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ABSTRACT

Aims. The aim of this work is to investigate the physical, structural and evolutionary properties of old, passive galaxies at z > 1.4 and
to place new constraints on massive galaxy formation and evolution.
Methods. We combine ultradeep optical spectroscopy from the GMASS project (Galaxy Mass Assembly ultradeep Spectroscopic
Survey) with GOODS multi-band (optical to mid-infrared) photometry and HST imaging to study a sample of spectroscopically
identified passive galaxies at 1.39 < z < 1.99 selected from Spitzer Space Selescope imaging at 4.5 µm.
Results. A stacked spectrum with an equivalent integration time of ∼500 h was obtained and compared with libraries of synthetic
stellar population spectra. The stacked spectrum is publicly released. The spectral and photometric SED properties indicate very weak
or absent star formation, moderately old stellar ages of ≈1 Gyr (for solar metallicity) and stellar masses in the range of 1010−11 M⊙,
thus implying that the major star formation and assembly processes for these galaxies occurred at z > 2. No X-ray emission was
found neither from individual galaxies nor from a stacking analysis of the sample. Only one galaxy shows a marginal detection at
24 µm. These galaxies have morphologies that are predominantly compact and spheroidal. However, their sizes (Re � 1 kpc) are much
smaller than those of spheroids in the present-day Universe. Their stellar mass surface densities are consequently higher by ≈1 dex if
compared to spheroids at z ≈ 0 with the same mass. Their rest-frame B-band surface brightness scales with the effective radius, but the
offset with respect to the surface brightness of the local Kormendy relation is too large to be explained by simple passive evolution.
At z ≈ 1, a larger fraction of passive galaxies follows the z ≈ 0 size-mass relation. Superdense relics with Re ≈ 1 kpc are extremely
rare at z ≈ 0 with respect to z > 1, and absent if Re < 1 kpc. Because of the similar sizes and mass densities, we suggest that the
superdense passive galaxies at 1 < z < 2 are the remnants of the powerful starbursts occurring in submillimeter-selected galaxies at
z > 2. The results are compared with theoretical models and the main implications discussed in the framework of massive galaxy
formation and evolution.

Key words. cosmology: observations – galaxies: distances and redshifts – galaxies: elliptical and lenticular, cD –
galaxies: evolution – galaxies: formation – galaxies: high-redshift

1. Introduction

Deep surveys provide the observational constraints needed to
understand galaxy formation and evolution. In particular, many
studies have been focused on massive galaxies (i.e. stellar mass
M > 1011 M⊙) as cosmological probes of the history of galaxy
mass assembly. However, despite the remarkable success in find-
ing and studying massive galaxies over a wide range of cosmic
time, the global picture is far from being clear. Thanks to their
simple and homogeneous properties (morphology, colors, pas-
sively evolving stellar populations, scaling relations) and being

⋆ Based on the ESO VLT Large Program 173.A–0687.

the most massive galaxies in the present-day Universe, early-
type galaxies (ETGs) are crucial to investigate the cosmic history
of massive galaxies (e.g. Renzini 2006, and references therein).

At z < 1, the most recent results seem now to agree in indi-
cating that the majority of massive ETGs (M > 1011 M⊙) were
already in place at z ≈ 0.7–0.8, with a number density consistent
with the one at z = 0, whereas the evolution is more pronounced
for the lower mass ETGs (e.g. Fontana et al. 2004; Yamada et al.
2005; Bundy et al. 2006; Cimatti et al. 2006; Borch et al. 2006;
Scarlata et al. 2006; Brown et al. 2006; Bundy et al. 2007). This
mass-dependent evolutionary scenario, known as “downsizing”
(Cowie et al. 1996; Gavazzi & Scodeggio 1996), was proposed
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to explain the galaxy star formation histories, i.e. with mas-
sive galaxies forming their stars earlier and faster than the low
mass ones. Recent results suggest that the downsizing concept
should extend also to the stellar mass assembly evolution itself,
i.e. with massive galaxies assemblying their mass earlier (e.g.
Cimatti et al. 2006; Bundy et al. 2006; Franceschini et al. 2006;
Bundy et al. 2007; Perez-Gonzalez et al. 2007), thus providing
new and stringent constraints for the current models of galaxy
formation (e.g. De Lucia et al. 2006).

The above results trace the evolution of the number den-
sity, luminosity and mass, but do not explain what is the
mechanism with which ETGs assemble their mass and shape
their morphology. Dissipationless ETG-ETG major merging
(also called “dry” merging) has been advocated as an im-
portant mechanism to build up the masses of ETGs at
0 < z < 1 (Bell et al. 2006; van Dokkum 2005). However,
this scenario seems difficult to be reconciled with the prop-
erties of the small-scale clustering of ETGs at 0.16 <
z < 0.36 (Masjedi et al. 2006; Masjedi et al. 2007), and (for
massive ETGs) with the weak evolution of the high-mass
end of the stellar mass function (e.g. Cimatti et al. 2006;
Bundy et al. 2006, 2007; Pozzetti et al. 2007). An alternative
process proposed recently to explain the assembly of ETGs is
based on multiple, frequent minor mergers at moderate redshifts
(Bournaud et al. 2007).

Several studies suggest that the critical redshift range
where the strongest evolution and assembly took place is at
1 � z � 2 (e.g. Fontana et al. 2004; Glazebrook et al. 2004;
Abraham et al. 2007; Arnouts et al. 2007). However, the picture
at these redshifts is even more controversial than at z < 1,
partly because of the observational difficulty to identify spec-
troscopically and study large samples of ETGs at z > 1.
The few ETGs identified spectroscopically so far up to z ≈
2.5 are very red (R − K > 5−6), dominated by passively
evolving old stars with ages of 1–4 Gyr, have stellar masses
typically M � 1011 M⊙, and are strongly clustered with
r0 ≈ 8–10 Mpc (Cimatti et al. 2004; Glazebrook et al. 2004;
McCarthy et al. 2004; Daddi et al. 2005a; Saracco et al. 2005;
Kong et al. 2006; Kriek et al. 2006). Daddi et al. (2005) were
the first to realize that a large fraction of these ETGs have
smaller sizes (Re � 1 kpc) (see also Cassata et al. 2005)
and higher mass internal densities than present-day ETGs.
This result was soon confirmed by other observations
(Trujillo et al. 2006; Zirm et al. 2007; Longhetti et al. 2007;
Toft et al. 2007; Trujillo et al. 2007). However, it is still unclear
how to explain such size-mass – density properties in the context
of ETG evolution.

The existence of a substantial population of old, massive,
passively evolving ETGs up to z ≈ 2 was not predicted in galaxy
formation models available in 2004–2005, and opened the ques-
tion on how it was possible to assemble such systems when the
Universe was so young. A promising mechanism which can pro-
vide a better agreement with the observations seems to be the
“quenching” of the star formation at high redshifts with AGN
“feedback” (e.g. Granato et al. 2004; Menci et al. 2006).

The stellar ages and masses of the passive ETGs at z ≈
1−2 require precursors characterized by strong (>100 M⊙/yr)
and short-lived (0.1–0.3 Gyr) starbursts occurring at z > 2−3.
In addition, such precursors should also have a large clus-
tering correlation length r0 comparable to that of passive
galaxies at lower redshifts (z < 2) (e.g. Daddi et al. 2000;
Firth et al. 2002; Kong et al. 2006; Farrah et al. 2006), and com-
patible with that expected in the ΛCDM models for galax-
ies located in massive dark matter halos and strongly

biased environments. Examples of precursor candidates have
been found amongst starburst galaxies selected at z > 2
with a variety of techniques (e.g. BzK, Daddi et al. 2004b;
submm/mm, Chapman et al. 2005; “Distant Red Galaxies”,
Franx et al. 2003; optically-selected systems with high lumi-
nosity, Shapley et al. 2004; IRAC Extremely Red Objects,
IEROs, Yan H. et al. 2004; HyperEROs, Totani et al. 2001, and
ULIRGs at z ∼ 1−3 selected with Spitzer Space Telescope
Berta et al. 2007). Deep integral-field near-IR spectroscopy is
being used to perform detailed studies of these precursor
candidates in order to understand what are the main mech-
anisms capable to assemble massive galaxies with short
timescales (e.g. Swinbank et al. 2006; Förster-Schreiber et al.
2006; Wright et al. 2007; Law et al. 2007). To date, the most de-
tailed case is represented by a BzK-selected star-forming galaxy
at z = 2.38 which shows a massive rotating disk with high veloc-
ity dispersion which may become unstable and lead to the rapid
formation of a massive spheroid (Genzel et al. 2006).

In this paper, we exploit the combination of GMASS ultra-
deep spectroscopy, HST imaging and optical – to – mid-infrared
photometry to study the global properties of a new sample of
passive galaxies at 1.3 < z < 2.0 in order to place new con-
straints on massive galaxy formation and evolution. This paper
refers to other papers where more details can be found on the
GMASS project (Kurk et al. 2007a, in preparation), the large
scale structure at z = 1.61 (Kurk et al. 2007b, in preparation),
the photometric Spectral Energy Distribution (SED) fitting anal-
ysis (Pozzetti et al. 2007, in preparation) and the morpholog-
ical analysis (Cassata et al. 2007, in preparation). We adopt
H0 = 70 km s−1 Mpc−1, Ωm = 0.3 and ΩΛ = 0.7, give magni-
tudes in AB photometric system, and assume a Chabrier (2003)
Initial Mass Function (IMF).

2. The GMASS sample

GMASS (“Galaxy Mass Assembly ultra-deep Spectroscopic
Survey” 1) is a project based on an ESO VLT Large Program
(Kurk et al. 2007a).

The GMASS main scientific driver is to investigate the phys-
ical and evolutionary processes of galaxy mass assembly in the
redshift range of 1.5 < z < 3, i.e. in the epoch when the crucial
processes of massive galaxy formation took place. Photometric
redshifts are not sufficient to fully address the above questions
because they provide limited clues on the physical and evolu-
tionary status of the observed galaxies. Spectroscopy is therefore
essential to derive reliable spectroscopic redshifts, to perform
detailed spectral and photometric SED fitting (with known spec-
troscopic redshift), and to characterize the nature and diversity
of galaxies at 1.5 < z < 3.

The first step was to select a sample at 4.5 µm by using the
GOODS-South public image taken at that wavelength with the
Spitzer Space Telescope equipped with IRAC (Dickinson et al.,
in preparation). Firstly, we defined a region of 6.8 × 6.8 arcmin2

(matching the field of view of FORS2) located within the
GOODS-South field2, and covering ∼80% of the Hubble Ultra
Deep Field (HUDF) (Beckwith et al. 2006). Secondly, the sam-
ple was selected by extracting all the sources present in that
field and having m4.5 < 23.0 (AB) (corresponging to a flux
density >2.3 µJy). This selection provided 1094 objects belong-
ing to what we call the GMASS sample, which is clearly a

1 http://www.arcetri.astro.it/~cimatti/gmass/gmass.

html
2 http://www.stsci.edu/science/goods
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pure flux-limited sample. Extended simulations showed that at
m4.5 < 23.0, the photometric completeness is ∼85% (Dickinson
& Rodighiero, private communications).

The GMASS sample was then used to extract a sub-sample
of target galaxies to be observed spectroscopically. To reach the
GMASS scientific aims, spectroscopy was very deep in order
to derive secure spectroscopic redshifts for the faintest galax-
ies and to obtain high-quality spectra for the brighter galaxies
in order to allow detailed spectral studies. The GMASS optical
multi-slit spectroscopy was done with the ESO VLT+ FORS2
(MXU mode) and focused on galaxies pre-selected with a cut in
photometric redshift of zphot > 1.4 in order to concentrate the
study on galaxies in the critical range of 1.5 < z < 3. In order to
make the spectroscopy feasible, two cuts in the optical magni-
tudes were adopted: B < 26.5 or I < 26.5 for spectroscopy done
in the blue (grism 300V) or in the red (grism 300I) respectively.
The integration times were very long (up to 32 h per spectro-
scopic mask), and the spectroscopy was optimized by obtaining
spectra in the blue (4000–6000 Å, grism 300V) or in the red
(6000–10 000 Å, grism 300I) depending on the colors and pho-
tometric SEDs of the targets. For both grisms, the slit width was
always 1 arcsec and the spectral resolution λ/∆λ ≈ 600. Despite
the faintness of the targets, GMASS spectroscopy provided an
overall spectroscopic redshift success rate of about 85% for the
targeted galaxies.

Overall, ≈50% of the GMASS flux-limited sample (m4.5 <

23.0) has available spectroscopic redshifts if we combine
our own spectroscopy with the literature redshifts (http://
archive.eso.org/archive/adp/GOODS), whereas the other
half has accurate photometric redshifts (see Kurk et al. 2007a).

In summary, the GMASS sample is a pure flux-limited sam-
ple selected with m4.5 < 23.0, and with spectroscopic (GMASS
or literature) or photometric redshifts available for each object in
the sample. The power and the novelty of the GMASS sample is
the selection at 4.5 µm, which is crucial for two main reasons: (1)
the peak of the stellar SEDs (λrest = 1.6 µm) is redshifted in the
4.5 µm band for z > 1.5, (2) it is sensitive to the rest-frame near-
IR emission, i.e. to stellar mass, up to z ≈ 3. For m4.5 < 23.0 and
a Chabrier IMF, the limiting stellar mass is log(M/M⊙) ≈ 9.8,
10.1, and 10.5 for z ≈ 1.4, z ≈ 2, and z ≈ 3, respectively. This al-
lows to properly investigate the galaxy mass assembly evolution
within a wide range of masses.

3. Passive galaxies in the GMASS sample

3.1. Spectroscopic selection and properties

At each redshift, the oldest envelope of the galaxy population
is a “fossil” tracer of past events of galaxy formation in a way
complementary to the study of galaxies with ongoing star for-
mation. ETGs can be used as “fossil” probes as they are usually
dominated by old, passively evolving stellar populations.

