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GMM, GEL, SERIAL CORRELATION, AND ASYMPTOTIC BIAS

BY STANISLAV ANATOLYEV1

For stationary time series models with serial correlation, we consider generalized
method of moments (GMM) estimators that use heteroskedasticity and autocorre-
lation consistent (HAC) positive definite weight matrices and generalized empirical
likelihood (GEL) estimators based on smoothed moment conditions. Following the
analysis of Newey and Smith (2004) for independent observations, we derive second
order asymptotic biases of these estimators. The inspection of bias expressions reveals
that the use of smoothed GEL, in contrast to GMM, removes the bias component as-
sociated with the correlation between the moment function and its derivative, while
the bias component associated with third moments depends on the employed kernel
function. We also analyze the case of no serial correlation, and find that the seemingly
unnecessary smoothing and HAC estimation can reduce the bias for some of the esti-
mators.

KEYWORDS: GMM, empirical likelihood, higher order asymptotic expansions, as-
ymptotic bias, serial correlation, HAC estimation, smoothed moment conditions.

1. INTRODUCTION

IN RECENT YEARS, one step generalized empirical likelihood (GEL) estima-
tors (Smith (1997, 2001)) have attracted attention as theoretically appealing
alternatives to generalized method of moments (GMM) estimators. These
estimators include empirical likelihood (EL) (Qin and Lawless (1994), Imbens
(1997)), exponential tilting (Kitamura and Stutzer (1997)), continuously up-
dating (CU) GMM (Hansen, Heaton, and Yaron (1996)), and other members
(Imbens, Spady, and Johnson (1998)). It has been established that the first or-
der asymptotic properties of GEL estimators are identical to those of GMM
estimators (Smith (1997)), but their higher order asymptotic properties are
advantageous. In particular, Newey and Smith (2004) recently found that the
second order asymptotic bias of GEL estimators lacks some components that
are characteristic of GMM estimators when observations are independent. The
EL estimator is most distinctive in that its bias has the fewest components and,
moreover, its bias corrected version is second order asymptotically efficient.
An important fact is that in an instrumental variables regression the bias of
EL estimators does not, in contrast to that of GMM estimators, grow with the
number of instruments.

1I would like to thank a co-editor and two referees whose comments helped greatly improve
the presentation. I also thank Geert Dhaene, Yuichi Kitamura, Grigory Kosenok, and Richard
Smith for valuable discussions, Andrey Vasnev for research assistance, and the participants of
seminars at the New Economic School, the Catholic University of Leuven, the 2002 Econometric
Study Group Annual Conference at the University of Bristol, the 2003 North American Summer
Meeting of the Econometric Society in Evanston, IL, and the 2003 European Economic Associ-
ation Annual Meeting in Stockholm, Sweden.
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The latter property would make the class of (appropriately modified) GEL
estimators especially attractive in numerous time series models typically esti-
mated by GMM often using big instrument sets. The CU estimator, in par-
ticular, was initially proposed in the context of a capital asset pricing model
(Hansen, Heaton, and Yaron (1996)) in an attempt to improve finite sample
properties of GMM. In this paper, we consider a framework with a stationary
moment function that is serially correlated of possibly infinite order. In such
situations the GMM weight matrix usually has a heteroskedasticity and auto-
correlation consistent (HAC) form that yields positive definiteness (Andrews
(1991)), while the GEL estimator should be modified to attain asymptotic effi-
ciency by using kernel smoothing of moment conditions (Imbens (1997), Smith
(1997)). We derive second order asymptotic bias expressions for the GMM and
GEL estimators under mixing conditions and a sufficiently slow bandwidth
growth rate. Some of our results parallel those of Newey and Smith (2004),
while others reflect time series specifics. In particular, the use of smoothed
GEL removes the bias component that is associated with the correlation be-
tween the moment function and its derivative, and has a potential to grow with
the degree of overidentification. On the other hand, the bias component asso-
ciated with third moments can be removed only by a judicious choice of the
kernel, even in the case of EL.

In addition, we analyze the important case of no serial correlation, and we
draw a surprising conclusion that for the sake of reducing the finite sample
bias, it is worthwhile to use the weight matrix in the HAC form in CU (but not
in two step GMM!) and undertake smoothing in GEL, even though these are
not necessary to do from the point of view of first order asymptotic properties
(cf. Donald and Newey (2000)).

