loxP sites
flanking the neomycin cassette and exon 7. (III) The targeted
locus after homologous recombination in ES cells is shown.

Small arrows indicate primers used for polymerase chain reaction (PCR) screening. (IV) Cre-mediated recombination removes the neocassette and exon
7. Short arrows indicate primers used for screening of Cre-mediated excision and genotyping of animals. A, Ase I; B, Bam HI; E, Eco RV; S, Sac I; X, Xba
I; Sph, Sph I; KO, knockout; wt, wild type; TK, thymidine kinase. (B) Southern blot of Sac I–cleaved genomic DNA from targeted heterozygous (�/�)
and wild-type (�/�) ES cells hybridized with a 380-bp Ase I/Eco RV fragment [labeled “probe” in I of (A)] (left panel). Sac I–cleaved tail DNA of
Glra3�/� (�/�) and wild-type (�/�) littermates hybridized with the Ase I/Eco RV probe (right panel). (C) PCR-genotyping of mice with primers
depicted in IV of (A). (D to G) Fluorescence micrographs of the dorsal horn show immunolabeling for the GlyR �3 and �1 subunits. (D) and (E) show
GlyR �3 subunit immunoreactivity in wild-type (�/�) and knockout (�/�) mice. (F) and (G) show GlyR �1 subunit immunoreactivity in wild-type
(�/�) and knockout (�/�) mice.
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Fig. 3. Modulation of glycinergic transmission by PGE2 signaling. (A)
Averages of 10 consecutive postsynaptic current traces were recorded
under control conditions, in the presence of PGE2 (10 �M) and after its
removal (wash). (B) Time course of inhibition. Normalized Gly-IPSC
amplitudes (mean � SEM) in wild-type (open circles, �/�, n � 12) and

Glra3�/� (closed circles, �/�, n � 16) mice are shown. (C) Statistical analysis (mean � SEM) of Gly IPSC inhibition by PGE2 (10 �M). ***, P � 0.001,
unpaired t test. (D) Representative glycine-induced current traces in HEK293T cells cotransfected with the GlyR �3L and EP2 receptor cDNAs (top),
with 10 �M PKA inhibitor peptide (PKAIP) included in the patch pipette (middle), and after disruption of the PKA consensus sequence Arg-Glu-Ser-Arg
within the large intracellular loop of the GlyR �3 subunit by the S346A mutation. (E) Time course of inhibition of glycinergic membrane currents
through wild-type GlyR �3 (solid circles), mutated GlyR �3S346A (squares), and wild-type GlyR �3 in the presence of PKAIP (open circles). (F) Statistical
analysis (mean � SEM) of PGE2-mediated inhibition of glycinergic membrane currents. ***, P � 0.001, unpaired t test. Upon transfection of the rat
GlyR �1 subunit cDNA, no PGE2-mediated block of glycinergic currents was observed.
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plitudes and kinetics of electrically evoked

glycinergic inhibitory postsynaptic currents

(IPSCs) recorded from spinal cord slices

were statistically indistinguishable in wild-

type and Glra3
�/� littermates (supporting

online material text). However, bath-applied

PGE2 (10 �M) reversibly reduced the ampli-

tudes of GlyR-mediated IPSCs by 	45% in

wild-type mice only; in Glra3
�/� mice,

PGE2-induced inhibition of glycinergic syn-

aptic transmission was abolished (Fig. 3, A to

C, P 
 0.001).

To characterize the mechanism of �3 GlyR

inhibition by PKA, we performed whole-cell

recordings from human embryonic kidney

(HEK) 293 cells (HEK293T) cells cotrans-

fected with the mouse PGE2 receptor of the

EP2 subtype and the GlyR �3L (L, long; fig.

S3) subunit cDNAs (8, 10). Robust membrane

currents were activated by short puffer applica-

tions of glycine (Fig. 3, D to F). The peak

amplitudes of glycine-activated currents were

reversibly reduced by bath application of 1 �M

PGE2 (Fig. 3, D to F). This inhibition involved

PKA because inclusion of the PKA inhibitor

peptide (10 �M) into the patch pipette almost

completely prevented PGE2-mediated depres-

sion of glycine-activated currents. Inhibi-

tion of �3 GlyRs is likely due to direct recep-

tor phosphorylation, given that mutation

Ser346
3Ala346 (S346A) within a strong PKA

consensus sequence (residues 344 to 347, Arg-

Glu-Ser-Arg in the intracellular loop connect-

ing transmembrane domains 3 and 4) complete-

ly abolished the PGE2-induced effect. Notably,

this serine residue is not conserved at the equiv-

alent position of the GlyR �1 subunit (fig. S3).

Indeed, no PGE2-mediated block of glycine-

activated currents was observed upon cotrans-

fection of EP2 and GlyR �1 cDNAs (Fig. 3F).

Inactivation of Glra3 did not affect basal

nociception. Under resting conditions,

Glra3
�/� mice and wild-type littermates

showed nearly identical thermal and mechan-

ical sensitivities (Fig. 4, A and B, time

point � 0 min; fig. S4). However, when

injected intrathecally (i.t.) with 0.2 nmol

PGE2 per mouse (n � 6 per group), Glra3
�/�

mice exhibited, in contrast to wild-type mice,

a complete lack of pain sensitization. Paw

withdrawal latencies upon exposure to a de-

fined radiant-heat stimulus (Fig. 4A) and re-

action scores upon mechanical stimulation

with von-Frey filaments (1 to 100 mN) (Fig.

4, B and C) remained statistically indistin-

guishable from preinjection values.