The rest-frame UV spectra of old and passive stellar
populations have specific features different from those of
younger or star-forming galaxies. The UV continuum is very
red, characterized by prominent breaks at 2640 Å and 2900 Å
and rich of metal absorptions (e.g. MgIλ2852, MgIIλ2800,
FeI and FeII lines) (e.g. Dunlop et al. 1996; Spinrad et al. 1997;
Cimatti et al. 2004; Saracco et al. 2005; Daddi et al. 2005a).
The combination of the strongest breaks and absorptions
at 2600–2900 Å produces the prominent MgUV feature
(Daddi et al. 2005a). The presence of this feature in a galaxy
spectrum ensures that very little if any star formation has taken
place over the last ∼0.5 Gyr, and therefore the galaxy is in a

Fig. 1. The MgUV index vs. the UV color index defined in the text, for
the GMASS galaxies with z > 1. All the selected high-z passive galaxies
fall within the box in the upper-left corner of the plot, having a distinc-
tively red UV color index. Also, all but three galaxies show a MgUV in-
dex greater than 1.2, typical of an evolved stellar population (see Daddi
et al. 2005).

passively evolving stage. This feature is also very important
to measure the spectroscopic redshifts of this kind of galaxies
using optical spectrographs, when for z > 1.4 the more promi-
nent features of ETGs such as the CaII H&K doublet and the
Balmer/4000 Å breaks fall outside the optical spectral range.

Following this approach, the GMASS spectroscopic dataset
was used to search for passively evolving galaxies at z > 1.4
with the MgUV feature present in their spectra (Mignoli et al., in
preparation). This was achieved by deriving a color index of the
UV continuum of each GMASS galaxy with available spectrum
and spectroscopic redshift z > 1, and searching for the red con-
tinuum spectra expected in the case of passive galaxies. This UV
color was defined as:

C(29 − 33) = −2.5 log[Fν(2900)/Fν(3300)]

where Fν(2900) and Fν(3300) are the mean spectral contin-
uum flux densities within the rest-frame wavelength bins at
2700–3100 Å and 3100–3500 Å respectively. The continuum
flux densities were measured in fixed rest-frame spectral ranges
and adopting a sigma-clipping procedure which ensures that
spikes due to bad sky subtraction and/or to cosmic rays residuals
do not affect the measured values. The errors were then com-
puted from the standard deviations.

Figure 1 shows that a strong color segregation is present,
with 13 galaxies at 1.39 < z < 1.99 having C(29−33)
significantly redder than the rest of the GMASS spectro-
scopic sample. These red galaxies have also a MgUV index
in the range expected for passive galaxies (Daddi et al. 2005a).
The visual inspection of these 13 spectra confirmed their
similarity with the spectra of LBDS 53w091 (see Fig. 1)
(Dunlop et al. 1996; Spinrad et al. 1997) and of old passive
galaxies at z > 1 taken from the K20 and GDDS surveys
(Mignoli et al. 2005; Cimatti et al. 2004; McCarthy et al. 2004).

http://archive.eso.org/archive/adp/GOODS
http://archive.eso.org/archive/adp/GOODS
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20078739&pdf_id=1
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Fig. 2. The individual spectra of the selected galaxies ordered with increasing redshift from bottom to top in each panel. The red line is the spectrum
of the old galaxy LBDS 53w091 (z = 1.55; Dunlop et al. 1996; Spinrad et al. 1997) used to search for spectra with a similar continuum shape.

Table 1. The sample of passive galaxies.

ID Coordinates (J2000) m4.5 I Ks B − z z − Ks spec-z Fobs([O II]λ3727) EWobs([OII]λ3727)
×10−18 erg s−1 cm−2 Å−1 Å

472 53.1588440 –27.7971249 21.04 25.29 21.72 3.25 2.57 1.921 – –
996 53.1538162 –27.7745972 21.36 25.27 22.02 3.57 2.27 1.390 <1 <7

1498 53.1746445 –27.7533722 20.72 25.35 21.57 2.54 2.80 1.848 – –
2111 53.1164055 –27.7126999 20.64 24.58 21.31 3.99 2.52 1.610 <2 <6
2148 53.1512375 –27.7137375 19.80 24.17 20.50 4.57 2.71 1.609 <2 <5
2196 53.1527710 –27.7162437 20.34 24.53 20.92 4.28 2.51 1.614 <2 <10
2239 53.1304817 –27.7211590 20.61 24.53 21.24 4.08 2.39 1.415 4.0± 0.5 22 ± 4
2286 53.1249580 –27.7229443 20.82 25.08 21.55 3.69 2.53 1.604 3.5± 0.5 29 ± 5
2355 53.0596466 –27.7258034 20.93 24.83 21.78 2.90 2.30 1.610 <2 <9
2361 53.1085548 –27.7101574 20.40 24.90 21.10 4.08 2.71 1.609 8.0 ± 1.0 26 ± 4
2470 53.1421547 –27.7112675 20.16 23.70 20.68 3.85 2.14 1.416 <2 <4
2543 53.1496468 –27.7113838 20.26 25.24 21.25 3.40 3.20 1.612 15.0± 5.0 100± 40
2559 53.1764069 –27.7011585 20.71 24.84 21.60 3.37 2.81 1.981 – –

All the other GMASS spectra of galaxies at z > 1 were
visually inspected in order to check for other passive/red galax-
ies with spectra that may have missed by the UV color criterion,
but no other cases were found. The question of how many other
red/passive ETGs are present in the whole GMASS flux-limited
sample (i.e. including also galaxies with only photometric red-
shifts) is beyond the scope of the present work and is being ad-
dressed in another paper (Cassata et al. 2007, in preparation).

The spectra of the 13 selected galaxies are shown in Fig. 2
and some properties are listed in Table 1. Seven of these galax-
ies belong to a large scale structure at z = 1.61 that is dis-
cussed in a companion paper (Kurk et al. 2007b). Ten spectra
were obtained with an integration time of 30 h each, whereas
three (IDs 2111, 2239, 2559) were repeated in two independent
masks and each of them accumulated an integration time of 60 h.
The two galaxies located within the HUDF (IDs 472 and 996)
were also consistently identified by Daddi et al. (2005a) (their
IDs 3650 and 8238 respectively) using HST+ACS slitless grism
spectroscopy (GRAPES project; Pirzkal et al. 2004).

Six spectra show no signs of star formation due to the lack
of [O II]λ3727 emission, four have weak [O II] emission, and

for the three galaxies at z > 1.8 (IDs 472, 1498, 2559) there is
no information on [OII]λ3727 because the line falls outside the
observed spectral range. Assuming that the [O II] emission line
fluxes (Table 1) are not due to an AGN, and using the conver-
sion from [OII]λ3727 luminosity and star formation rate (SFR)
of Kennicutt (1998), we derive SFR ≈ 1–4 M⊙ yr−1 for the four
galaxies with [OII]λ3727 emission (see Table 1). If dust extinc-
tion is present, these SFRs are lower limits. However, the sim-
ilarity of the spectra of these four galaxies with the spectra of
galaxies without line emission suggests that the bulk of the stars
is made by old stellar population and that the [OII]λ3727 emis-
sion is probably due to a minor episode of star formation (see
also Sect. 5.2 on the specific star formation rate), or to weak
nuclear activity.

While the presence of type 1 AGN is excluded by the lack
of broad emission lines (e.g. MgIIλ2800), we cannot rule out
the presence of hidden AGN activity. For instance, Yan et al.
(2006) found that a large fraction of SDSS galaxies at z < 0.1
with red rest-frame colors and emission lines display line ratios
typical of various types of AGNs (LINERs, transition objects,
and, more rarely, Seyferts) rather than of star-forming galaxies.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20078739&pdf_id=2
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In the case of our spectra, emission line ratio studies are not pos-
sible because the relevant lines fall outside the observed range.
This implies that the above SFRs could be taken as upper lim-
its. However, the lack of high ionization lines (e.g. [NeV]λ3426)
makes the AGN hypothesis unlikely. The presence of hidden lu-
minous AGNs is also excluded by the stacking analysis of the
X-ray data (see Sect. 4). Therefore, we conclude that the [OII]
emission in these 4 galaxies is likely due to a very low level of
ongoing star formation.

In the present paper, we focus the analysis on these 13 galax-
ies for which ultradeep GMASS spectra are available. We only
mention here that other passive galaxy candidates are present
in the GMASS sample in the same redshift range. However,
no spectroscopic redshifts are available for these candidates and
their properties are based only on the similarity of their SED fit-
ting parameters with those of the 13 spectroscopic passive galax-
ies discussed here (see Sect. 5.2). The detailed study of these
candidates will be the subject of a forthcoming paper (Cassata
et al. 2007, in preparation).

3.2. Analysis of the 480-h stacked spectrum

The availability of deep individual spectra provides the opportu-
nity to add them together and to obtain a stacked spectrum with
unprecedented depth and suitable for a detailed analysis. We em-
phasize that the GMASS stacked spectrum of the 13 ETGs has
an equivalent integration time of (10× 30 h)+ (3× 60 h)= 480 h
(1.73 Ms). The need for such extremely long integration times
highlights the limits of the current generation of 8–10 m tele-
scopes in obtaining spectra of red passive galaxies with faint op-
tical magnitudes down to I ≈ 25–26. Moreover, near-infrared
continuum and absorption line spectroscopy of this kind of
galaxies with Ks � 21 is beyond the current limits of 8–10 m
telescopes. Thus, these galaxies are ideal targets for the next gen-
eration of large telescopes on the ground (e.g. E-ELT, TMT) and
in space (JWST).

The stacked spectrum shown in Figs. 3–4 was obtained
by averaging all the 13 individual spectra (average redshift
〈z〉 = 1.6). In particular, each spectrum was blue-shifted to the
rest-frame according to its redshift (with a 1.0 Å rest-frame bin)
and normalized in the 2600–3100 Å wavelength range, which
is always covered in the observed spectral window. In order
to avoid any bias towards the brightest galaxies with the high-
est S/N ratio, the same weight was assigned to each individual
spectrum. The main features present in the stacked spectrum
are listed in Table 2. The stacked spectrum is publicly avail-
able at http://www.arcetri.astro.it/~cimatti/gmass/
gmass.html.

Figure 3 shows a comparison between the average spectrum
of all 13 GMASS ETGs and those of K20 (Cimatti et al. 2004)
and GDDS (McCarthy et al. 2004) samples. With the exception
of the composite GDDS spectrum at 1.6 < z < 1.9 (slightly
bluer and with less pronounced MgUV feature), the spectra are
very similar to each other both in the strength of the Mg-UV
feature and continuum slope.

The observed average spectrum was compared to various li-
braries of synthetic spectra of simple stellar populations (SSPs)
in order to attempt an estimate of the age of the stellar popu-
lation dominating the rest-frame UV spectrum covered by our
observations. In practice, limiting the analysis to this part of the
spectrum provides an estimate of the time elapsed since the last
major episode of star formation. As such, this estimate must be

Fig. 3. Comparison of rest-frame UV spectra of passively evolving
galaxies from GMASS (this work), K20 (Cimatti et al. 2004) and
GDDS (McCarthy et al. 2004) surveys.

regarded as a lower limit to the age of the bulk of the stars in
these galaxies. As a second step we included also the rest-frame
near-IR, so as to have an estimate of the age of the bulk stellar
populations in these galaxies (see Sect. 5.2).

For the fitting analysis, we adopted three libraries of syn-
thetic spectra: Maraston (2005, M05) (Kroupa 2001, IMF),
Bruzual & Charlot, BC03) (Chabrier, IMF), and its update
(Charlot & Bruzual 2007; CB07) (Chabrier, IMF). The main dif-
ference among the three sets of models is in the treatment of
the thermally pulsing asymptotic giant branch (TP-AGB) phase
of stellar evolution, which for intermediate age SSPs can con-
tribute up to ∼50% to the total bolometric light, radiated mostly
in the near-IR (Renzini 1981; Maraston 1998, 2005; Maraston
et al. 2006). In M05 models the TP-AGB contribution was cali-
brated using Magellanic Cloud globular clusters of various ages,
whereas BC03 models had a negligibly small contribution of the
TP-AGB at all ages (M05). With CB07 an attempt was made to
obviate to this deficiency (Bruzual 2007). We concentrate here
on the analysis of the rest-frame UV spectrum alone, for which
the TP-AGB contribution is irrelevant, postponing to Sect. 5.2
the inclusion of the whole photometric information on these
galaxies, including the rest-frame near-IR.

The BC03 and CB07 models have a spectral resolution of
λ/∆λ ∼ 300 (i.e. ∼10 Å) for λ < 3300 Å and ∆λ ∼ 3 Å for
λ > 3300 Å, whereas the M05 spectra have λ/∆λ ∼ 300 at all
wavelengths. The observed stacked spectrum (resolution λ/∆λ ∼
600, i.e. ∆λ ∼ 2 Å at λrest = 3000 Å, 〈z〉 = 1.6) was rebinned to
match the resolution of the model spectra.

The best fit age for each set of synthetic templates was de-
rived through a χ2 minimization over the rest-frame wavelength
range 2480–3560 Å that is covered completely by 11 out of the
13 spectra. The rms as a function of wavelength used in the χ2

procedure was estimated from the average spectrum computing
a running mean rms within 20 Å and 10 Å for λ < 3300 Å and
λ > 3300 Å respectively. All ages available in the model spectra

http://www. arcetri.astro.it/~cimatti/gmass/gmass.html
http://www. arcetri.astro.it/~cimatti/gmass/gmass.html
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20078739&pdf_id=3
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BC03, 1.0 Gyr 

M05, 1.0 Gyr, 

GMASS 480-hour spectrum 

BC03, 1.0 Gyr 

M05, 1.0 Gyr, 

GMASS 480-hour spectrum 

Fig. 4. The average spectrum of GMASS passive galaxies (black) and two synthetic spectra which provide the formal best fit in the range of
2480–3560 Å for solar metallicity and age of 1.0 Gyr for all the models (BC03 and M05). The CB07 best fitting spectrum is not shown because it
is identical to the BC03 one. The question mark indicates an unidentified absorption feature at ∼3018 Å. The stacked spectrum is publicly available
at http://www.arcetri.astro.it/~cimatti/gmass/gmass.html.

libraries were used, and we initially adopted AV = 0 during the
fitting.

In the case of solar metallicity, the best fitting spectra have
an age of 1.0 Gyr for all models (BC03, M05 and CB07) (Fig. 4),
indicating the three sets of models are virtually equivalent in this
wavelength range (BC03 and CB07 are actually identical, the
only difference being at longer wavelengths).

