
GMine: A System for Scalable, Interactive Graph Visualization
and Mining

Jośe F. Rodrigues Jr., Hanghang Tong, Agma J. M. Traina, Christos Faloutsos, Jure Leskovec

Carnegie Mellon University
5000 Forbes Avenue - 15213-3891

Pittsburgh, Pennsylvania
United States of America

{junio, agma}@icmc.usp.br,{htong,christos, jure}@cs.cmu.edu

Abstract

Several graph visualization tools exist. However,
they are not able to handle large graphs, and/or
they do not allow interaction. We are interested
on large graphs, with hundreds of thousands of
nodes. Such graphs bring two challenges: the first
one is that any straightforward interactive manip-
ulation will be prohibitively slow. The second one
is sensory overload: even if we could plot and
replot the graph quickly, the user would be over-
whelmed with the vast volume of information be-
cause the screen would be too cluttered as nodes
and edges overlap each other.

Our GMine system addresses both these issues,
by using summarization and multi-resolution.
GMine offers multi-resolution graph exploration
by partitioning a given graph into a hierarchy
of communities-within-communities and storing
it into a novel R-tree-like structure which we name
G-Tree. GMine offers summarization by imple-
menting an innovative subgraph extraction algo-
rithm and then visualizing its output.

1 Introduction
An important support for graph exploration is interac-
tive visualization, which can help to quickly identify the
main components of a graph, its outliers, the most impor-
tant edges and communities of related nodes. Interaction-
enabled visualization allows to pick detailed and contex-
tualized information on demand, interact with nodes and

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 32nd VLDB Conference,
Seoul, Korea, 2006

edges and determine topology aware arrangements for
clearer inspection.

However, up-to-date applications have produced graphs
on the order of hundred thousand nodes and possibly
million edges (referenced from here on as large graphs).
Large graphs can be found in numerous real-life settings:
web graphs (web pages, pointing to others with hyper-
text links) [3], computer communication graphs (IP ad-
dresses sending packets to other IP addresses), recommen-
dation systems [4], who-trusts-whom networks [5], bipar-
tite graphs of web-logs of who visits what page; blogs
and similar. At this magnitude, efficient graph visualiza-
tion becomes prohibitive because of the excessive process-
ing power requirements that prevent interaction. Besides
that, hundred-thousand-node drawings result in unintelligi-
ble cluttered images that do not aid the users cognition. To
face these challenges we present a system that explores two
new ideas to address scalability in large graph visualiza-
tion. The first idea establishes a hierarchical partitioned ar-
rangement from a graph in order to allow multi-resolution
visualization. The second idea utilizes an innovative algo-
rithm to extract a subgraph of interest based on an initial
set of target nodes. Our system uses either or both of these
ideas to process large graphs bypassing the aforementioned
limitations of massive graph drawing.

The rest of this paper is structured as follows. Section
2 introduces the DBLP dataset that will be used along this
work. Section 3 describes our multi-resolution visualiza-
tion idea and section 4 illustrates our subgraph extraction
algorithm. Section 5 concludes the work.

2 DBLP dataset
Throughout this text we employ the DBLP dataset to illus-
trate the functionalities of our system. This dataset origi-
nates from the Digital Bibliography & Library Project (or
DBLP). DBLP is a publicly available database of publica-
tion data that embraces authors (also co-authors) from the
Computer Science community and their published works.
The version of DBLP dataset that we use defines a graph
with n = 315,688nodes ande= 1,659,853edges, where



each node represents an author of a publication and each
edge denotes a co-authoring relationship between two au-
thors.

3 Graph Hierarchy Creation, Structuring
and Visualization

Our first idea to deal with massive graphs is the use of a
communities-within-communities structured visualization.
In the next sections we overview the steps to come up with
such proposal at the same time that we describe its features
for visualization and interaction.

3.1 The G-Tree structure

For this work, initially we need to recursively and hierar-
chically partition a given graph. For the partitioning task
we adopted METISk-waypartitioning, whose details can
be found in [2] and in related works.

Hence, given a graph, we perform a sequence of recur-
sive partitionings to achieve a hierarchy of communities-
within-communities. At each recursion, each partition is
submitted to a new partitioning cycle that will create an-
other set of partitions. This process repeats until we get the
desired granularity for the partitions (communities). For
each new set of partitions, a new subtree is embedded in an
R-tree like structure. We call this structure G-Tree (named
after Graph-Tree), which is the data structure that supports
our system, as illustrated in figure 1. The references for the
graph nodes properly said are at the bottom level of the tree.
The entire structure is stored in a single file and the nodes
are transferred to main memory only when necessary.

Figure 1: The G-Tree that we utilize for our visualization system
together with the graph recursive structuring.

To demonstrate our methodology, we recursively parti-
tion DBLP dataset into5 hierarchy levels each with5 par-
titions. The dataset, thus, is broken into54 + 1, or 626,
communities with an average of250 nodes per commu-
nity. The communities reflect the connectivity (number of
edges) among their members according to METIS parti-
tioning algorithm.