2. GMM AND GEL ESTIMATORS FOR TIME SERIES

Suppose we have the system of unconditional moment restrictions

E[m(wt�θ)] = 0�(1)

where wt is an observable random vector on which data from t = 1 to t = T are
available, θ is a k× 1 vector of parameters to be estimated, and mt ≡m(wt�θ)
is an �× 1 moment function, �≥ k� Let m̂� m̄, m∗� etc. refer to m evaluated at
θ̂� θ̄� θ∗� etc. and let the θ subscript denote first derivatives with respect to θ�
Let ‖A‖ denote the norm tr(A′A)1/2 for a matrix A� We make the following
assumptions about the model and data generation.

ASSUMPTION 1: The sequence wt is strictly stationary and strongly mixing with
mixing coefficients αj satisfying

∑∞
j=1 j

2α1−1/ν
j <∞ for some ν > 1�

ASSUMPTION 2: The following regularity conditions hold:
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(a) The moment restriction (1) holds for unique θ ∈ int(Θ), where Θ ⊆ R
k is

compact.
(b) The function m(wt�θ∗) is Borel measurable for all θ∗ ∈ Θ and is twice

continuously differentiable in θ∗ for all θ∗ ∈Θ and for all wt in its support.
(c) For some stationary series dt with finite E[d8

t ], supθ∗∈Θ max{‖m∗
t ‖�‖m∗

θt‖�‖∂m∗
θt/∂θj‖, ‖∂2m∗

t /∂θj ∂θ
′‖ ∀ j = 1� � � � �k} ≤ dt and max{‖m∗

t − mt‖�
‖m∗

θt − mθt‖�‖∂m∗
θt/∂θj − ∂mθt/∂θj‖∀ j = 1� � � � �k} ≤ dt‖θ∗ − θ‖ for all

θ∗ ∈Θ.
(d) The matrices Q= E[mθt] and V = ∑∞

s=−∞E[mtm
′
t−s] are of full rank.

Define the matrices

Σ= (Q′V −1Q)−1� Ξ = ΣQ′V −1� Ω= V −1 − V −1QΞ�

In constructing various estimators, we will be using, explicitly or implicitly, con-
sistent estimates of the long run variance V . Let us choose a kernel with the
following properties:

ASSUMPTION 3: The kernel function k(x) : [−b�b] → [−k̄� k̄] for finite b and
k̄ is symmetric, nonzero at 0, continuous on (−b�b)� continuously differentiable
on (−b�b) except possibly at a finite number of points, and normalized so that∫ b

−b k(x)dx= 1.

A variety of popular kernels satisfy Assumption 3: truncated, Bartlett,
Parzen, Tukey–Hanning (see Andrews (1991)). Define the system of weights
κ(s) = δ−1

T k(δ
−1
T s)� where δT is the bandwidth parameter tending to infinity

more slowly than the sample size and chosen so that κ(s)’s sum to unity over
s = −rT �−rT +1� � � � � rT −1� rT , where rT = �δTb� To derive the results related
to asymptotic bias we require a sufficiently slow growth rate of the bandwidth:

ASSUMPTION 4: As T → ∞, δT → ∞ and δT = o(T 1/3).

Define the smoothed moment function

mκ
t =

rT∑
s=−rT

κ(s)mt−s

and let other objects with κ superscripts (likemκ
θt) be defined analogously. The

convention is the following: if some time index of a summand is beyond the
sample limits, the entire summand is dropped. Let us denote

ρ2 =
∫ b

−b
k(x)2 dx� ρ3 =

∫ b

−b
k(x)3 dx�
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Define the induced kernel (Smith (2001)) with domain [−2b�2b] to be propor-
tional to the self-convolution of k(x) and normalized so that k∗(0)= 1,

k∗(x)= ρ−1
2

∫ b

−b
k(x+ y)k(y)dy�

and let the associated system of weights be κ∗(s)= δ−1
T k

∗(δ−1
T s)�

In constructing the efficient weight matrix for the generalized method of mo-
ments estimator, researchers most often use HAC matrices that are positive
definite. For comparability with other estimators defined below, we assume
that the weight matrix is constructed in the form (cf. Smith (2001, Section 2.4))

ρ−1
2

δT

T

T+rT∑
t=1−rT

mκ
t m

κ′
t �

which equals, up to a remainder that has no impact on the second order bias,

δT

T

T∑
t=1

2rT∑
s=−2rT

κ∗(s)mtm
′
t−s�

which in turn is a consistent and positive definite estimator of V and has a
habitual form for a HAC weight matrix. The two step GMM estimator θ̂GMM

(Hansen (1982)) is

arg min
θ∈Θ

(
T∑
t=1

m(wt�θ)

)′( T+rT∑
t=1−rT

m̄κ
t m̄

κ′
t

)−1( T∑
t=1

m(wt�θ)