In order to assess the relevance of the age-metallicity degen-
eracy, we explored how the estimated age changes as a func-
tion of metallicity Z with BC03/CB07 models. This was done
by assuming no dust extinction (AV = 0) and evaluating how
the best-fitting age changes as a function of Z using six values
of metallicity: Z = 0.0004, 0.001, 0.004, 0.008, 0.019, 0.03. We
found that the best-fit ages vary from 0.7 Gyr to 2.8 Gyr for
Z = 1.5–0.2 Z⊙. Lower metallicities (Z < 0.2 Z⊙) are excluded
because they never reproduce the observed spectrum. Although
the results of the SED fitting (see Sect. 5.2) exclude the pres-
ence of substantial dust extinction (not surprisingly, as most of
the sample galaxies show no or very weak star formation), we

also studied the effects of including the dust attenuation in the
fitting process. This was done by leaving the stellar age and the
dust extinction (AV) as free parameters for each fitting done with
a fixed metallicity Z (with 0.0004 ≤ Z ≤ 0.03, with the same six
metallicity values as above). The dust extinction was allowed to
vary in the range of 0 ≤ AV ≤ 0.6 in order to be consistent
with the results of the SED fitting of Sect. 5.2. Compared to the
case with no dust extinction (AV = 0), the best-fitting ages were
found to slightly decrease to 0.6–2.3 Gyr for Z = 1.5–0.2 Z⊙.
This excercise clearly showed that the dominant degeneracy is
the one of age and metallicity, which become substantial when
using the UV spectrum alone.

We note that in all cases, the oldest acceptable ages never
exceed the age of the Universe (3.27 Gyr) at the redshift
(z = 1.981) of the most distant galaxy in the stacked spectrum.
Figure 4 shows the best-fitting model spectra (for Z = Z⊙) and
the observed stacked spectrum. However, Fig. 5 shows that the
same model spectra which provide equally good fits in the rest-
frame UV differ significantly at longer wavelengths (see also

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20078739&pdf_id=4
http://www. arcetri.astro.it/~cimatti/gmass/gmass.html
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Table 2. Spectral features in the stacked spectrum.

Feature Value Type Reference

FeII 2344 4.5± 0.3 Å Equivalent Width Ponder et al. (1998)
FeII 2382 6.0± 0.4 Å Equivalent Width Ponder et al. (1998)
BL 2538 5.0± 1.0 Å Equivalent Width Ponder et al. (1998)
B2640 1.59± 0.06 Continuum Break Spinrad et al. (1997)
B2900 1.27± 0.03 Continuum Break Spinrad et al. (1997)
MgII 2800 8.0± 0.6 Å Equivalent Width Ponder et al. (1998)
MgI 2852 8.0± 0.6 Å Equivalent Width Ponder et al. (1998)
BL 3096 2.5± 0.5 Å Equivalent Width Ponder et al. (1998)
NH 3360 2.5± 0.4 Å Equivalent Width Ponder et al. (1998)
MgUV 1.40± 0.1 Continuum Break Daddi et al. (2005)

Fig. 5. Same as in Fig. 4, but including also the CB07 best fitting spec-
trum (green) and showing how the templates differ with each other at
longer wavelengths. The observed stacked spectrum is shown in cyan.
The black dots are the rest-frame photometry of the galaxies normalized
at λrest = 0.5 µm (see text for more details).

Maraston et al. 2006). Figure 5 shows also the “stacked” photo-
metric SED obtained by de-redshifting the multi-band photome-
try (BVIzJHKs + 3.6 µm, 4.5 µm, 5.8 µm, 8 µm) of each galaxy
and normalizing it to the average flux of the three SSP spectra
at λrest = 0.5 µm, a wavelength at which all the three model
spectra are nearly identical. The photometry of ID 2543 was ex-
cluded because significantly redder from the SEDs of the other
12 galaxies at λrest > 1 µm. Figure 5 shows that for the three
different SSP spectra with a fixed age of 1 Gyr, the “stacked”
photometric SED is in better agreement with the M05 model
(although the scatter in the photometry is significant). The same
figure also clearly suggests that more stringent constraints on the
stellar population content of the passive galaxies come from the
photometric SED fitting analysis extended to the Spitzer Space
Telescope IRAC bands. This is discussed in details in Sect. 5.2.

4. X-ray and 24 µm emission

In order to search for additional indicators of “activity” due to
hidden star formation and/or AGN, we explored whether the

13 passive galaxies were detected in the X-ray or 24 µm data
using the Chandra X-ray Observatory and the Spitzer Space
Telescope+MIPS data publicly available for the GOODS-
South/GMASS region.

X-ray data for a total exposure time of ∼1 Ms obtained with
the Chandra observatory in the GOODS/CDFS field have been
published and made publicly available by Giacconi et al. (2002,
see also Alexander et al. 2003). The limiting flux of the X-ray
data is ∼1 × 10−16 erg cm−2 s−1 in the full band at 0.5–7 keV.
We searched for individual emission from the 13 objects in the
present sample by cross-correlating the IRAC positions of our
targets with the positions of X-ray sources as catalogued by
Giacconi et al. (2002) and Alexander et al. (2003). We found
that none of the 13 sources was individually detected in the
X-rays. In order to constrain the average X-ray properties of
our sample galaxies, we used the “stacking technique” follow-
ing Brusa et al. (2002). For the photometry, a circular aper-
ture with a radius of 2′′ centered at the positions of our sources
was adopted. The counts were stacked in the standard soft, hard
and full bands (0.5–2 keV, 2–7 keV, and 0.5–7 keV) for a to-
tal effective exposure time of ≈11 Ms. Extensive Monte Carlo
simulations (up to 10 000 trials) have been carried out by shuf-
fling 13 random positions and using the same photometry aper-
ture (2 arcsec). The random positions were chosen to lie in “lo-
cal background regions” to reproduce the actual background as
close as possible. In none of the bands (full, hard, soft), a sig-
nal has been significantly detected. The background counts at
0.5–2 keV imply a count rate of <5.2 × 10−6 counts s−1 and a
flux <3 × 10−17 erg cm−2 s−1 assuming an unobscured Γ = 2.0
power-law spectrum. This implies upper limits on the rest-frame
luminosity of <5.2 × 1041 erg s−1 at 0.5–2 keV. These limits im-
ply that a luminous AGN source (LX > 1042 erg s−1) is absent in
the passive galaxies of our sample or is very heavily obscured.

Around z ≈ 1, about 20% of the morphologically-selected
ETGs show some level of “hidden” activity revealed through
the mid-IR emission at 24 µm (Rodighiero et al. 2007). Mid-
infrared emission was searched using the public data available
for GOODS-South obtained with Spitzer+MIPS at 24 µm with
an integration time of about 10 h per sky pixel. The photome-
try was based on a PSF fitting algorithm, where the SExtractor
(Bertin & Arnouts 1997) positions of the IRAC sources were
used as input to the MIPS source extraction process (Chary et al.
in preparation; see also Daddi et al. 2007a,b for more details).
None of the 13 galaxies is a strong MIPS source. The fluxes of
12 galaxies are not significant (<2−3σ) and F24 < 20 µJy. The
only exception is object ID 2543 which has a possible detection
at 4.7σ significance level with a flux F(24) = 24.7 ± 5.3 µJy.
We recall that ID 2543 is also the galaxy with the strongest
[OII]λ3727 emission. If the 24 µm emission is real and due
to star formation activity, and extrapolating from the 24 µm
measurements using the spectral templates of Chary & Elbaz
(2001; see for instance Daddi et al. 2007a,b, the implied infrared
(bolometric) luminosity is ≈1.4 × 1011 L⊙. If we convert this
luminosity into a SFR using the recipe of Kennicutt (1998),
we obtain ≈24 M⊙ yr−1, higher than the estimate based on
[OII]λ3727 luminosity (4 M⊙ yr−1) or SED fitting (12 M⊙ yr−1

with BC03 models).

5. Photometric properties and SED fitting

5.1. Colors

The location of the selected galaxies in the I − Ks vs. Ks − m4.5
two-color plot is displayed in Fig. 6, showning that these

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20078739&pdf_id=5
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Fig. 6. The location of the selected passive galaxies (red filled circles)
in the I−Ks vs. Ks−m4.5 diagram. Open blue symbols indicate GMASS
galaxies with spectroscopic redshifts.

passive galaxies are among the reddest in both colors if com-
pared to the GMASS galaxies with spectroscopic redshifts. In
particular, their colors are all broadly consistent with the ones
expected for passively evolving galaxies in the BzK diagram
(Fig. 7) (Daddi et al. 2004b), especially when allowance is made
for photometric errors. Note instead that these galaxies do not
qualify as “Distant Red Galaxies” (DRGs, Franx et al. 2003),
because they are all at z < 2, whereas the DRG selection cri-
terion (J − Ks > 2.3 or J − Ks > 1.37 in Vega or AB system) is
designed to select passive galaxies at z > 2. Indeed, the J − Ks
colors of our passive galaxies are all consistently J − Ks ≤ 1.37
(actually, 0.7 < J − Ks ≤ 1.37).

5.2. SED fitting

As discussed in Sect. 3.2 and in previous studies (e.g.
Cotter et al. 2006; Maraston et al. 2006), the rest-frame UV
spectra are only sensitive to the most recent star formation
events, whereas including in the analysis all the available photo-
metric bands extending to the rest-frame near-IR should allow us
to gather information also on the previous star formation history
(SFH).

The photometric SED was derived for each of the
13 ETGs using the public images available in the GOODS-
South field including 11 bands: optical (HST+ACS, BVIz;
Giavalisco et al. 2004), near-infrared (ESO VLT+ ISAAC,
JHKs) and mid-infrared (Spitzer+IRAC, 3.6 µm, 4.5 µm,
5.8 µm, 8 µm, Dickinson et al. in preparation).

We have used the synthetic spectra of M05 (Kroupa IMF)
and BC03/CB07 (Chabrier IMF), adopting exponentially de-
clining star formation histories SFR = (M/τ) exp(−t/τ) with
τ = 0.1, 0.3, 1, 2, 3, 5, 10, 15, and 30 Gyr, plus the case of
constant star formation rate. For each value of τ, a set of syn-
thetic SEDs is pre-calculated for ages (since the beginning of
the model at t = 0) of 0.1, ..., 12 Gyr, in steps of 0.1, Gyr,
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Fig. 7. The location of the selected passive galaxies (red filled circles)
in the BzK color-color diagram (Daddi et al. 2004b). Blue open circles,
black filled circles and triangles indicate GMASS galaxies with known
spectroscopic redshifts z < 1.4, 1.4 ≤ z ≤ 2.5 and z > 2.5 respectively.
The red error bars in the bottom left corner indicate the average photo-
metric uncertainty on the z−Ks and B− z colors for the selected passive
galaxies. The errors on B− z are very large due to the very faint B-band
magnitudes.

and only τ-models with ages less than the age of the Universe
at the redshift of each galaxy are retained in the best-fit proce-
dure. Extinction has been treated as a free parameter in the op-
timization, having adopted the extinction curve of Calzetti et al.
(2000). We have adopted solar metallicity for all the models.
The fitting procedure selects the template spectrum that mini-
mizes the χ2, and therefore gives a value for each of four pa-
rameters: the “age” of the best-fitting model, the e-folding time
of the SFR τ, the extinction AV, and the stellar mass. This lat-
ter quantity comes from the absolute normalization of the SED,
once the best-fitting model has been chosen as the one providing
the closest SED shape to the observed SED.

We caution that an exponentially declining SFR is certainly a
convenient mathematical assumption, but the actual star forma-
tion history may be significantly different. At least for models
with small τ values, the “age” given by the best-fitting proce-
dure must be interpreted as the age of the bulk stellar population
of a galaxy. Of course, real galaxies are likely to contain also
stars significantly older than the “age” derived in this way. On
the other hand, the best fit “age” derived from just the rest-frame
UV spectrum (as in Sect. 3.2) corresponds to the age of the last
significant episode of star formation.

During the fitting, only the observed bands corresponding
up to the rest-frame Ks-band (λrest < 2.5 µm) were used in or-
der to avoid any dust emission contamination. The redshifts are
taken from the GMASS spectroscopy and are not free parame-
ters, hence largely reducing the SED fitting degeneracies often
occurring when also the (photometric) redshift is a free parame-
ter. The absence of luminous AGN sources as inferred from the
X-ray and 24 µm data (see previous Section) implies that the ob-
served flux measured from the sample galaxies is dominated by

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20078739&pdf_id=6
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20078739&pdf_id=7
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Table 3. Photometric SED fitting results (Z = Z⊙).

ID MB Age AV M SFR τ Age AV M SFR τ Age AV M SFR τ

BC03 M05 CB07
472 –22.09 0.7 0.6 10.67 0.55 0.1 0.8 0.0 10.49 0.14 0.1 0.8 0.3 10.58 0.19 0.1
996 –20.42 1.3 0.6 10.30 0.01 0.1 0.8 0.6 10.16 0.07 0.1 1.3 0.0 10.03 0.01 0.1
1498 –21.88 1.6 0.6 10.89 2.07 0.3 0.7 0.4 10.61 0.45 0.1 2.0 0.0 10.77 0.43 0.3
2111 –21.80 2.3 0.1 10.86 0.20 0.3 1.1 0.0 10.61 0.01 0.1 1.1 0.1 10.56 0.01 0.1
2148 –22.52 1.3 0.4 11.04 0.01 0.1 1.3 0.2 11.02 0.01 0.1 2.8 0.0 11.19 0.09 0.3
2196 –22.15 1.3 0.3 10.84 0.00 0.1 1.3 0.0 10.79 0.00 0.1 1.1 0.1 10.68 0.01 0.1
2239 –21.40 1.3 0.5 10.64 0.00 0.1 1.1 0.2 10.54 0.01 0.1 1.0 0.5 10.56 0.02 0.1
2286 –21.39 2.0 0.5 10.80 0.47 0.3 1.1 0.2 10.56 0.01 0.1 2.3 0.1 10.71 0.14 0.3
2355 –21.62 0.8 0.6 10.54 0.17 0.1 0.9 0 10.36 0.04 0.1 0.8 0.4 10.44 0.14 0.1
2361 –21.85 2.8 0.2 11.04 0.07 0.3 1.4 0.2 10.83 0.00 0.1 3.0 0.0 10.99 0.03 0.3
2470 –22.07 2.2 0.1 10.94 0.33 0.3 1.1 0.0 10.71 0.01 0.1 1.0 0.3 10.73 0.03 0.1
2543 –21.30 1.1 1.8 11.00 12.4 0.3 1.0 0.6 10.69 0.03 0.1 2.1 0.6 10.88 0.40 0.3
2559 –22.09 2.2 0.1 10.95 0.34 0.3 1.0 0.0 10.67 0.03 0.1 1.1 0.0 10.63 0.01 0.1

Mean –21.79 1.6 0.4 10.81 0.35 0.2 1.1 0.2 10.62 0.06 0.1 1.6 0.2 10.67 0.12 0.2
rms 0.53 ±0.6 ±0.2 ±0.22 ±0.57 ±0.1 ±0.2 ±0.2 ±0.28 ±0.12 ±0.0 ±0.8 ±0.2 ±0.28 ±0.15 ±0.1

Rest-frame absolute magnitudes (MB) are relative to BC03 fitting. The three groups of columns (Age, AV,M, SFR, τ) are relative to BC03, M05
and CB07 models respectively. The mean and rms of AV and SFR for BC03 models are given excluding the highly discrepant values for object
2543. The units are Gyr, mag, log(M/M⊙), M⊙ yr−1 and Gyr for Age, AV, Mass, SFR, τ respectively.

stellar radiation. We have also explored the effect of assuming
other than solar metallicities, from sub-solar to super-solar. This
was attempted only using the CB03/BC07 models, but the best
fit was always achieved for solar metallicity. Table 3 shows the
main results of SED fitting in the case of solar metallicity.