3.2 Visualization and Interaction

We propose an innovative interactive presentation for large
graphs. For this purpose, our system promotes the navi-
gation across the levels of the tree that represents the parti-
tioning of a large graph. As the user interacts with the visu-
alization, the system keeps track of the connectivity among
communities of nodes at different levels of the partitioned

graph. When the user changes the focus position on the
tree structure, the system works on demand to calculate and
present contextual information.

When we display a graph as communities-within-
communities, we have new representations for graph draw-
ing, as illustrated in figure 2. Besides conventional nodes
and edges that appear only at the bottom level of the tree
(leaf nodes), we also have community nodes, that compre-
hend a number of sub communities and nodes, and we have
connectivity edges, that represent the number of edges be-
tween community nodes. These connectivity edges repre-
sent the number of edges between nodes from the original
graph, but that are in different communities. The storage
and management of this information is out of the scope of
this demonstration paper.

Figure 2: Conventional nodes and an edge to denote relationship.
Leaf community nodes, subgraphs and a connectivity edge to de-
note how many nodes from the communities have an edge to con-
nect them. Non-leaf community nodes, sub communities and con-
nectivity edges.

These features are illustrated in figure 3, which presents
a sequence of interactive actions taken by the user when
navigating in DBLP dataset. In figure 3(a), it is possible to
see DBLP partitioned into5 communities in its first hierar-
chy level, and other5∗5, or 25 communities in its second
hierarchy level. At this point,3 communities are highly
connected to every other community and also highly con-
nected among their5 sub communities. The other2 first
level communities are relatively isolated from the other3
and totally isolated among their sub communities. One
can conclude that the3 highly connected communities hold
long term active and collaborating authors, while the other
2 hold casual, less productive authors who seldom inter-
act with each other. In figure 3(b) we focus on commu-
nity s034and verify that its sub communities are isolated
from each other. A deeper focus in communitys034 in
figure 3(c) shows that among its sub communities (high-
lighted), only two of them present an edge. Our system
allows to inspect this specific outlier edge to reveal that au-
thors “D. B. Miller” and “R. G. Stockton” define this co-
authoring relation for their unique DBLP publication dated
from 1989. We can also ask the system to locate a specific
author within the hierarchy, as for example author Jiawei
Han in figure 3(d). In figure 3(e) we go to its subgraph
community and verify other important nodes surrounding
this author. In figure 3(f) we interact with the graph to dis-
cover author Ke Wang, which is another very active author
who has contributed for years with author Jiawei Han.

The exploration of communities of nodes instead of all
the nodes at a time, the way we are doing, allows the per-
ception of the relationships among communities of nodes.
This way it is possible to trace the distribution of edges
among communities, their connectivity degree and their



Figure 3: DBLP dataset navigation. (a) First5 main communities
and its25 sub communities. (b) Contextualization of commu-
nity s034. (c) Closer look and complete expansion of community
s034. (d) We locate author Jiawei Han. (e) Subgraph community
of author Jiawei Han. (f) Interaction with the subgraph reveals
co-author Ke Wang as one of the main contributors to Jiawei Han.

scope of connectivity. It is also possible to pick outlier
edges for suspicious connections between communities.
The user can focus at different communities of nodes ac-
cording to his/her interest and browse the levels of the hi-
erarchy in order to identify interesting connections or to
inspect specific graph nodes.

At the bottom level of the tree, the user can access a sub-
graph that is part of the larger graph being analyzed. To do
so, the system brings the correspondent graph nodes from
disk to memory and draws them inside the region attributed
to its parent community (tree node). Then this area of the
visualization scene becomes a regular area for graph draw-
ing. For this subraph, besides basic interaction (zoom, pan
and details on demand) the user can also ask for the calcu-
lation of metrical features corresponding to this subgraph
only. Our system supports the following calculations: de-
gree distribution, number of hops, number of weak compo-
nents, number of strong components and page rank calcu-
lation for the nodes. GMine also offers pop up node infor-

mation, edge expansion and edition of nodes and edges.

3.3 The Tomahawk Principle

The presentation of the node communities together with the
edges that connect them may cause sensory overload. This
is due to the fact that every community can potentially be
connected to every other community. This problem is ag-
gravated if the graph has many hierarchy levels exhibited
simultaneously when communities are expanded to show
their content. To cope with this aspect of our proposed
multi-resolution graph visualization, we propose to display
a small, but carefully chosen set of communities. We refer
to this method as the “Tomahawk ” principle, because the
chosen nodes remind of a tomahawk ax when shown on our
G-Tree method, illustrated in figure 4. That is, in order to
limit the number of items presented at a time, we make use
of G-Tree structure to determine a well-established context
every time in response to user interaction. Thus, as the
user chooses a community node to focus on, we traverse the
tree in order to gather the desired node of interest, its sons
and its siblings. Then we plot only these items inside the
minimum node that bears this contextualization, see figure
3(b). We argue that the Tomahawk principle can provide a
minimum contextualization to the user by presenting nodes
above, beneath and by the side of a node of interest.