)
�(2)

where θ̄ is the first step preliminary (possibly asymptotically inefficient) GMM
estimator. Other variants of efficient GMM iterate one more time or to con-
vergence. Let W denote the probability limit of weight matrix used at the pre-
liminary step and letΞW = (Q′WQ)−1Q′W � If θ̄ is asymptotically efficient, then
ΞW =Ξ�

The continuously updating estimator θ̂CU (Hansen, Heaton, and Yaron
(1996)) is

arg min
θ∈Θ

(
T∑
t=1

m(wt�θ)

)′

(3)

×
(

T+rT∑
t=1−rT

mκ(wt� θ)m
κ(wt� θ)

′
)−1( T∑

t=1

m(wt�θ)

)
�
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The baseline generalized empirical likelihood estimator θ̂GEL together with the
�× 1 vector of additional parameters λ̂GEL solves the saddle point problem

min
θ∈Θ

sup
λ:λ′mt∈Υ

T∑
t=1

h(λ′m(wt�θ))�(4)

where the scalar function h(ς) and set Υ index members of the GEL class.
When h(ς) = log(1 − ς) and Υ = (−∞�1)� it is the empirical likelihood es-
timator; when h(ς) = 1 − exp(ς)� it is the exponential tilting estimator; when
h(ς)= − 1

2ς
2 − ς� it is the CU estimator with a non-HAC weight matrix (Newey

and Smith (2004)). Let h(ς) satisfy the following conditions:

ASSUMPTION 5: The function h(ς) is concave and three times continuously
differentiable on Υ� an open interval containing zero, has bounded Lipschitz
third derivative in a neighborhood of zero, and is normalized so that h0 = 0�
h1 = h2 = −1, where hr = ∂rh(0)/∂ςr�

The GEL estimator is generally inefficient when serial correlation in mt is
present. To construct an efficient estimator when there is serial correlation of
unknown order, the problem is modified in the following way. As suggested
by Kitamura and Stutzer (1997) and Smith (1997), the moment function is
smoothed using the system of weights κ(s)� The saddle point problem for the
smoothed generalized empirical likelihood (SGEL) estimator θ̂SGEL and the as-
sociated �× 1 vector of additional parameters λ̂SGEL is

min
θ∈Θ

sup
λ:λ′mκt ∈Υ

T+rT∑
t=1−rT

h(λ′mκ(wt�θ))�(5)

Note that quadratic h(ς) leads to the CU estimator (3).
The GMM, CU, and SGEL estimators have the same asymptotic distribution

N(0�Σ) (Hansen (1982), Smith (1997)).

3. ASYMPTOTIC BIAS OF GMM AND GEL ESTIMATORS

Nagar (1959) type asymptotic expansions have become a standard tool of an-
alyzing finite sample behavior of first order asymptotically efficient estimators.
Aside from Newey and Smith (2004), they have been recently undertaken, for
example, in Rilstone, Srivastava, and Ullah (1996) for a variety of nonlinear es-
timators. In the time series context, early papers were interested in expansions
of simple statistics in simple models; for example, Phillips (1977) derived the
Edgeworth expansion for the ordinary least squares estimator and associated
t statistic in a first order autoregression. Recently, Bao and Ullah (2003) have
derived stochastic expansions for various estimators in nonlinear time series
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models, although no variance estimators in the HAC form are used. Higher
order properties of GMM test statistics that employ HAC variance matrix esti-
mators have been explored in the bootstrap literature (e.g., Götze and Künsch
(1996) and Inoue and Shintani (2003)). In particular, it follows from Lem-
mas A1–A4 in Inoue and Shintani (2003) that the leading asymptotically van-
ishing term in the Edgeworth expansion for recentered and normalized GMM
estimators has the order T−1/2 unaffected by HAC estimation, while the or-
der of the next term depends both on the bandwidth and on the characteristic
exponent of the kernel function.