5.2.1. The stellar masses and their uncertainties

The procedure adopted here for measuring the stellar masses is
basically the same as that generally followed in the literature
(e.g. Fontana et al. 2004, 2006; Longhetti et al. 2005; Bundy
et al. 2005, 2006; Pozzetti et al. 2007; Trujillo et al. 2007). While
the details of our procedure are extensively discussed in Pozzetti
et al. (2007), we recall here a few points. The internal accuracy
of the measured stellar masses is ∼0.2 dex, as derived from the
width of the probability distributions in the fitting procedure. In
addition to this typical internal error, systematic errors should
also be mentioned. A first source of systematics is the choice
of the IMF, which is not a free parameter in our procedure, but
must be adopted a priori. Stellar masses derived assuming the
Kroupa IMF are systematically higher by 0.04 dex than those
derived assuming the Chabrier IMF, and this difference was sub-
tracted from the masses derived with Maraston (2005) models
(using Kroupa IMF), in order to allow a homogeneous compari-
son with the masses derived using the Bruzual & Charlot (2003)
and the Charlot & Bruzual (2007) models. The use of a straight,
single-slope Salpeter IMF would result in masses about 70%
higher. Another source of uncertainty is the assumption made
on the star formation history. For instance, detailed simulations
(e.g. Fontana et al. 2004; Pozzetti et al. 2007) showed that in the
case of an underlying exponentially declining SFH with SFR ∝
exp(−t/τ) plus random bursts of star formation superimposed
on it, the estimated stellar masses become higher by ≈30–40%.
Finally, as mentioned above the stellar population models dif-
fer in their treatment of the TP-AGB phase of evolution, which
is particularly important for stellar populations in the age range
0.5−2 Gyr, and most of the galaxies in the present study fall
in this range of ages. As already pointed out by Maraston et al.
(2006) and Wuyts et al. (2007), BC03 models give stellar masses
that are systematically larger by ≈40–60% than those estimated

with M05 models (see Fig. 8). This is most likely due to the best
fitting algorithm boosting the mass in order to compensate for
the lacking TP-AGB contribution in the BC03 models. The stel-
lar masses from CB07 and M05 models are instead in fairly good
agreement. It is important to remind that similar uncertainties on
photometric stellar masses are also present in the SED fitting
of low-z SDSS galaxies (see Kauffmann et al. 2003). However,
we also recall that the stellar masses are generally in good agree-
ment with the dynamical masses, especially for early-type galax-
ies (see e.g. Drory et al. 2004; di Serego Alighieri et al. 2005;
Rettura et al. 2006).

The stellar masses (and luminosities) of our sample galax-
ies span a rather wide range of values, from very massive and
luminous (like the high-z ETGs discussed in Cimatti et al. 2004;
McCarthy et al. 2004), to a regime of lower luminosity and stel-
lar masses that was possible to reach thanks to the deep GMASS
spectroscopy (−20.4 < MB < −22.5, 10.0 < log (M/M⊙) <
11)).

5.2.2. The age of the dominant stellar population

In the case of M05 models the ages of the dominant stellar
populations are remarkably homogeneous around ∼1 Gyr, with
a small scatter of ±0.2 Gyr (Table 3). The best fit is always
achieved with the smallest e-folding time, i.e., τ = 0.1 Gyr.
Being 〈z〉 = 1.6 for these galaxies, this age estimate implies
that the bulk of the stellar populations should have formed at
z = 2−2.5. The same procedure applied to BC03 and CB07 mod-
els gives a somewhat older average age, ∼1.6 Gyr, implying a
peak formation redshift ∼2.5−3. However, in this case there ap-
pears to be a much larger age dispersion (±0.8 Gyr), with some
ages being as high as ∼3 Gyr, corresponding to a peak formation
redshift ∼5. In general, for these older galaxies the e-folding
time indicated by CB07 models is longer, and the stellar mass
somewhat higher than indicated by M05 models. This discrep-
ancy suggests that the two sets of models are still appreciably
different, most likely in the way the TP-AGB phase is imple-
mented, as it is clearly shown in Fig. 5.

We note that for all galaxies when using M05 models, and
for most using the CB07 ones, the SED ages derived in this
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Fig. 8. Comparison between stellar masses derived with Bruzual &
Charlot (2003), Maraston (2005) (filled circles) and Charlot & Bruzual
(2007) (open circles) synthetic spectral templates.

section are very much consistent with that derived solely from
the rest-frame, stacked UV spectrum in Sect. 3, i.e. ∼1 Gyr. We
interpret this agreement as an additional indication that most of
the star formation activity was confined within a short time in-
terval, short compared to the typical age (∼1 Gyr) of the stellar
populations. In this respect, we also note that in spite of τ mod-
els having been widely used in the literature, nature may have
proceeded differently: rather then starting abruptly at its maxi-
mum intensity and then declining exponentially, star formation
is likely to have started at low level at very high redshift, then
increasing exponentially as mass is accumulated with Ṁ ∝ M
(Daddi et al. 2007a), and finally suddenly truncated by feedback
effects. If so, an inverted τ model would be more appropriate.

We can conclude that, by and large, our analysis indicates
that the bulk of stars in these passively evolving galaxies must
have formed at z ≈ 2−3, a result in excellent agreement with
the evidence for ETGs from z = 0 to z ≈ 1 (as extensively re-
viewed in Renzini 2006), as well as for other z > 1.4 ETGs
(Cimatti et al. 2004; McCarthy et al. 2004; Daddi et al. 2005a;
Saracco et al. 2005; Longhetti et al. 2005; Kriek et al. 2006).

5.2.3. Extinction and star formation rates

By giving an age and an e-folding time, the best fitting pro-
cedure automatically implies an ongoing SFR for each galaxy.
Note however that the procedure is not specifically optimized
to estimate this quantity, and therefore the results should be re-
garded only as rough estimates or upper limits. Nevertheless,
these implied SFRs are typically very low, especially in the case
of M05 models, as indeed expected for passive galaxies. For two
galaxies (ID 1498 and 2543) BC03/CB07 models give substan-
tially higher SFRs than for all other galaxies, and one of them
(ID 2543) is the one with the strongest [OII]λ3727 flux and the
only one marginally detected at 24 µm.

Even assuming the SFRs in Table 3 at face value, the
implied specific star formation rates are very low (i.e. star

Fig. 9. Comparison between the average spectrum of GMASS passive
galaxies and the three synthetic spectral templates corresponding to the
average best fit results of the photometric SED fitting. The spectral res-
olution of the templates is lower than in the stacked spectrum.

formation rate per unit mass, SSFR= SFR/M), as shown in
Fig. 10. These SSFRs are typical of the lower envelope of the
SSFR distribution at 1 < z < 2 characteristic of the general pop-
ulation of the oldest galaxies with just residual, if any star forma-
tion (Feulner et al. 2005; Juneau et al. 2005; Kriek et al. 2006),
This implies that our sample galaxies cannot increase their stel-
lar mass significantly at the current rate of star formation. For
instance, they cannot double their mass from the look-back time
of their redshifts to the present day. The inverse of the SSFR rep-
resents the characteristic secular timescale of the stellar mass
growth. For our sample galaxies, these timescales are in the
range of 30–104 Gyr.

The dust extinction inferred from the SED fitting analysis
is generally very low (with some exceptions with BC03 model
fitting). By forcing AV = 0 the results of the SED fitting do not
change substantially: the median age increases by a factor of 2
for BC03 and<25% for both M05 and CB07, τ slightly increases
by 20% and 5% for BC03 and CB07 respectively, whereas no
significant changes occur for the stellar masses (5% for BC03
and <2% for M05 and CB07). The test with AV = 0 indicate that
the results of the SED fitting are stable (especially for M05 and
CB07 models) and that the major source of uncertainty remains
the choice of the synthetic spectra library.

The properties inferred with SED fitting are in broad agree-
ment with the characteristics of the UV spectra, as shown in
Fig. 9 where the stacked spectrum of the passive galaxies is com-
pared with the three synthetic spectral templates corresponding
to the average best fit results of the photometric SED fitting (see
Table 3).

6. Morphological properties

6.1. The HST data

Thanks to the availability of deep and ultradeep HST imag-
ing from GOODS and HUDF projects, it was possible to

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20078739&pdf_id=8
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20078739&pdf_id=9
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Fig. 10. The SSFRs of galaxies with star formation activity detected in
the spectra or inferred from the photometric SED fitting. The blue cir-
cles indicate the four galaxies with observed [OII]λ3727 emission. The
red circles show the galaxies for which the formal SFR comes from the
the photometric SED fitting (with BC03 models). With M05 or CB07
models, the SSFRs are even smaller or close to SSFR∼0. Black circles
indicate the general distribution of galaxies in the same redshift range
of our sample (1.3 ≤ z < 2) using the data of Feulner et al. (2005).
The dashed line indicates the SSFR required to double a galaxy’s mass
between the average redshift in this 1.3 ≤ z < 2 bin and the present
(assuming a constant SFR).

complement the spectroscopy and photometry with quantitative
morphological information. GOODS has surveyed the Chandra
Deep Field South (CDFS) with ACS and filters F435W (B),
F606W (V), F775W (I) and F850LP (z), with exposure times
respectively of 3, 2.5, 2.5 and 5 orbits. HUDF has instead
surveyed a smaller area of about 3 × 3 arcmin2 which has a
large overlap with the GMASS field (see Kurk et al. 2007a,
for further details) in the same 4 bands, but with exposure
times respectively of 56, 56, 150 and 150 orbits. For both
datasets the publicly available images were drizzled to a scale
of 0.03 arcsec/pixel in order to improve the PSF pixel sampling.
Furthermore, the HUDF was observed also with deep NICMOS
imaging of 2.5 × 2.5 arcmin2 with F110W and F160W filters
(Thompson et al. 2005). NICMOS images were drizzled to a
final scale of 0.09 arcsec/pixel.

6.2. Visual classification

A visual classification based on eye inspection was performed
on the whole GMASS sample independently by two of us (PC
and GR). The global morphological results will be presented in
a forthcoming paper (Cassata et al. 2007, in preparation). The
visual analysis was always done in the ACS filter band closest
to the rest-frame B-band. For the objects at z > 1 (like the ones
presented in this paper), the analysis was done in the reddest
filter available (z-band). The classification scheme is based on
6 classes (see also Cassata et al. 2005): 1. ellipticals/S0 galax-
ies; 2. peculiar ETGs (i.e. ETGs with signs of interaction or with

Fig. 11. Gallery of the 13 passive galaxies in the sample. Each postage
stamp is 2.4×2.4 arcsec2. On the right of each galaxy cutout, the images
of the GALFIT residuals are also shown.

some isophotal asymmetry); 3. normal spirals; 4. perturbed spi-
rals, that is disk galaxies with an evident bulge but showing also
asymmetries due to interactions or regions of enhanced star for-
mation; 5. irregular galaxies; 6. compact objects. In Fig. 11 we
present a gallery of the 13 galaxies in the sample. Each box is
2.4 × 2.4 arcsec2, corresponding to about 20 kpc at redshift 1.5.

Figure 11 clearly shows that the majority of passive galax-
ies have the spheroidal morphology characteristic of ETGs.
In particular, we classified 7 of them as pure ellipticals, as
they appear resolved, concentrated and very regular; 2 of them
have been classified as spirals (2239 and 2559), as they are
not very concentrated; finally; 4 have been placed in the com-
pact class, i.e. with very concentrated and regular morpholog-
ical structure (472, 2286, 2361 and 2543) (see Table 4). The
NICMOS+F160W images available in the HUDF for the galax-
ies IDs 472 and 996 show very compact and spheroidal mor-
phologies at λrest ≈ 0.5−0.6 µm (Fig. 12).

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20078739&pdf_id=10
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Table 4. Surface brightness fitting results (ACS F850LP band).

ID Class n re Re µe

arcsec kpc mag arcsec−2

472 6 4.1 ± 0.7 0.076 0.64 ± 0.13 15.52 ± 0.43
996 1 4.6 ± 0.7 0.100 0.84 ± 0.17 17.78 ± 0.43

1498 1 1.5 ± 0.2 0.120 1.01 ± 0.20 16.71 ± 0.43
2111 1 4.0 ± 0.4 0.099 0.84 ± 0.17 16.39 ± 0.43
2148 1 3.7 ± 0.3 0.142 1.20 ± 0.24 16.45 ± 0.43
2196 1 6.0 ± 0.9 0.380 3.22 ± 1.22 18.95 ± 0.82
2239 4 2.2 ± 0.2 0.256 2.16 ± 0.43 18.84 ± 0.43
2286 6 2.6 ± 0.3 0.159 1.35 ± 0.27 17.82 ± 0.43
2355 1 2.2 ± 0.2 0.096 0.81 ± 0.16 16.48 ± 0.43
2361 6 4.1 ± 0.4 0.133 1.13 ± 0.23 16.97 ± 0.43
2470 1 4.2 ± 0.3 0.215 1.81 ± 0.36 17.78 ± 0.43
2543 6 2.2 ± 0.3 0.167 1.41 ± 0.28 18.02 ± 0.43
2559 4 1.0 ± 0.5 0.171 1.43 ± 0.29 17.25 ± 0.43

Class: visual classification (Sect. 6.2).