This finding allowed us to assess the con-

tribution of PGE2-mediated inhibition of �3

GlyRs to pain sensitization evoked by periph-

eral inflammation. Thermal and mechanical no-

ciceptive behavior was monitored after subcu-

taneous injection of zymosan A or complete

Freund’s adjuvant (CFA) into the left hind paw

of wild-type and Glra3
�/� mice (Fig. 4, D to

G). Both procedures induce spinal COX2 ex-

pression and trigger spinal release of PGE2 (19–

21) but also activate other peripheral and cen-

tral pain sensitizing pathways [e.g., PGE2 pro-

duction in the periphery (22) and spinal release

of substance P (23)]. After the injection of

zymosan A, thermal and mechanical pain sen-

sitization developed similarly over the first 4

hours both in wild-type and Glra3
�/� mice.

However, at later stages, starting at 5 hours after

the zymosan A injection, Glra3
�/� mice pro-

gressively recovered from sensitization, where-

as for wild-type mice, this sensitization re-

mained nearly constant until the end of the

observation period (8 hours) (Fig. 4, D and E).

This time frame coincides very well with the

spinal expression of COX2, which reaches its

maximum about 4 to 5 hours after zymosan A

injection (24). Subcutaneous CFA injection
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Fig. 4. Pain sensitization in-
duced by intrathecal PGE2
and peripheral inflamma-
tion. (A to C) Sensitization
upon intrathecal (i.t.) PGE2
injection. (A) Paw withdraw-
al latencies (PWL, mean �
SEM) of wild-type (open cir-
cles) and Glra3�/� (solid cir-
cles) mice upon exposure to
a defined noxious radiant-
heat stimulus versus time
after intrathecal PGE2 injec-
tion (0.2 nmol per mouse).
(B) Response scores
(mean � SEM) of wild-type
(open circles) and Glra3�/�

(solid circles) mice upon me-
chanical stimulation with an
8-mN von-Frey filament
versus time after intrathecal
PGE2 injection. (C) Stimulus-
response curves obtained in
wild-type (open circles and
open triangles) and
Glra3�/� (solid circles and
solid triangles) mice before
(open and solid circles) and
40 min after (open and solid
triangles) intrathecal injec-

tion of PGE2. Statistical analysis for (A) to (C): In wild-type mice, mechanical and thermal
sensitization was significantly different from baseline at all time points [P � 0.001, based on
repeated measures of analysis of variance (ANOVA) followed by Fisher’s post-hoc test]. In
Glra3�/� mice, mechanical sensitization was significantly different from baseline only at 2 mN
(P � 0.042, based on repeated measures of ANOVA). All other changes remained statistically
insignificant (P � 0.22, n � 6 for each). (D to G) Sensitization upon subcutaneous injection of
zymosan A [(D) and (E)] or CFA [(F) and (G)] into one of the hindpaws. [(D) and (F)] Paw withdrawal
latencies (PWL) of the injected (open and solid circles) and noninjected (open and solid squares)
paw upon exposure to a defined noxious radiant-heat stimulus versus time after subcutaneous
zymosan A or CFA injection in wild-type (open circles, �/�) and Glra3�/� (solid circles, �/�)
mice. [(E) and (G)] Response scores (mean � SEM) of wild-type (open circles) and Glra3�/� (solid
circles) mice upon mechanical stimulation with a 8-mN von-Frey filament versus time upon
zymosan A or CFA injection. Statistical analysis for (D) to (G): Sensitization induced by zymosan A
in Glra3�/� mice was significantly different from that observed in wild-type littermates at time
points �5 hours. *, P � 0.05; **, P � 0.01; ***, P � 0.001, based on repeated measures of ANOVA
(n � 6 for each). CFA-induced pain sensitization in Glra3�/� mice was significantly different from
wild-type littermates at the following time points: thermal sensitization, days 1 to 14, P � 0.001;
mechanical sensitization, days 4 to 12, P � 0.05.
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produced a pronounced nociceptive sensitiza-

tion, which lasted for �14 days in wild-type

mice (Fig. 4, F and G). In contrast, recovery

from sensitization in Glra3
�/� mice was highly

accelerated, already reaching thermal baseline

values within 7 days (Fig. 4F). Spinal PGE2

formation and subsequent reduction of glyciner-

gic inhibition therefore are pivotal processes in

central inflammatory pain sensitization.

Our findings demonstrate a unique phys-

iological role for a distinctly expressed GlyR

subunit of previously unknown function.

Whereas the major spinal GlyR isoform (�1)

serves well-established functions in the con-

trol of spinal motor circuits, GlyR �3 is

selectively involved in spinal nociceptive

processing. The localization of �3 GlyRs in

the substantia gelatinosa, where primary af-

ferent nociceptive nerve fibers make synaptic

connections with projection neurons or inter-

neurons, suggests that the activation of syn-

aptic �3 GlyRs located on the dendrites of

these neurons limits the dendritic propagation

of excitatory input, similar to what has been

described for dendritic GABAA receptors in

the hippocampus (25, 26). Activation of

GlyR �3 synapses localized on the somata of

these neurons may reduce the generation of

output spikes. During inflammatory pain

states, PGE2 disinhibits the spinal transmis-

sion of nociceptive input through the spinal

cord dorsal horn to higher brain areas through

PKA-dependent phosphorylation and inhibi-

tion of GlyR �3. This process apparently

underlies central thermal and mechanical hy-

persensitivity, which develops within hours

after induction of peripheral inflammation

(fig. S5). Pharmacological modulation of

GlyR �3 function may thus provide a previ-

ously untested and promising strategy for the

treatment of pathological pain states.
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