Denote the jth column of the identity matrix by ej and let

Bm3(u� v)=ΞE[mtm
′
t−uΩmt−v]�

B∂mΩm(u)= −ΣE[m′
θtΩmt−u]�

BW (u)=Ξ
k∑
j=1

E

[
∂mt m

′
t−u

∂θj
ΩV Ξ′

W ej

]
�

B∂mΞm =Ξ
+∞∑
u=−∞

E[mθtΞmt−u]�

B∂2m = −Ξ
k∑
j=1

E

[
∂mθt

∂θj

Σ

2
ej

]
�

THEOREM 1: Under Assumptions 1–5, the asymptotic biases of order T−1 for
the GMM, CU, and SGEL estimators are

BGMM =
+∞∑
u=−∞

+∞∑
v=−∞

Bm3(u� v)+
+∞∑
u=−∞

B∂mΩm(u)+
+∞∑
u=−∞

BW (u)

+B∂mΞm +B∂2m�

BCU =
+∞∑
u=−∞

+∞∑
v=−∞

Bm3(u� v)+B∂mΞm +B∂2m�

BSGEL =
(

1 + h3ρ3

2ρ2
2

) +∞∑
u=−∞

+∞∑
v=−∞

Bm3(u� v)+B∂mΞm +B∂2m�

When observations are independent, the formulas coincide with their sim-
pler counterparts from Newey and Smith (2004), except for the presence of the
m3 component in BSGEL, even in the case of EL due to smoothing when there is
no need to smooth. All bias expressions involve third moments of the moment
function. However, in the case of SGEL this term is scaled by a factor that de-
pends on the choice of the kernel and may be manipulated (see below). Note
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that because CU is a special case of SGEL with h3 = 0� this factor for CU is
unity and does not depend on the kernel.

As in Newey and Smith (2004), there are two common components ∂mΞm
and ∂2m in all bias formulas which are present even under exact identifica-
tion and represent the bias of the method of moments estimator based on the
infeasible optimal combination of moment conditions. The W term in BGMM

vanishes if the first step estimator θ̄ arrives from the efficient GMM (then
ΩV Ξ′

W = 0)� The GMM estimator also has the bias component ∂mΩm, the
long run covariance between the moment function and its derivative, which
is absent from bias expressions of the others. Newey and Smith (2004) estab-
lish that in cross sectional models estimated by instrumental variables, this bias
component grows linearly with the number of instruments. Use of SGEL es-
timators removes this term critical for finite sample properties of the GMM
estimator.

As noted above, the first bias term in BSGEL can be removed by a judi-
cious choice of the kernel function. Consider empirical likelihood estimation
(h3 = −2), in which case that term can be removed by setting ρ3ρ

−2
2 = 1 (al-

ternatively, the factor can be tuned to offset other bias components, which,
however, does not seem realistic in practice). It turns out that among positive
kernels, only the truncated kernel satisfies this condition, due to the Cauchy–
Schwarz inequality (

∫
k(x)2 dx)2 ≤ ∫

k(x)dx · ∫
k(x)3 dx� It is this smoother

that was originally proposed, although for the sake of simplicity, in Kitamura
and Stutzer (1997). Among nonpositive kernels, there are many that achieve
ρ3ρ

−2
2 = 1, for example, k(x)= 0�515x4 − 1�809x2 + 1� |x| ≤ 1�

To better understand the sources of some bias components, we follow
Donald and Newey (2000) and look at first order conditions (FOC). The FOC
for SGEL (omitting limits of summation) are

(∑
t

∂h(λ̂′m̂κ
t )

∂ς
m̂κ
θtej

)′(∑
t

ϕ(λ̂′m̂κ
t )m̂

κ
t m̂

κ′
t

)−1 ∑
t

m̂κ
t = 0

for all j = 1� � � � �k� where ϕ(ς) ≡ −(∂h(ς)/∂ς + 1)/ς (note that ϕ(0) ≡
limς→0ϕ(ς)= 1). Donald and Newey (2000) explain the absence of the ∂mΩm
bias component for the CU estimator on serially correlated data with an HAC
weight matrix by the fact that the Jacobian term in the FOC is a sum of residu-
als from a projection of moment derivatives on moments and thus is orthogonal
to the moment function. Likewise, in the case of SGEL the Jacobian can also
be represented as a sum of residuals of the type

−∂h(λ̂
′m̂κ

t )

∂ς
m̂κ
θtej

= m̂κ
θtej −

∑
τ

ϕ(λ̂′m̂κ
τ)m̂

κ
θτej

(
m̂κ′
τ

(∑
s

ϕ(λ̂′m̂κ
s )m̂

κ
s m̂

κ′
s

)−1

m̂κ
t

)
�



990 STANISLAV ANATOLYEV

Here the sample projection coefficients do properly estimate the population
projection coefficients when there is serial correlation.