Fig. 12. NICMOS images (2.4 × 2.4 arcsec2) of IDs 472 and 996.

6.3. Surface brightness profile analysis

We used GALFIT (Peng et al. 2002) to model the surface bright-
ness distribution for the galaxies in our sample. As these galax-
ies are very red and become rapidly very faint going to short
wavelengths, GALFIT was run on the image taken with the red-
dest available ACS filter (z-band, filter F850LP). The PSF with
which GALFIT convolves the models during the fit process was
obtained by averaging 10 stars in the field. Two of the objects
(472 and 996) lie in HUDF area, so they have been analyzed in
the HUDF ACS F850LP image, while the other 11 have been an-
alyzed in GOODS image. We also attempted to analyze galaxies
IDs 472 and 996 in the HUDF NICMOS+F160W image, but
the fitting did not provide stable and reliable results due to their
small sizes with respect to the pixel scale and the difficulty to
derive the PSF because of the very few suitable stars available.

In all cases, we used a Sérsic profile to model the galaxy
surface brightness profiles:

I(r) = Ieexp
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where I(r) is the surface brightness measured at distance r, Ie
is the surface brightness measured at the effective radius re and
bn is a parameter related to the sersic index n. For n = 1 and
n = 4 the Sersic profile reduces respectively to an exponential or
deVaucouleurs profile. Bulge dominated objects having typically
high n values (e.g. n > 2) and disk dominated objects having n
around unity.

6.4. Simulations

To test the capability of GALFIT to obtain reliable size measure-
ments we made use of simulations. To this purpose, we built a set
of galaxies with a wide range of properties, to take into account
all possible systematic biases. In particular, we have chosen a
grid of values for magnitudes, radii, Sersic indices and axial ra-
tios. Apparent magnitudes mz span from 22.5 to 24.5, reflecting
the magnitude distribution of the 13 real galaxies in the sample.
The range of radii goes from 0.06 to 0.45 arcsec (basically from
2 pixels to the typical size that local galaxies with masses com-
parable to those of our sample would have at z ∼ 1.4−2). Sersic
indices n span from 1 to 6 and axial ratios b/a varied between 0.4
and 1. A set of 1000 galaxies was built by randomly selecting the
above parameters from their intervals. Then, the galaxies were
simulated using GALFIT, and convolved with the same average
star PSF used for the fitting process. Finally, the simulated galax-
ies were placed in the real z-band ACS/GOODS-South image in
random positions in order to take into account possible system-
atics due to deblending and variations of the local background.
The same GALFIT fitting process used for the 13 real galaxies
was then applied to derive the morphological parameters of the
simulated galaxies. First, we used SExtractor to obtain first es-
timates for magnitude, size, axial ratio and orientation. Second,
we ran GALFIT using the SExtractor values as first guesses. In
the fitting procedure, nSersic was left free to vary between 0.5
and 8. The noise images requested by GALFIT to estimate χ2,
were built using proper values of RMS, GAIN end EXPTIME.

The results of this process are summarized in Fig. 13, where
we show the fractional error on the measured size as a function
of the output size. This allows a simple comparison between the
sizes and errors estimated with this technique for our 13 real
galaxies and the results of simulations. It can be noted that for
small sizes the average error is very close to zero, with a small
scatter. For large sizes, instead, the error distribution moves to-
wards positive values, and the scatter increases. This tendency to
overestimate sizes for large objects is also dependent on the mag-
nitude, being mild for galaxies with mz < 23.75 and more impor-
tant for object with mz > 23.75. In any case, this overestimate
is relevant only for objects with sizes larger than 0.25−0.3 arc-
secs. In the same figure, we also show the radii measured for the
13 galaxies in the sample, together with the formal errors deter-
mined by GALFIT. It can be seen that 4 and 9 of them are re-
spectively brighter and fainter than m = 23.75, and that 12 have
measured sizes smaller than ∼0.25 arcsec, in the regime where
the simulations show no systematic errors and a small scatter.
Only one object has a measured size larger than 0.3 arcsec, for
which the simulation shows a typical overestimate of the size of
about 20%. The size for this object can thus be considered as an
upper limit.

Overall, the errors measured by GALFIT are smaller than the
scatter shown by simulated galaxies with similar output sizes.
Most of the 13 galaxies have sizes for which the simulation
shows a scatter of about 20%, so we decided to assign a min-
imum fiducial error of 20% to our galaxy sizes.

6.5. GALFIT results

Once assessed the capability of GALFIT of retrieving robust
measurements of the size even for galaxies at high redshift, we
run the code on our 13 galaxies, using SExtractor extimates of
magnitude, size, axial ratio and position angle as first guesses.
The GALFIT results are shown in Table 6. The residual maps
provided by GALFIT, as result of the subtraction of the best fit
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Fig. 13. The fractional difference between measured (rmeas) and input
(rtrue) sizes for the 1000 simulated galaxies, as a function of the out-
put size. The upper and the lower panel show the results for galaxies
brighter and fainter than mz = 23.75 respectively. The solid line shows
the median of the error distribution, and the dotted lines includes 68%
of the objects. The dashed lines indicate the limiting regions relative to
errors of ±20%. Red symbols show the measured sizes for the 13 galax-
ies in the sample, together with the formal error measured by GALFIT.

model from the original galaxies, show no significant structures
for all the galaxies (Fig. 11). 11 of the 13 objects have best fit
solutions with Sersic index n > 2, indicating that the bulk of the
galaxy light comes from a dominant bulge component (e.g. in
Fig. 14). In our sample, among the 7 galaxies visually classified
as pure ellipticals, 6 have n ∼ 4. In the class of visually classified
ellipticals, only galaxies 1498, 2355 and 2559 are best fitted by
a smaller value of the Sersic index (n ∼ 1–2). The GALFIT re-
sults broadly agree with what was anticipated by the visual clas-
sification, i.e. that passive galaxies at z ∼ 1.4–2 have the typical
morphology of ETGs, as in the present-day Universe.

The galaxy angular sizes were circularized as re = ae(1 −
ǫ)1/2, where ae and ǫ are the effective radius along the major
axis and the ellipticity of the galaxy morphology respectively.
The values are in the range of 0.07–0.38 arcsec, corresponding to
0.6–3.2 kpc (Table 4). Of the two galaxies located in the HUDF
(IDs 472 and 996) previously identified by Daddi et al. (2005a)
(IDs are 3650 and 8238 respectively), ID 472 has n and re consis-
tent within the errors with those of Daddi et al. (2005), whereas

Fig. 14. Example of an ACS z-band surface brightness profile fit ex-
pressed in mag arcsec−2 (µ) relative to the galaxy ID 2470 where a r1/4

profile provides a very good match with the data (with r expressed in
arcsec). The black dotted, red, yellow and green lines indicate respec-
tively the PSF profile, the formal best fit profile, the profile for n = 4
(de Vaucouleurs) and the profile for n = 1 (exponential). The bottom
panel shows the residuals between the best fit curves and the observed
profile.

for ID 996 we measure a significantly smaller re. Here we adopt
our measurements for ID 996.

In our morphological analysis, the reddest filter avail-
able for all galaxies (ACS F850LP), does not cover the rest-
frame optical, but the rest-frame mid-UV (≈3000–4000 Å, i.e.
approximately the U-band). This might introduce a bias due
to the possible morphological K-correction and/or the internal
color gradients usually present in ETGs, thus resulting in a
wavelength-dependent size of the galaxies. In particular, gradi-
ents with colors redder towards the center (as often observed in
ETGs; e.g. Peletier et al. 1990) could make the sizes measured
in the optical larger than those in the UV. However, McIntosh
et al. (2005) showed that for this kind of gradient, the ex-
pected size variation from the rest-frame U-band to the R-band is
∆r/robs ≈ −0.075(z− 0.47). This means that our galaxies would
have sizes larger by only ≈6–11% if observed in the rest-frame
R-band for the redshift range of our sample (1.4 < z < 2).
Other results indicate that the sizes of spheroidal galaxies do
not change substantially as a function of wavelength (e.g. by
comparing re measured in ACS and NICMOS bands; e.g. see
McGrath et al. 2007a; Trujillo et al. 2007).

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20078739&pdf_id=13
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GMASS (1.39<z<2) 
HUDF (1.3<z<2.5)
MUNICS (1.2<z<1.5)
FIRES-HDFS (1.8<z<2.8)
FIRES-MS1054 (1.8<z<3.1)
McGrath et al. 2007 (1.4<z<1.6)
K20 (1.6<z<2.0)

GMASS (1.39<z<2) 
HUDF (1.3<z<2.5)
MUNICS (1.2<z<1.5)
FIRES-HDFS (1.8<z<2.8)
FIRES-MS1054 (1.8<z<3.1)
McGrath et al. 2007 (1.4<z<1.6)
K20 (1.6<z<2.0)

Fig. 15. The distribution of physical sizes versus stellar mass for passive galaxies in the GMASS sample (red filled circles). For clarity, error bars
are not shown. Stellar masses are estimated with BC03 (left panel) and M05 (right panel) spectral synthesis models. The solid line shows the local
size-mass relation of ETGs as derived with the SDSS sample by Shen et al. (2003), with the dashed lines indicating the ±1σ scatter around this
relation. Blue, green, cyan filled circles indicate the passive galaxies of Zirm et al. (2007) (FIRES – HDFS), Toft et al. (2007) (FIRES – MS1054)
and McGrath et al. (2007b) respectively, the red triangles show the MUNICS massive galaxies of Trujillo et al. (2006) and Longhetti et al. (2007),
the red open circles show the HUDF passive galaxies of Daddi et al. (2005) and Maraston et al. (2006), the black filled squares the K20 galaxies
of Cimatti et al. (2004). The two galaxies of McGrath et al. (2007b) whose SEDs were fitted with CB07 templates are located in the right panel.

Fig. 16. The distribution of stellar mass surface density (σ50) versus stellar mass for passive galaxies. The symbols are the same of Fig. 15. The
solid line shows the local size-mass relation from the SDSS sample by Shen et al. (2003), with the dashed lines indicating the scatter around this
relation.

As discussed in the next sections and found in other works
(e.g. Daddi et al. 2005a; Trujillo et al. 2006), the sizes derived
for most of our sample galaxies are much smaller than the ones
observed at z ∼ 0 in ETGs with the same stellar mass. We
explored the possibility that these small re may be partly due
to the presence of a point-like unresolved central source which

dominate the surface brightness profiles and bias the estimate
of re towards small values. Thus, we attempted to perform fits
with a two-component surface brightness profile made by a cen-
tral unresolved source (using the stellar PSF) plus a Sersic pro-
file. In all cases we found no significant improvements in the re-
sulting best fit profile with respect to those obtained with a single

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20078739&pdf_id=15
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(Sersic) component. More importantly, we found that typically
less than 16% of the light (corresponding to ∆mag> 2) is located
in the putative central component, and the estimated values of re
are all consistent with the ones obtained with the single compo-
nent fitting within 10%. This experiment strengthens even more
that the re measured for most galaxies in our sample are reliable
and indeed very small.

7. The size-mass relation

Early-type galaxies at 0 < z < 1 follow a well-defined size-mass
relation (e.g. Shen et al. 2003; McIntosh et al. 2005), with the
size increasing as a function of mass. Models of galaxy forma-
tion predict different size-mass relations depending on the his-
tory of mass assembly (see Shen et al. 2003).

The role of GMASS is the secure spectroscopic identifica-
tion of a significant number of passive galaxies down to lower
masses than in previous samples at 1.4 < z < 2 which were bi-
ased towards the most massive systems (e.g. Daddi et al. 2005a;
Trujillo et al. 2006; McGrath et al. 2007a; Trujillo et al. 2007).
This allows us to better probe the size-mass relation of ETGs
at z ≈ 1.4–2 down to ≈1010 M⊙.

The size – stellar mass relation for the passive galaxies in
our sample is presented in Fig. 15 and compared with the local
size-mass relation measured by Shen et al. (2003) for ETGs in
the SDSS and with other passive galaxies at z > 1.2 from the
literature. We note that in the local relation published by Shen
et al. (2003, their Table 1) there was a typo in the b parameter,
while here we used the correct one (b = 2.88 × 10−6; Shen,
private communication).

In the comparison amongst different samples, it is im-
portant to account for the differences in the adopted syn-
thetic stellar population models and IMFs. Throughout
the present work, we adopt a Chabrier IMF and scale
all the literature masses to that IMF with the follow-
ing relations: logM(Chabrier)= logM(Salpeter) – 0.23 and
logM(Chabrier)= logM(Kroupa) – 0.04. In addition to the IMF
conversion, it is sometimes necessary to scale stellar masses
by taking into account the different model spectra used
to fit the SEDs. Based on previous (e.g. Wuyts et al. 2007;
Maraston et al. 2006) and present results (Sect. 5.2), we adopted
the conversion logM(M05)= logM(BC03)–0.15 in order to
take into account the average decrease (≈40–50%) of M05
masses with respect to BC03 results for galaxies at z ≈ 1−3.

Shen et al. (2003) adopted a Kroupa IMF and used the stel-
lar masses that were previously estimated by Kauffmann et al.
(2003) through the comparison of observed features in the SDSS
spectra with BC03 template spectra. However, we decided not
to scale the local size-mass relation of Shen et al. (2003) to
account for the difference between BC03 and M05 masses be-
cause at z ∼ 0 the typical ages of ETGs are so old (several Gyr)
that the effects of TP-AGB stars should be negligible. For the
sample of Daddi et al. (2005a) we used the most recent SED
fitting results of Maraston et al. (2006) who adopted a Kroupa
IMF and provided stellar masses estimated with both BC03 and
M05 models. Trujillo et al. (2006) adopted a Kroupa IMF and
their stellar masses refer to BC03 models. For the sizes of the
MUNICS galaxies, we adopted those of Longhetti et al. (2007).
For the FIRES sample galaxies, Zirm et al. (2007) used M05
models and a Salpeter (1955) IMF, whereas Toft et al. (2007)
used BC03 models and a Salpeter IMF. We recall that the red-
shifts of the FIRES galaxies of Zirm et al. (2007) and Toft et al.
(2007) are photometric. We also added two spheroidal galaxies

at z ∼ 1.5 selected from the sample of McGrath et al. (2007a,b)
who adopted BC03 (with Chabrier IMF) for their SED fitting.