Figure 4: The Tomahawk principle to help decide what to exhibit
according to user interaction.

4 Connection Subgraph Extraction
Our second idea to deal with massive graphs is the use of
a novel algorithm for connection subgraph extraction. Our
algorithm, which is not to be detailed in this demonstration
work, aims to maximize what we call “goodness score” of
the nodes within a subgraph. To meet this end, an indepen-
dent random walk with restart is simulated for each source
node, and the goodness score of a node is computed by the
steady-meeting probability that the random particles will
finally meet each other at the given node. Then, a dy-
namic programming is used to discover important paths
iteratively. The proposed algorithm can deal with multi-
source queries, while the existing one [1] is restricted to
pairwise source queries.

A typical scenario to apply connection subgraph extrac-
tion is “given an initial set of interesting individuals, find
a small number of individuals from a large social network
that can best capture the relationship among the individu-
als of the initial set”. For large graphs, extracting a small
(say, with tens of nodes) yet representative connection sub-



graph brings feasibility to large graph visual exploration.
Also, due to the multi-faced nature of many real life re-
lationships, connection subgraphs provide a better way to
describe such kind of relationships if compared to single
path descriptions.

For (limited static) demonstration, a connection sub-
graph with 30 nodes extracted from the whole DBLP
dataset is plotted in figure 5. The initial query set in figure 5
is composed of three authors from the database community:
“Philip S. Yu”, “Flip Korn” and “Minos N. Garofalakis”. In
figure 5, instead of a thousand nodes graph, one can con-
centrate on a subgraph of interest extracted from the origi-
nal graph. The magnitude of the subgraph is thousand fold
smaller than the original dataset and the subgraph being vi-
sualized is directly related to the interconnection defined
by our initial set of target nodes.

On the visualization, if the user moves the mouse over
a node, GMine pops up more information about that node
- in the example, one can see Prof. H.V. Jagadish data and
his edges highlighted. Prof. H.V. Jagadish has direct con-
nection with Flip Korn, and 1-step-away connections with
Dr. Philip Yu and Dr. Minos Garofalakis.

Figure 5: Illustration for connection subgraph extraction.

In our system, subgraph extraction can be utilized alone
or combined to communities-within-communities visual-
ization. Alone, one can extract a subgraph of interest from
a given large graph. Combined, (see figure 6), it can be
used to generate a subgraph to be hierarchically partitioned
for visualization or, alternatively, it can be used to generate
a subgraph from an existing graph partition.

Figure 6 illustrates the combination of subgraph extrac-
tion and communities-within-communities visualization.
Figure, 6(a) displays a200nodes subgraph extracted from
the DBLP dataset. In figure 6(b) it possible to see this sub-
graph partitioned into3 main communities. In figures 6(c)
and 6(d) we go deeper into the hierarchy to analyze the con-
nectivity between communities and, finally, the very nodes
of the graph.

5 Conclusions

We have demonstrated a system that supports the visualiza-
tion of large graphs in an interactive environment. In our
tool the user can navigate through the graph structure in
a hierarchical fashion, having different perspectives of the
graph arrangement. The system also supports an innova-
tive subgraph extraction algorithm that can speed up large

Figure 6: (a) A200nodes subgraph extracted from DBLP dataset.
(b) The same graph presented as three partitions. (c) One level
down the hierarchy and we have three other communities inside
the community highlighted in (b). (d) Zoom in the community
highlighted in (c) and another level down the hierarchy. We reach
the very nodes of the graph.

graph exploration by concentrating on a targeted subset of
the graph.

The benefits of our ideas come from its compartmented
graph management that promotes scalability while keep-
ing visual comprehension. The scalability is due to the
fact that smaller parts of the graph are processed one at
a time instead of the whole graph at every cycle. Visual
comprehension derives from limited visual data presenta-
tion in contrast to cluttered visualizations generated when
large graphs are entirely drawn.

For VLDB demonstration session, we plan to let the
interested VLDB participants to interact directly with the
system, possibly checking for their name, their connection-
subgraphs with their colleagues, and zooming-in and -out
their corresponding communities.

References
[1] C. Faloutsos, K. S. McCurley, and A. Tomkins. Fast

discovery of connection subgraphs. InKDD, pages
118–127, 2004.

[2] George Karypis and Vipin Kumar. Multilevel graph
partitioning schemes. InIEEE/ACM International
Conference on Parallel Processing, pages 113–122,
Oconomowoc, Wisconsin, USA, August 1995.

[3] S. R. Kumar, P. Raghavan, S. Rajagopalan, and
A. Tomkins. Trawling the web for emerging cyber-
communities. Computer Networks, 31(11-16):1481–
1493, 1999.

[4] J. Leskovec, A. Singh, and J. Kleinberg. Patterns of
influence in a recommendation network. InPAKDD,
volume 3918, pages 380–389. Springer-Verlag, 2006.

[5] R. Matthew, R. Agrawal, and P. Domingos. Trust man-
agement for the semantic web. In2nd ISWC, pages
351–368, 2003.