Regarding the m3 bias component, the situation is complicated by the fact
that the second moment FOC term is in the denominator. However, in the
neighborhood of λ̂= 0,

(∑
t

ϕ(λ̂′m̂κ
t )m̂

κ
t m̂

κ′
t

)−1

=
(∑

t

m̂κ
t m̂

κ′
t +

∑
t

ψ(λ̂′m̂κ
t )m̂

κ
t m̂

κ′
t λ̂

′m̂κ
t

)−1

≈
(∑

t

m̂κ
t m̂

κ′
t

)−1(
I −

∑
τ

ψ(λ̂′m̂κ
τ)m̂

κ
τm̂

κ′
τ (λ̂

′m̂κ
τ)

(∑
t

m̂κ
t m̂

κ′
t

)−1)

=
(∑

t

m̂κ
t m̂

κ′
t

)−1(∑
t

ζt

)(∑
t

m̂κ
t m̂

κ′
t

)−1

�

where ψ(ς)≡ (ϕ(ς)− 1)/ς (note that ψ(0)≡ limς→0ψ(ς)= −h3/2) and

ζt ≡ m̂κ
t m̂

κ′
t −

∑
τ

ψ(λ̂′m̂κ
τ)m̂

κ
τm̂

κ′
τ

(
m̂κ′
τ

(∑
s

ϕ(λ̂′m̂κ
s )m̂

κ
s m̂

κ′
s

)−1

m̂κ
t

)
�

The inverted second moment FOC term asymptotically equals a sandwich with
the middle matrix having summands that may or may not be residuals from
the projection of squares of moments on moments. In the IID setting without
smoothing, the sample projection coefficients properly estimate the popula-
tion counterparts when ψ(0)= ϕ(0) which holds when h3 = −2. This explains
why in the IID setting EL estimation removes the m3 bias component, while
GEL with h3 �= −2 does not. When there is serial correlation, kernel smoothing
provides consistent estimation of projection coefficients but also requires ad-
ditional multipliers creating a new disparity, hence the presence of the m3 bias
component even for the smoothed EL.

4. SERIALLY UNCORRELATED MOMENT FUNCTION

Consider now the important case when mt is serially uncorrelated, but not
IID across time. Then the standard practice is to use a non-HAC form of
weight matrices when applying GMM or CU and to use the GEL estimator (4)
without smoothing.

THEOREM 2: Suppose that E[mtm
′
t−s] = 0 for all s �= 0� a non-HAC weight

matrix is used for GMM and CU, and no smoothing is used for GEL. Under
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Assumptions 1, 2, and 5, the asymptotic biases of order T−1 for the GMM, CU,
and GEL estimators are

BGMM =
+∞∑
u=−∞

Bm3(u�0)+
+∞∑
u=−∞

B∂mΩm(u)+BW (0)+B∂mΞm +B∂2m�

BCU =
+∞∑
u=−∞

Bm3(u�0)+
∑
u �=0

B∂mΩm(u)+B∂mΞm +B∂2m�

BGEL =
(

1 + h3

2

)
Bm3(0�0)+

∑
u �=0

Bm3(u�0)+
∑
u �=0

B∂mΩm(u)

+B∂mΞm +B∂2m�

If in addition E[mt |wt−1�wt−2� � � � ] = 0� the signs
∑+∞

u=−∞ and
∑

u �=0 can be re-
placed, respectively, by

∑
u≥0 and

∑
u>0.

Without smoothing, the sample projection coefficients do not properly esti-
mate population counterparts when moments and derivatives are correlated,
so the summands of the Jacobian and second moment FOC terms do not
contain sample residuals any longer and hence are not orthogonal to the
moment function. Most importantly, in the absence of smoothing the prob-
lematic Jacobian-related bias component can be only partially removed by us-
ing GEL. Taking this to be the primary concern, and comparing the results of
Theorems 1 and 2, we can draw several important conclusions: when the mo-
ment function is serially uncorrelated, but not IID across time, smoothing the
moment function in GEL tends to reduce the bias, and so does use of weight
matrices in the HAC form in CU (cf. Donald and Newey (2000)), albeit not
in GMM.

In addition, it can be concluded that an attempt to turn the problem with
serially correlated errors into one with no serial correlation by prewhitening
the moment function in order to avoid practical complications arising from
smoothing will likely lead to a bigger bias compared to use of smoothing. The
prewhitening will not eliminate correlatedness between the moment function
and its derivatives, while the smoothing will.

New Economic School, Nakhimovsky Prospekt, 47, Room 1721, Moscow
117418, Russia; sanatoly@nes.ru; http://www.nes.ru/~sanatoly/.

Manuscript received July, 2003; final revision received October, 2004.
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APPENDIX: PROOFS

Denote

ζT = 1√
T

T∑
t=1

mt�

∆∂m = 1√
T

T∑
t=1

(mθt −Q)� ∆mm = 1√
T

T∑
t=1

(mtm
′
t − V )�

In what follows, we omit subscripts referring to estimator types when it does
not cause ambiguity. Unless stated explicitly, all summations with indices s�u� v
are two-sided infinite. Less essential proofs are omitted to save space.