Figure 15 shows that passive galaxies at z > 1.2 follow
a clear size-mass relation. However, the majority of them has
sizes significantly smaller than at z ≈ 0 for a fixed stellar mass,
whereas only 15–20% are located within the scatter region of the
z ∼ 0 relation of Shen et al. (2003).

The result on the small sizes at z > 1.2 holds independently
of the adopted stellar masses (cf. Fig. 15 left and right panels).
For the GMASS galaxies only (for which we also have stellar
masses estimated with CB07 models), the results are very sim-
ilar to those of M05 stellar masses if CB07 stellar masses are
used. The average ratio between the observed sizes and the size
at z ∼ 0 (Shen et al. 2003) for the same stellar mass (all scaled
to BC03 + Chabrier IMF) is 〈Re(z)/Re(0)〉 = 0.42 ± 0.25 and
0.29± 0.14 for 1 < z < 2 (〈z〉 = 1.60) and 2 < z < 4 (〈z〉 = 2.52)
respectively. No significant correlation was found between the
galaxy size Re (or 〈Re(z)/Re(0)〉) and physical or environmental
properties (age of the stellar population, SFR, SSFR, rest-frame
colors, AV, location inside our outside the structure at z = 1.61).

The sizes smaller by a factor of ≈2–3 than at z ∼ 0 imply
that the stellar mass surface densities are ≈5–10 times larger.
Figure 16 shows the stellar mass surface densities (σ50) of the
passive galaxies as a function of stellar mass and the compari-
son with the z ≈ 0 relation derived from Shen et al. (2003) sam-
ple. The stellar mass surface densities are estimated as σ50 =

0.5M/πR2
e. The difference with respect to z ∼ 0 galaxies be-

comes even more striking if stellar volume densities are consid-
ered: an excess by a factor of 3 in size (Re) corresponds to a
factor of ≈30 in volume density.

8. Comparison with early-type galaxies at z ≈1

We also explored how the picture changes at lower redshifts
using the small, but highly complete spectroscopic sample of
K20 Survey (Cimatti et al. 2002b) ETGs at 0.8 < z < 1.3 for
which also the absorption line velocity dispersion (σV) is avail-
able. Figure 17 shows that at z ∼ 1 more galaxies can be lo-
cated within the z ∼ 0 relations (see also McIntosh et al. 2005;
Trujillo et al. 2007).

From the scaling relation of ETGs (e.g.
Jorgensen et al. 1995; van Dokkum van Dokkum 2005), it
is expected that the densest systems should have necessarily
the highest velocity dispersion. Figure 17 shows that while
ETGs with high σV are located both inside and outside the
Re-mass relation at z ≈ 0, most of the smallest/densest outliers
have high values of σV. The migration of passive galaxies in
the Re–M and σ50–M planes from regions of small size and
high density to the z ≈ 0 relations (Figs. 15–17) is further
evidence that the redshift range of about 1 < z < 2 is the critical
cosmic epoch for the assembly and structural transformation
of ETGs (e.g. Fontana et al. 2004; Glazebrook et al. 2004;
Abraham et al. 2007; Arnouts et al. 2007).

9. The Kormendy relation

In the absence of the velocity dispersion measurements needed
to study where the GMASS passive galaxies lie in the
Fundamental Plane of ETGs, we explored how they behave
with respect to the Kormendy relation, i.e. a projection of the
Fundamental Plane which correlates µ, the mean surface bright-
ness within re and the physical size Re.

This relation for our sample is shown in Fig. 18. The B-band
rest-frame magnitude is measured during the photometric SED
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Fig. 17. Left panel: the distribution of physical sizes versus stellar mass for ETGs at z ≈ 1. The solid line shows the local size-mass relation of
ETGs as derived with the SDSS sample by Shen et al. (2003), with the dashed lines indicating the scatter around this relation. The starred and
filled symbols indicate the K20 ETGs from di Serego Alighieri et al. (2005) with velocity dispersion σV < 180 km s−1 and σV > 180 km s−1

respectively. Right panel: the distribution of stellar mass surface density (σ50). The symbols are the same of left panel.

fitting process described in Sect. 5.2. Here we applied the appro-
priate correction for the surface brightness dimming effect. The
mean surface brightness µB is finally computed as:

µB = MB + DM(z) + 2.5 log(2π) + 5 log(re) + 10 log(1 + z), (2)

where MB is the absolute magnitude in the B-band, DM(z) is the
distance modulus at redshift z, re is the effective radius in arcsec
and z is the redshift of the galaxy.

As a local (z ∼ 0) reference, we took the Kormendy relation
for Coma galaxies by Jorgensen et al. (1995). In Fig. 18 we show
both the individual Coma galaxies and the best fit to their relation
together with its ±1σ scatter. We also plot the z ∼ 1.4 galaxies of
Longhetti et al. (2007): their measurements (done on NICMOS
images and then converted into the rest-frame Gunn r band) have
been properly translated in B-band magnitudes applying a typi-
cal color B − r = 1.4, and appear to be in good agreement with
ours. It can be noted that the Kormendy relation seems to evolve
very strongly between z ∼ 0 and z ∼ 1.5. In particular, galax-
ies of the same size appear to be more luminous by an amount
between 2 and 3 mag. This brightening is dependent on the phys-
ical size, being larger for smaller galaxies, thus making the slope
of the relation steeper at z ∼ 1.5. In any case, all the galaxies, if
they have to end on top of the local relation, must fade their lu-
minosity by more than 2 mag from z ∼ 1.5 to z ∼ 0. This fading
exceeds by at least 0.5 mag the largest possible fading predicted
by spectral evolution models of passive red galaxies (see also
Longhetti et al. 2007, for a similar result). Since the surface mass
density drops by a factor of 5–10 in the same redshift range, it
means that these high-z compact and dense galaxies can reach
the local Kormendy relation only through a combination of in-
crease in size (Re) and fading due to the passive evolution of the
stellar populations.

Fig. 18. Mean surface brightness within re in the B-band against Re for
our sample (red filled circles). Coma elliptical galaxies are shown as
stars, together with their best fit (solid line) and biweight scatter. Open
blue lozenges show z ∼ 1.4 galaxies from Longhetti et al. (2007).

10. Are there superdense relics at z ≈0?

The superdense ETGs identified at z > 1 seem to disappear in
the present-day Universe (e.g. Shen et al. 2003). However, re-
cent works based on SDSS data showed that there is a popula-
tion of very massive ETGs with σV > 350 km s−1 which, com-
pared to ETGs of the same luminosity, are characterized by very
small sizes (Bernardi et al. 2006, 2007). Thus, we investigated
whether some of these local galaxies have properties similar to
those observed in passive galaxies at z > 1.
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Fig. 19. The location of the ETGs at z ≈ 0 with σV > 350 km s−1 identified by Bernardi et al. (2006); Bernardi et al. (2007) in the SDSS sample
(blue circles) compared to the global relations of Shen et al. (2003) (same as in Figs. 15–17).

Figure 19 shows the location of these galaxies in the Re-mass
andσ50-mass planes. The stellar masses derived with the method
described by Kauffmann et al. (2003; that are also used by
Shen et al. 2003) were associated to the ETGs in the sample
of Bernardi et al. (2007; Brinchmann, private communication).
Figure 19 shows that there are a few outliers which are not lo-
cated within the Shen et al. (2003) relations and are character-
ized by small sizes around 1–2 kpc with stellar masses around
1011 M⊙. These systems show a significant excess in stellar mass
surface density σ50 (Fig. 19), but never as strong as observed in
ETGs at z > 1. The number density of these systems at z ∼ 0 is
very small (≈10−7–10−8 Mpc−3, Bernardi et al. 2006), and much
smaller than the characteristic abundance of passive galaxies at
1 < z < 2 (≈10−4 Mpc−3, Kong et al. 2006). Thus, we con-
clude that superdense relics with Re ≈ 1 kpc at z ≈ 0 are ex-
tremely rare with respect to z > 1, and absent if Re < 1 kpc.
However, in the “smooth envelope accretion” scenario discussed
in Sect. 11.2.2, it might be possible that the superdense galaxies
observed at z ≈ 1.5 survived as hidden, very dense cores inside
present-day ETGs.

11. New constraints and open questions

These findings provide new pieces in the puzzle of massive
galaxy formation and evolution, but at the same time open new
crucial questions: (1) how did these systems form? (2) What
mechanism(s) can explain their subsequent size growth and
decrease of the internal density?

11.1. How did the superdense galaxies form?

The mere existence of ≈1 Gyr old, passively evolving galax-
ies up to z ≈ 2 implies that the bulk of stars formed at higher
redshifts. In particular, the constraints on the age, τ and stel-
lar masses indicate that the star formation at z > 2−2.5 was
very intense (e.g. SFR > 100 M⊙ yr−1) in order to form stellar

mass up to M � 1011 M⊙ with such short timescales (see also
Cimatti et al. 2004; McCarthy et al. 2004; Daddi et al. 2005a;
Saracco et al. 2005; Longhetti et al. 2005; Kriek et al. 2006).

The small sizes and high internal mass densities of the pas-
sive galaxies at 1 < z < 2 provide new observational clues
which help to unveil the nature of their precursors. Amongst all
the precursor candidates mentioned in the Introduction, only the
submm/mm-selected galaxies (SMGs) (Blain et al. 2002) have
sizes and mass surface density comparable to those of passive
galaxies (Tacconi et al. 2006, 2007).

Table 5 compares the properties of SMGs and passive
galaxies. The similarity between the properties of the two
populations is striking, with the notable exception of the
comoving number density, with SMGs being an order of
magnitude rarer (comoving number density ≈10−5 Mpc−3;
Scott et al. 2002; Chapman et al. 2005) than the passive descen-
dants (≈10−4 Mpc−3; Daddi et al. 2004b; Daddi et al. 2005a;
Kong et al. 2006).

The other populations of massive star-forming galaxies iden-
tified at z � 1.5–2 (e.g. BzK, BM/BX, ...) show distinct prop-
erties if compared to SMGs: much larger sizes in the range of
2–8 kpc and mass surface densities lower by an order of magni-
tude (≈102−3 M⊙ pc−2) (see Bouché et al. 2007).

The difference in these properties may reflect distinct dy-
namical and assembly histories. SMGs may represent the cases
where rapid and highly dissipative major mergers occur at
z > 2 with timescales of ≈0.1 Gyr (e.g. Narayanan et al. 2006;
Khochfar & Silk 2006a; Tacconi et al. 2006, 2007, and refer-
ences therein) and leave very compact, superdense remnants
which then evolve almost passively at 1 < z < 2 (see also
Swinbank et al. 2006). The other star-forming systems selected
in the optical and near-infrared at z > 2 may have a less violent
evolution characterized by star formation activity extended over
longer timescales (≈0.5–1 Gyr, Daddi et al. 2005b) and by mul-
tiple minor mergers or rapid dissipative collapse from the halo,
with either process capable to form early disks. These massive
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Table 5. Comparison between passive galaxies and SMGs.

Quiescent galaxies SMGs
Redshift z ≈ 1.5 z ≈ 2.5
Age of the Universe 4.3 Gyr 2.7 Gyr
Mass 1010−11 M⊙ (stars) 1010−11 M⊙ (gas)
Size 1–2 kpc (stars) 1–2 kpc (gas)
Mass surface density 103−4 M⊙ pc−2 (stars) 103−4 M⊙ pc−2 (total)
Starburst timescale 0.1–0.3 Gyr ≈0.1 Gyr
Star formation rate <1 M⊙ yr−1 ≈100–1000 M⊙ yr−1

Number density ≈10−4 Mpc−3 ≈10−5 Mpc−3

Correlation length r0 ≈ 8−10 Mpc r0 ≈ 6.9 ± 2.5 Mpc

disks may later also evolve into spheroids through disk instabil-
ities of further merging processes (see Genzel et al. 2006).

In this framework, objects like GMASS ID 2543 might rep-
resent the transition phase of an object with a substantially de-
veloped old stellar population concentrated in a bulge-like struc-
ture which dominates the spectrum, SED and morphology, but
with still a residual star formation activity of a few solar masses
per year as indicated by the weak [O II]λ3727 emission and the
possible detection at 24 µm.

Under the assumption that all passive galaxies at z ≈ 1.5
are the descendants of the starburst phase occurring in SMGs
at z ≈ 2.5, the characteristic timescale (“duty cycle” or the
“duration”) of the SMG phase can be estimated as the ratio
of the comoving number densities of the two populations and
the amount of cosmic time available from z ≈ 2.5 to z ≈ 1.5
(≈1.5 Gyr), i.e. ≈0.15 Gyr. This timescale is broadly consis-
tent with the e-folding timescale derived independently from the
SED fitting and from the recent studies based on SMG molecular
gas (Tacconi et al. 2006, 2007).

The evolutionary link between rapid, dissipational, gas-rich
merging or collapse (traced observationally by the SMG phase)
at z ≈ 2–3 and the superdense passive spheroids at z ≈ 1–2
provides one of the strongest constraints known to date on the
physical mechanisms capable to lead to the formation of massive
spheroidal galaxies. Although the physical processes are com-
pletely different, this mechanism is somehow reminiscent of the
“old-fashioned” monolithic collapse.

11.2. How did the superdense galaxies disappear?

The other major question is to understand how the superdense
galaxies decreased their internal stellar mass density from z ≈
1.5−2 and migrated to the local size-mass relation at z ≈ 0.

11.2.1. Dissipationless merging

One possibility is the dissipationless (“dry”) major merging of
ETGs. According to some models (Nipoti et al. 2003a; Nipoti
et al. 2003b; Dominguez-Tenreiro et al. 2006; Naab et al. 2007;
Ciotti et al. 2007; Boylan-Kolchin et al. 2006), this process can
increase the final size and mass of the system without alter-
ing substantially the stellar population content. In particular,
Boylan-Kolchin et al. (2006) found that, under a set of orbital
requirements, the stellar remnants of major dry mergers lie on
the Fundamental Plane of their progenitors, and that the increase
of the size with the increasing stellar mass is expected to follow
a relation Re ∝ M

α, with 0.6 � α � 1.3 depending on the orbital
properties (see also Nipoti et al. 2003b; Ciotti et al. 2007).