LEMMA 1: Under Assumptions 1 and 2, the following infinite summations
converge for all i� j�k :

∑
u |E[mi�t−u ∂mj�t/∂θk]|� ∑

u u
2|E[mi�tm

′
j�t−u]|, and∑

u

∑
v(|u| + |v|)|E[mi�tmj�t−um′

k�t−v]|�

LEMMA 2: Under Assumptions 1 and 2, the following are o(1):E[∆∂mΞζT ] −∑
s E[mθtΞmt−s]� E[∆′

∂mΩζT ] −∑
s E[m′

θtΩmt−s]� E[∆mmΩζT ] −∑
s E[mtm

′
t ×

Ωmt−s]� E[ΞζT(ΞζT)′] − Σ� E[ΩζT(ΞζT)′]� E[ΩζT(ΞW ζT )
′] − ΩV Ξ′

W , and
E[ΩζT(ΩζT )′] −Ω�

PROOF: All results are obtained in the same way, using ΞV Ξ′ = Σ,
ΩV Ξ′ = 0, and ΩV Ω′ = Ω� and convergence in Lemma 1. For example,
E[∆∂mΞζT ] = T−1

∑T

t=1

∑T

τ=1E[mθtΞmτ] = ∑T−1
s=−(T−1)(1 − |s|/T) ×

E[mθtΞmt−s] → ∑
s E[mθtΞmt−s]. Q.E.D.

LEMMA 3: Under Assumptions 1–4, the following are true:

1
T

T+rT∑
t=1−rT

∂mκ
θt

∂θj
= E

[
∂mθt

∂θj

]
+Op

(
1√
T

)
;(a)

1
T

T+rT∑
t=1−rT

mκ
t m

κ′
t − ρ2

δT
V �

1
T

T+rT∑
t=1−rT

∂mκ
t m

κ
it

∂θ′ − ρ2

δT

+∞∑
u=−∞

E

[
∂mt mi�t−u
∂θ′

]
�(b)

and

1
T

T+rT∑
t=1−rT

mκ′
θt(e

′
im

κ
t + eimκ′

t )− ρ2

δT

+∞∑
u=−∞

E[m′
θt(e

′
imt−u + eim′

t−u)]
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are

Op

(
δT

T
+ 1
δ2
T

+ 1√
δTT

)
;

E

[
ρ−1

2

δT√
T

T+rT∑
t=1−rT

mκ
t m

κ′
t ΩζT

]
−

+∞∑
u=−∞

+∞∑
v=−∞

E[mtm
′
t−uΩmt−v](c)

=O
(
δ3
T

T
+ 1
δT

)
;

1
T

T+rT∑
t=1−rT

mκ
itm

κ
t m

κ′
t − ρ3

δ2
T

+∞∑
u=−∞

+∞∑
v=−∞

E[mitmt−um′
t−v](d)

=Op
(
δT

T
+ 1
δ3
T

+ 1

δT
√
T

)
�

PROOF: In (a),

T+rT∑
t=1−rT

∂mκ
θt

∂θj
=

T∑
t=1

∂mθt

∂θj
�

By the law of large numbers and the central limit theorem for α-mixing se-
quences,

T−1
T∑
t=1

∂mθt

∂θj
=E

[
∂mθt

∂θj

]
+Op

(
1√
T

)
�

In (b),

T+rT∑
t=1−rT

mκ
t m

κ′
t =

T+rT∑
t=1−rT

rT∑
s=−rT

κ(s)mt−s

rT∑
v=−rT

κ(v)m′
t−v

= (ρ2 +O(δ−1
T ))

T+rT∑
t=1−rT

2rT∑
u=−2rT

κ∗(u)mtm
′
t−u +Op(δT )�

Here, the term O(δ−1
T ) is the mismatch between discrete and continuous ver-

sions of the kernel, and Op(δT ) is due to boundary effects. From Lemma 1,∑
u u

2‖E[mtm
′
t−u]‖ < ∞� The characteristic exponent (Parzen (1957)) of
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k∗(x) is at least 1 (because as x→ 0� |1 − k∗(x)|/|x| = ρ−1
2 | ∫ (k(y) − k(y +

x))k(y)dy|/|x| = ρ−1
2 | ∫ (x+ o(|x|))k′(y)k(y)dy|/|x|<∞); hence

δT

T

T∑
t=1

2rT∑
u=−2rT

κ∗(u)mtm
′
t−u = V +Op

(
1
δT

+
√
δT

T

)

(Parzen (1957, Theorem 5)), so the first statement holds. Other statements are
handled similarly. In (c),

E

[
T+rT∑
t=1−rT

mκ
t m

κ′
t

T∑
t=1

mit

]

= (ρ2 +O(δ−1
T ))E

[
T+rT∑
t=1−rT

2rT∑
u=−2rT

κ∗(u)mtm
′
t−u

T∑
t=1

mit

]
+O(δ2

T )

= (ρ2 +O(δ−1
T ))

2rT∑
u=−2rT

κ∗(u)
T−1∑

v=−(T−1)

(T − |v|)E[mtm
′
t−umi�t−v]

+O(δ2
T )�

From Lemma 1,
∑

u

∑
v ‖E[mtm

′
t−umi�t−v]‖<∞. Then, because

2rT∑
u=−2rT

k∗
(
u

δT

) T−1∑
v=−(T−1)

(
1 − |v|

T

)
E[mtm

′
t−umi�t−v]

→
+∞∑
u=−∞

+∞∑
v=−∞

E[mtm
′
t−umi�t−v]

as T → ∞ and δT → ∞� the result follows. In (d), for any combination of
indices i� j� l= 1� � � � � �, we have

T+rT∑
t=1−rT

mκ
itm

κ
jtm

κ
lt

=
T+rT∑
t=1−rT

rT∑
s=−rT

κ(s)mi�t−s

rT∑
u=−rT

κ(u)mj�t−u

rT∑
v=−rT

κ(v)ml�t−v

= (ρ3 +O(δ−1
T ))

T+rT∑
t=1−rT

2rT∑
u=−2rT

2rT∑
v=−2rT

κ∗∗(u� v)mitmj�t−uml�t−v

+Op(δT )�
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where κ∗∗(u� v)= δ−2
T k

∗∗(δ−1
T u�δ

−1
T v) and k∗∗(y� z)= ρ−1

3

∫ +∞
−∞ k(x)k(x+ y)×

k(x+z)dx is the bispectral estimating kernel (Rosenblatt and Van Ness (1965)),
symmetric, continuous in both arguments at (0�0), and normalized so that
k∗∗(0�0) = 1� Because

∑
u

∑
v(|u| + |v|)‖E[mitmt−um′

t−v]‖ <∞ by Lemma 1
and since the order of k∗∗(y� z) is at least 1 (because as y → 0 and z → 0,
|1 − k∗∗(y� z)|/|y + z| = ρ−1

3 | ∫ (k(x)2 − k(x + y)k(x + z))k(x)dx|/|y + z| =
ρ−1

3 | ∫ ((y + z)+ o(|y + z|))k′(x)k(x)2 dx|/|y + z|<∞),

δ2
T

T

T+rT∑
t=1−rT

2rT∑
u=−2rT

2rT∑
v=−2rT

κ∗∗(u� v)mitmt−um′
t−v

=
+∞∑
u=−∞

+∞∑
v=−∞

E[mitmt−um′
t−v] +Op

(
1
δT

+ δT√
T

)

(Rosenblatt and Van Ness (1965, Theorems 4 and 5)), and the result fol-
lows. Q.E.D.

LEMMA 4: Under Assumptions 1–5, for (θ∗′λ∗′)′ lying between (θ̂′
SGELλ̂

′
SGEL)

′

and (θ′ 0′)′,

T−1
T+rT∑
t=1−rT

∂2(h1(λ
∗′m∗κ

t )m
∗κ′
θt λ

∗)
∂θ′ ∂θj

=Op
(
δT√
T

)
;

T−1
T+rT∑
t=1−rT

∂2(h1(λ
∗′m̂∗κ

t )m̂
∗κ
t )

∂θ′ ∂θj
= −E

[
∂mθt

∂θj

]
+Op

(
δT

T
+ 1√

T

)
;

T−1
T+rT∑
t=1−rT

∂2(h1(λ
∗′m∗κ

t )m
∗κ′
θt λ

∗)
∂λ′ ∂θj

= −E
[
∂m′

θt

∂θj

]
+Op

(
δT

T
+ 1√

T

)
;

T−1
T+rT∑
t=1−rT

∂2(h1(λ
∗′m∗κ

t )m
∗κ
t )

∂θ′ ∂λi

= −ρ2δ
−1
T

∑
u

E

[
∂mt mi�t−u
∂θ′

]
+Op

(
δT

T
+ 1
δ2
T

+ 1√
δTT

)
;