Figure 20 shows the expected growth of Re as a function of
mass for the extreme values of α, and suggests that α � 1 is

Fig. 20. The size-mass relation of passive galaxies at z > 1.3. The sym-
bols are the same of Fig. 15. Stellar masses are estimated with M05
spectral synthesis models. The thin solid line shows the local size-mass
relation of ETGs as derived with the SDSS sample by Shen et al. (2003),
with the thin dashed lines indicating the ±1σ scatter around this rela-
tion. The thick solid and long-dashed lines indicate the expected in-
crease of the size due to dissipationless merging with Re ∝ M

α, with
α = 0.6 and α = 1.3 respectively, and normalized to Re = 0.7 kpc and a
stellar mass of 3 × 1010 M⊙.

needed to grow efficiently the compact galaxies from z ≈ 1.5 and
move them onto the local size-mass relation at z ≈ 0. However,
given all possible orbital parameters in dry merging events, we
may expect the effective value of α to be appreciably lower than
its maximum value. Therefore, the ability of dry merging alone
to solve the problem remains questionable.

The dry merging hypothesis can in principle be tested by de-
riving the statistics of pairs of close/interacting passive galax-
ies as a function of redshift. The redshift range 1 < z < 2
seems to be the most important one because of the substantial
decrease of the superdense ETG fraction from z ≈ 1.4–2 to
z ≈ 0.6–1.3 (Fig. 17 vs. Fig. 15; see also McIntosh et al. 2005;
Trujillo et al. 2007). Unfortunately, no dry merger statistics is
available in this redshift range (see e.g. Bell et al. 2006). We
also recall that to be fully valid, the dry merging scenario
should also be consistent with the recent findings of a very
weak evolution of the stellar or dynamical mass functions
of luminous and massive (>1011 M⊙) ETGs at z ≤ 0.7–0.8
(e.g. Bundy et al. 2007; Bundy et al. 2006; Borch et al. 2006;
Cimatti et al. 2006; Scarlata et al. 2006; Pozzetti et al. 2007).

Due to the limited statistics of the present GMASS sam-
ple, it is not possible to place any strong constraint on the dry
merging scenario. However, we note that 12 out of 13 galaxies
(see Fig. 11) have no visible companions within a distance of
about 10–15 kpc. The only, exception is represented by ID 996
which has a companion galaxy located at a small distance, but
neither spectroscopic nor photometric redshift are available for
this galaxy. The only available constraint comes from the color
(F110W − F160W ≈ 0.6) which looks similar to that of ID 996
(F110W − F160W ≈ 0.8). However, even if this galaxy is at
the same redshift of ID 996 and it will merge with it, this would
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Fig. 21. The distribution of physical sizes versus stellar mass for ETGs
at z ≈ 1 of Rettura et al. (2006). The solid line shows the local size-mass
relation of ETGs (Shen et al. 2003), with the dashed lines indicating
the scatter around this relation. The filled and open symbols indicate
cluster and field ETGs respectively. Stellar masses are homogeneously
estimated with the PEGASE model spectra (Kroupa IMF).

not represent a “major” merger as the companion is fainter than
ID 996 by ≈2.5 mag, corresponding to a luminosity (or ≈mass)
ratio of ≈1:10.

Even if clear cases of dry merger candidates are not present
in our sample, we note that about half of the passive galaxies
found in the GMASS spectroscopic sample lie in the dense struc-
ture at z = 1.61 (Vanzella et al. 2006; Castellano et al. 2007;
Kurk et al. 2007b). The 7 galaxies present in this redshift spike
have typical angular separations among themselves of ≈10 arc-
sec, corresponding to ≈85 kpc. It is tempting to speculate that
some of these galaxies will later merge with each other along the
filaments of this structure and form one or more larger massive
ETG at lower redshift (see e.g. Nipoti et al. 2003b). McCarthy
et al. (2007) have recently identified a compact cluster or group
of red (passive) galaxies at z = 1.5 which may represent an ex-
ample of a short-lived phase leading to the subsequent assembly
of more massive ETGs at later cosmic times.

In this framework, further constraints can come from the dif-
ferential evolution of the size-mass relation of ETGs as a func-
tion of the environment. We preliminarily investigated this issue
using the sample of Rettura et al. (2006) which includes litera-
ture cluster and field ETGs at z ≈ 0.6–1.3. The sample is small
and by no means complete. However, Fig. 21 suggests that envi-
ronmental effects might be an important component of the size-
mass relation evolution. Cluster ETGs seem to be preferentially
located within or closer to the size-mass relation at z ≈ 0 with
respect to the ETGs located in low density environment. If con-
firmed with larger and complete samples, this may be consistent
with the scenario where the mass assembly and size growth of
ETGs is accelerated within high-density environment.

Recent simulations attempted to explain the size evolution
of ETGs in the scenario of dissipationless merging. Khochfar &
Silk (2006b) used semianalytical models to show that the size
of elliptical galaxies (relative to z ≈ 0) depends on the available

Fig. 22. The ratio of Re of GMASS passive galaxies to the mean size of
z ≈ 0 ETGs, 〈Re(z,M)/Re(0,M)〉, as derived from Shen et al. (2003).
M05 stellar masses are used here. The curves represent the predictions
of the Khochfar & Silk (2006b) model relative to the final masses at z =
0. Solid, dotted, dashed, dotted-dashed lines are relative respectively to
the following ranges of stellar masses at z ≈ 0: 1 × 1010 <M(z = 0) <
5 × 1010 M⊙, 5 × 1010 < M(z = 0) < 1 × 1011 M⊙, 1 × 1011 < M(z =
0) < 5 × 1011 M⊙, 5 × 1011 <M(z = 0) < 1 × 1012 M⊙.

amount of cold gas and the fraction of stars formed during the
major merger event with which these galaxies formed. In this
scenario, massive galaxies formed at high redshifts through gas-
rich mergers which produced elliptical “remnants” characterized
by small sizes. The size evolution is stronger for more massive
galaxies as they involve more gas at high redshifts when they
form, compared to less massive ellipticals, and galaxies of the
same mass at low redshift form mostly from gas-poor mergers
(see also Khochfar & Silk 2006a). According to this picture, lo-
cal ellipticals with present-day stellar masses 1010 < M(z =
0) < 1011 M⊙ were only ≈1.25 times smaller at z = 2, whereas
those withM(z = 0) > 5 × 1011 M⊙ were ≈4 times smaller at
z = 2. Khochfar & Silk (2006b) also predict that the most mas-
sive ellipticals undergo on average 1–2 substantial “dry” mergers
between z = 2 and today.

Figure 22 shows the location of the GMASS passive galax-
ies with respect to the model predictions of Khochfar & Silk
(2006b). The ratio Re(z)/Re(z = 0) was obtained dividing the ob-
served effective radius of the GMASS galaxies by that at z = 0
derived from the stellar mass-size relation of SDSS ETGs of
Shen et al. (2003) at the same mass of the GMASS passive galax-
ies. M05 stellar masses are used in this comparison, but the re-
sults do not change significantly if BC03 or CB07 masses are
used. According to this comparison, the model predictions sug-
gest that most GMASS passive galaxies are the progenitors (or
the high-z counterparts) of ETGs that today have stellar masses
of 1011 < M(z = 0) < 1012 M⊙, i.e. they are the progenitors of
the most massive E/S0 systems at z ≈ 0.
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11.2.2. Smooth envelope accretion

With an alternative approach based on smoothed particle hy-
drodynamics (SPH) simulations, Naab et al. (2007) showed that
ETGs can be formed with appropriate cosmological initial con-
ditions and even without requiring recent major merger events or
feedback from supernovae or AGN. These models also predict
small sizes around 1–2 kpc at z > 1. The Naab et al. (2007) ap-
proach is also relevant because it shows that during the early for-
mation at z > 2 the assembly of massive ellipticals is dominated
by mergers of gas-rich subcomponents and in situ star forma-
tion in a way characteristic of a dissipative collapse. Thereafter,
smooth stellar accretion or minor/major mergers become more
important and tend to dominate at z < 1, although major mergers
are not always necessarily needed. In these simulations, the size
evolution is mostly driven by the accreted stars. While the half-
mass radius of the stars formed in situ (at high redshifts) remains
almost constant independent of redshift, the accreted stars form
an envelope whose half-mass radius increases smoothly with de-
creasing redshift around the compact and dense “seed” formed
at higher redshifts. If this scenario is correct, we may expect to
find the compact, superdense cores “hidden” inside present-day
ETGs.

12. Summary and outlook

We presented a study of a 4.5 µm–selected sample of pas-
sive galaxies spectroscopically identified at z ≈ 1.4–2 with the
GMASS survey (Kurk et al. 2007a). This work benefits from ul-
tradeep VLT+FORS2 optical spectroscopy complemented with
multi-band photometry (0.4–8 µm) and HST imaging to investi-
gate the physical, structural and evolutionary properties of these
galaxies. The main results can be summarized as follows.

• The GMASS passive galaxies have spectra and SEDs domi-
nated by old stars and very weak or absent star formation. A
comparison of the stacked rest-frame UV spectrum (equiva-
lent to an integration time of ∼500 h) with three different li-
braries of stellar population model spectra indicates an age of
≈0.7–2.8 Gyr for a metallicity range of 1.5–0.2 Z⊙. Extending
the model fitting at longer wavelengths using near-infrared
and IRAC photometry helps to reduce the age-metallicity de-
generacy and indicates ages of ≈1–1.6 Gyr, Z = Z⊙, e-folding
timescales τ ∼ 0.1–0.3 Gyr, where SFR(t) ∝ exp(−t/τ), and
very low dust extinction. A comparison of the two libraries
of model spectra which include TP-AGB stars shows that for
a fixed age of 1 Gyr, the Maraston (2005) templates show a
better agreement with the photometry than those of Charlot &
Bruzual (2007) available to date.
• Neither individual galaxies nor their stacked images are de-

tected in the X-rays with Chandra data. This implies that a
luminous AGN source (LX > 1042 erg/s) is absent or is very
heavily obscured. However, the possibility of dust obscuration
seems unlikely because none of the galaxies has been detected
at 24 µm, with only one marginal exception of one galaxy at
z = 1.61.
• The stellar masses, estimated through the photometric SED

fitting, are in the range of 1010−11 M⊙ and the specific star
formation rates are very low (�3 × 10−2 Gyr−1). The stellar
masses estimated with model spectra including TP-AGB stars
are systematically lower by 0.1–0.2 dex than those esti-
mated with models which do not include this phase of stellar
evolution.

• The HST+ACS morphological and surface brightness profile
analysis indicate that the majority of the spectroscopically-
selected passive galaxies have spheroidal morphologies con-
sistent with being analogous to present-day ETGs. However,
their sizes are smaller by a factor of ≈2–3 than at z ≈ 0, and
imply that the stellar mass surface and volume internal densi-
ties are up to ≈10 and ≈30 times larger respectively. If litera-
ture data are added to the GMASS sample, we find that only a
few passive systems at 1.2 < z < 2.5 lie within the z ≈ 0 size-
mass relation, whereas the majority has systematically much
smaller sizes.
• The Kormendy relation at z ≈ 1.5 shows a large offset

(2–3 mag) in effective surface brightness with respect to the
local relation. This is difficult to explain with simple luminos-
ity evolution models and requires that these high-z compact
and dense galaxies increase their size in order to reach the
local Kormendy relation.
• Samples of ETGs at lower redshifts (0.7 < z < 1.2) show that

a larger fraction of passive galaxies follow the z ∼ 0 size-mass
relation with respect to z > 1.3. The ETGs at z ≈ 1 which have
the largest offsets with respect to the z ∼ 0 size-mass relation
are the ones having the highest internal velocity dispersion, as
expected from the ETG scaling relations. We find a hint that,
for a fixed redshift z ≈ 1, ETGs located within massive clus-
ters are more preferentially located within the z ∼ 0 size-mass
relation than ETGs located in lower density environments.
• Superdense massive ETGs with Re ≈ 1 kpc are extremely rare

at z ≈ 0 with respect to z > 1, and absent if Re < 1 kpc.
However, it might be possible that compact and dense rem-
nants are “hidden inside present-day ETGs if the size of ETGs
grew through mechanisms such as the “smooth envelope ac-
cretion”.
• Submillimeter-selected galaxies are the only systems at z � 2

with sizes and mass surface densities (in gas) similar to those
of the passive galaxies at z ≈ 1–2. This suggests that a
strong evolutionary link is present between these two galaxy
populations.
• It is currently unclear how the possible link between SMGs

and compact passive galaxies fits within a more general
framework which takes into account also the other galaxy
populations so far identified at 1 < z < 3. A plausible sce-
nario could be outlined as follows and summarized in Fig. 23.
(1) Massive star-forming galaxies selected in the optical/near-
IR are gas-rich disky systems with long-lived star formation
(e.g. ≈0.5–1 Gyr, Daddi et al. 2005b). (2) These systems can
become unstable (e.g. Genzel et al. 2006) or participate in ma-
jor merger events with other gas-rich systems. (3) In both
cases a major starburst event is triggered, and this phase could
correspond to the SMG stage characterized by short-lived
(≈0.1 Gyr) vigorous starburst (Tacconi et al. 2006, 2007). (4)
The concomitant AGN provides enough feedback to “quench”
the star formation in massive systems (Daddi et al. 2007a),
and (5) compact, superdense, passively evolving remnants are
formed, (6) and evolve subsequently by increasing gradually
their sizes with mechanisms like major dry merging and/or
envelope accretion more or less rapidly depending on their
mass and environment. (7) The majority of most massive
ETGs reach the assembly completion around z ≈ 0.7, while
lower mass ETGs continue to assemble down to lower red-
shifts (downsizing).
• Larger samples in the range of 1 < z < 3 are needed to place

stringent constraints on the mechanism(s) with which the
sizes of high-z passive galaxies grow as a function of cosmic
time (e.g. dissipationless merging, envelope accretion, ...).
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Fig. 23. A possible scenario for the formation and evolution of a mas-
sive spheroidal galaxy (see text).

High-resolution spectroscopy in the near-infrared with the
next generation of telescopes (e.g. E-ELT, JWST) will also
be crucial to study the internal dynamics of these systems.
Further studies at 1 < z < 3 will shed light on the global
processes which lead to formation and evolution of massive
galaxies.

Acknowledgements. We acknowledge the referee, Olivier Le Fevre, for the use-
ful and constructive comments. We thank ESO for the generous allocation of ob-
serving time through the VLT Large Program 173.A–0687. We thank Mariangela
Bernardi, Joel Brinchmann, Pat McCarthy, Georg Feulner, and Sadegh Khochfar
for providing respectively unpublished information on SDSS galaxies with σV >

350 km s−1, the SDSS stellar masses, the GDDS composite spectra, the data
on SSFR, and the model predictions. Sadegh Khochfar, Thorsten Naab, Luca
Ciotti, Carlo Nipoti and Gabriella De Lucia are acknowledged for the help-
ful discussion. AC is particularly grateful to Reinhard Genzel, Linda Tacconi
and Natascha Förster-Schreiber for the warm hospitality at Max-Planck-Institut
für Extraterrestrische Physik and the stimulating discussions. AC acknowledges
support through a Bessel Prize of the Alexander von Humboldt Foundation.

References

Abraham, R., Nair, P., McCarthy, P. J., et al. 2007, ApJ, in press
Alexander, D. M., Bauer, F. E., Brandt, W. N., et al. 2003, AJ, 126, 539
Arnouts, S., Walcher, C. J., Le Fevre, O., et al. 2007, A&A, 476, 137
Beckwith, S. V. W., Stiavelli, M., Koekemoer, A. M., et al. 2006, AJ, 132, 1729
Bell, E., Naab, T., McIntosh, D. H., et al. 2006, ApJ, 640, 241
Bernardi, M., Sheth, R. K., Nichol, R. C., et al. 2006, AJ, 131, 2018
Bernardi, M., Fritz, A., Hyde, J. B., et al. 2007, in preparation
Berta, S., Lonsdale, C. J., Siana, B., et al. 2007, ApJ, submitted
Bertin, E., & Arnouts, S. 1997, A&AS, 117, 393
Blain, A. W., Smail, I., Ivison, R. J., Kneib, J.-P., & Frayer, D. T. 2002, PhR,

369, 111
Blain, A. W., Chapman, S. C., Smail, I., & Ivison, R. 2004, ApJ, 611, 725
Boylan-Kolchin, M., Ma, C.-P., & Quataert, E. 2006, MNRAS, 369, 1081
Bournaud, F., Jog, C. J., & Combes, F. 2007, A&A, in press
Borch, A., Meisenheimer, K., Bell, E., et al. 2005, A&A, 453, 869
Borys, C., Chapman, S., Halpern, M., & Scott, D. 2003, MNRAS, 344, 385
Bouché, N., Cresci, G., Davies, R., et al. 2007, ApJ, in press
Brown, M. J. I., Dey, A., Jannuzi, B. T., et al. 2006, ApJ, 654, 858
Brusa, M., Comastri, A., Daddi, E., et al. 2002, ApJ, 581, L89
Bruzual, G. 2007, Stellar populations as building blocks of galaxies, ed. A.

Vazdekis, & R. Peletier (Cambridge: Cambridge University Press), in press,
Proc. IAU Symp., 241 [arXiv:astro-ph/0703052]

Bruzual, G., & Charlot, S. 2003, MNRAS, 344, 1000
Bundy, K., Ellis, R. S., Conselice, C. J., et al. 2006, ApJ, 651, 120
Bundy, K., Treu, T., & Ellis, R. S. 2007, ApJ, 665, L5
Cassata, P., Cimatti, A., Franceschini, A., et al. 2005, MNRAS, 357, 903
Castellano, M., Salimbeni, S., Trevese, D., et al. 2007, ApJ, in press
Chabrier, G. 2003, PASP, 115, 763
Chapman, S., Blain, A. W., Smail, I., & Ivison, R. J. 2005, ApJ, 622, 772
Charlot, S., & Bruzual, G. 2007, in preparation
Chary, R., & Elbaz, D. 2001, 556, 562
Cimatti, A., Mignoli, M., Daddi, E., et al. 2002, A&A, 392, 395
Cimatti, A., Daddi, E., Renzini, A., et al. 2004, Nature, 430, 184
Cimatti, A., Daddi, E., & Renzini, A. 2006, A&A, 453, L29
Ciotti, L., Lanzoni, B., & Volonteri, M. 2007, ApJ, 658, 65
Cotter, G., Simpson, C., & Bolton, R. C. 2005, MNRAS, 360, 685
Cowie, L. L., Songaila, A., Hu, E. M., & Cohen, J. G. 1996, AJ, 112, 839
Daddi, E., Cimatti, A., Pozzetti, L., et al. 2000, A&A, 361, 535
Daddi, E., Cimatti, A., Renzini, A., et al. 2004b, ApJ, 617, 746
Daddi, E., Renzini, A., Pirzkal, N., et al. 2005a, ApJ, 626, 680
Daddi, E., Dickinson, M., Chary, R., et al. 2005b, ApJ, 631, L13
Daddi, E., Dickinson, M., Morrison, G., et al. 2007a, ApJ, in press
Daddi, E., Alexander, D. M., Dickinson, M., et al. 2007b, ApJ, in press
De Lucia, G., Springel, V., White, S. D. M., et al. 2006, MNRAS, 366, 499
di Serego Alighieri, S., Vernet, J., Cimatti, A., et al. 2005, A&A, 442, 125
Dominguez-Tenreiro, R., Oñorbe, J., Sáiz, A., Artal, H., & Serna, A. 2006, ApJ,

636, L77
Drory, N., Bender, R., & Hopp, U. 2004, ApJ, 616, L103
Dunlop, J., Peacock, J., Spinrad, H., et al. 1996, Nature, 381, 581
Faber, S. M., Willmer, C. N. A., Wolf, C., et al. 2007, ApJ, 665, 265
Farrah, D., Lonsdale, C. J., Borys, C., et al. 2006, ApJ, 641, L17
Feulner, G., Gabasch, A., Salvato, M., et al. 2005, ApJ, 633, L9
Firth, A. E., Somerville, R. S., McMahon, R. G., et al. 2002, MNRAS, 332, 617
Fontana, A., Pozzetti, L., Donnarumma, I., et al. 2004, A&A, 424, 23
Förster Schreiber, N. M., Genzel, R., Lehnert, M. D., et al. 2006, ApJ, 645, 1062
Franceschini, A., Rodighiero, G., Cassata, P., et al. 2006, A&A, 453, 397
Franx, M., Labbe’, I., Rudnick, G., et al. 2003, ApJ, 587, L79
Gavazzi, G., & Scodeggio, M. 1996, A&A, 312, L29
Genzel, R., Tacconi, L. J., Eisenhauer, F., et al. 2006, Nature, 442, 786
Giacconi, R., Zirm, A., Wang, J., et al. 2002, ApJS, 139, 369
Giavalisco, M., Ferguson, H. C., Koekemoer, A. M., et al. 2004, ApJ, 600, L93
Glazebrook, K., Abraham, R. G., McCarthy, P. J., et al. 2004, Nature, 430, 181
Granato, G., De Zotti, G., Silva, L., et al. 2004, ApJ, 600, 580
Jorgensen, I., Franx, M., & Kjaergaard, P. 1995, MNRAS, 273, 1097
Juneau, S., Glazebrook, K., Crampton, D., et al. 2005, ApJ, 619, L135
Kauffmann, G., Heckman, T. M., White, S. D. M., et al. 2003, MNRAS, 341, 33
Kennicutt, R. 1998, ARA&A, 36, 189
Khochfar, S., & Silk, J. 2006a, MNRAS, 370, 902
Khochfar, S., & Silk, J. 2006b, ApJ, 648, L21
Kong, X., Daddi, E., Arimoto, N., et al. 2006, ApJ, 638, 72
Kriek, M., van Dokkum, P. G., Franx, M., et al. 2006, ApJ, 649, L71
Kroupa, P. 2001, MNRAS, 322, 231
Kurk, J., et al. 2007a, in preparation
Kurk, J., et al. 2007b, in preparation
Law, D. R., Steidel, C. C., Erb, D. K., et al. 2007, ApJ, in press
Longhetti, M., Saracco, P., Severgnini, P., et al. 2005, MNRAS, 361, 897
Longhetti, M., Saracco, P., Severgnini, P., et al. 2007, MNRAS, 374, 614
Maraston, C. 1998, MNRAS, 300, 872
Maraston, C. 2005, MNRAS, 362, 799
Maraston, C., Daddi, E., Renzini, A., et al. 2006, ApJ, 652, 85
Masjedi, M., Hogg, D., Cool, R. J., et al. 2006, ApJ, 644, 54
Masjedi, M., Hogg, D., & Blanton, M. R. 2007, ApJ, submitted
McCarthy, P. J., Le Borgne, D., Crampton, D., et al. 2004, ApJ, 614, L9
McCarthy, P. J., Yan, H., Abraham, R. G., et al. 2007, ApJ, 664, L17
McGrath, E. J., Stockton, A., & Canalizo, G. 2007, ApJ, in press
McGrath, E., Stockton, A., Canalizo, G., Iye, M., & Maihara, T. 2007, ApJ,

submitted
McIntosh, D. H., Bell, E. F., Rix, H.-W., et al. 2005, ApJ, 632, 191
Menci, N., Fontana, A., Giallongo, E., Grazian, A., & Salimbeni, S. 2006, ApJ,

647, 753
Mignoli, M., Cimatti, A., Zamorani, G., et al. 2005, A&A, 437, 883
Naab, T., Johansson, P. H., Ostriker, J. P., & Efstathiou, G. 2007, ApJ, 658, 710
Narayanan, D., Cox, T. J., Robertson, B., et al. 2006, ApJ, 642, L107
Nipoti, C., Londrillo, P., & Ciotti, L. 2003a, MNRAS, 342, 501
Nipoti, C., Stiavelli, M., Ciotti, L., Treu, T., & Rosati, P. 2003b, MNRAS, 344,

748
Peletier, R. F., Davies, R. L., Illingworth, G. D., Davis, L. E., & Cawson, M.

1990, AJ, 100, 1091
Peng, C. Y., Ho, L. C., Impey, C. D., & Rix, H.-W. 2002, AJ, 124, 266

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20078739&pdf_id=23


42 A. Cimatti et al.: Superdense passive galaxies

Perez-Gonzalez, G., Rieke, G. H., Villar, V., et al. 2007, ApJ, in press
[arXiv:0709.1354]

Pirzkal, N., Xu, C., Malhotra, S., et al. 2004, ApJS, 154, 501
Ponder, J. M., Burstein, D., O’Connell, R. W., et al. 1998, AJ, 116, 2297
Pozzetti, L., Cimatti, A., Zamorani, G., et al. 2003, A&A, 402, 837
Pozzetti, L., Bolzonella, M., Lamareille, F., et al. 2007, A&A, 474, 443
Renzini, A. 1981, Ann. Phys. Fr. 6, 87
Renzini, A. 2006, ARA&A, 44, 141
Rettura, A., Rosati, P., Strazzullo, V., et al. 2006, A&A, 458, 717
Rodighiero, G., Gruppioni, C., Civano, F., et al. 2007, MNRAS, 376, 416
Salpeter, E. E. 1955, ApJ, 121, 161
Saracco, P., Longhetti, M., Severgnini, P., et al. 2005, MNRAS, 372, L40
Scarlata, C., Carollo, C. M., Lilly, S. J., et al. 2007, ApJS, 172, 494
Scott, S. E., Fox, M. J., Dunlop, J. S., et al. 2002, 331, 817
Shapley, A., Erb, D. K., Pettini, M., Steidel, C. C., & Adelberger, K. L. 2004,

ApJ, 612, 108
Shen, S., Mo, H. J., White Simon, D. M., et al. 2003, MNRAS, 343, 978
Spinrad, H., Dey, A., Stern, D., et al. 1997, ApJ, 484, 581

Swinbank, A. M., Chapman, S. C., Smail, I., et al. 2006, MNRAS, 465
Tacconi, L., Neri, R., Chapman, S. C., et al. 2006, ApJ, 640, 228
Tacconi, L., Genzel, R., Smail, I., et al. 2007, ApJ, submitted
Thompson, R. I., Illingworth, G., Bouwens, R., et al. 2005, AJ, 130, 1
Toft, S., van Dokkum, P., Franx, M., et al. 2007, ApJ, in press
Totani, T. I, Yoshii, Y., Iwamuro, F., et al. 2001, ApJ, 558, L87
Trujillo, I., Feulner, G., Goranova, Y., et al. 2006, MNRAS, 373, L36
Trujillo, I., Conselice, C., Bundy, K., et al. 2007, MNRAS, in press
van Dokkum, P. 2005, AJ, 130, 2647
van Dokkum, P., & Stanford, S. A. 2003, ApJ, 585, 78
Vanzella, E., Cristiani, S., Dickinson, M., et al. 2006, A&A, 454, 423
Yamada, T., Kodama, T., Kobayashi, Y., et al. 2005, ApJ, 634, 861
Yan, H., Dickinson, M., Eisenhardt, P., et al 2004, ApJ, 616, 63
Yan, R., Newman, J. A., Faber, S. M., et al. 2006, ApJ, 648, 281
Wright, S. A., Larkin, J. E., Barczys, M., et al. 2007, ApJ, 655, 51
Wuyts, S., Labbé, I., Franx, M., et al. 2007, ApJ, 655, 51
Zirm, A. W., van der Wel, A., Franx, M., et al. 2007, ApJ, 656, 66


	Introduction
	The GMASS sample
	Passive galaxies in the GMASS sample
	Spectroscopic selection and properties
	Analysis of the 480-h stacked spectrum

	X-ray and 24 m emission
	Photometric properties and SED fitting
	Colors
	SED fitting
	The stellar masses and their uncertainties
	The age of the dominant stellar population
	Extinction and star formation rates


	Morphological properties
	The HST data
	Visual classification
	Surface brightness profile analysis
	Simulations
	GALFIT results

	The size-mass relation
	Comparison with early-type galaxies at z1
	The Kormendy relation
	Are there superdense relics at z0?
	New constraints and open questions
	How did the superdense galaxies form?
	How did the superdense galaxies disappear?
	Dissipationless merging
	Smooth envelope accretion


	Summary and outlook
	References 