T−1
T+rT∑
t=1−rT

∂2(h1(λ
∗′m∗κ

t )m
∗κ′
θt λ

∗)
∂λ′ ∂λi

= −ρ2δ
−1
T

∑
u

E[m′
θt(e

′
imt−u + eim′

t−u)] +Op
(
δT

T
+ 1
δ2
T

+ 1√
δTT

)
;



996 STANISLAV ANATOLYEV

T−1
T+rT∑
t=1−rT

∂2(h1(λ
∗′m∗κ

t )m
∗κ
t )

∂λ′ ∂λi

= h3ρ3δ
−2
T

∑
u

∑
v

E[mitmt−um′
t−v] +Op

(
δT

T
+ 1
δ3
T

+ 1

δT
√
T

)
�

PROOF: Note that ‖f ∗κ
t ‖ = ‖∑rT

s=−rT κ(s)f
∗
t−s‖ ≤ ∑rT

s=−rT |κ(s)|‖f ∗
t−s‖ ≤ d|κ|

t ,
and ‖f ∗κ

t − f κt ‖ = ‖∑rT
s=−rT κ(s)(f

∗
t−s − ft−s)‖ ≤ ∑rT

s=−rT |κ(s)|‖f ∗
t−s − ft−s‖ ≤

d|κ|
t ‖θ∗ − θ‖ for ft equal mt� mθt� ∂mθt/∂θj , and ∂2mt/∂θj ∂θ

′ ∀ j = 1� � � � �k�
where d|κ|

t ≡ ∑rT
s=−rT |κ(s)|dt−s�

A norm of any quantity in the lemma can be bounded by a sum of norms
of three types. The first type includes terms ‖T−1

∑T+rT
t=1−rT f

κ
t − ρξmδ1−ξm

T E[ft]‖
for ft equal ∂mθt/∂θj� mθtmit + mtmθit� m

′
θtmit + m′

θteim
′
t , or mitmtm

′
t � and

κ superscripts all ξm inclusions (ξm ∈ {1�2�3}) of m (we define ρ1 = 1). The
orders of magnitude for these terms are given in Lemma 3(a), (b), (d). The
second type includes terms ‖T−1

∑T+rT
t=1−rT (f

∗κ
t ∂

µh(λ∗′m∗κ
t )/∂ς

µ − f κt hµ)‖ for f κt
equal ∂mκ

θt/∂θj� m
κ
θtm

κ
it� m

κ
t m

κ
θit� m

κ′
θteim

κ′
t , or mκ

itm
κ
t m

κ′
t with ξm inclusions

(ξm ∈ {1�2�3}) of m, and µ ∈ {1�2�3}� Such terms do not exceed, by Assump-
tion 2, the triangular and Cauchy–Schwarz inequalities, and the Lipschitz prop-
erty of ∂µh(ς)/∂ςµ�

hµ
1
T

T+rT∑
t=1−rT

‖f ∗κ
t − f κt ‖ + 1

T

T+rT∑
t=1−rT

∥∥∥∥
(
∂µh(λ∗′m∗κ

t )

∂ςµ
− hµ

)
f ∗κ
t

∥∥∥∥
≤ hµξm 1

T

T+rT∑
t=1−rT

(
d|κ|
t

)ξm‖θ∗ − θ‖ +C 1
T

T+rT∑
t=1−rT

(
d|κ|
t

)ξm+1‖λ∗‖

=Op
(
δ1−ξm
T√
T

)
�

because the first term is Op(δ
1−ξm
T · 1/

√
T ) and the last term is Op(δ

−ξm
T ·

δT/
√
T ) by arguments similar to the proof of Lemma 3. Finally, the third

type includes terms ‖T−1
∑T+rT

t=1−rT f
∗κ
t ∂

µh(λ∗′m̂∗κ
t )/∂ς

µ‖ for f ∗
t equal to a prod-

uct of ξm copies (ξm ∈ {1�2�3}) of m∗
t � m

∗
θt� ∂m

∗
θt/∂θj , or

∑�

i=1 ∂
2m∗′

θit/∂θ
′ ∂θj�

and λ∗ in ξλ ≤ ξm copies. Such terms do not exceed, by Assumption 2, the tri-
angular and Cauchy–Schwarz inequalities, the continuity and boundedness of
∂µh(ς)/∂ςµ�

C
1
T

T+rT∑
t=1−rT

‖f ∗κ
t ‖‖λ∗‖ξλ =Op

(
δ1−ξm
T (δT/

√
T )ξλ

)
�
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When adding up, we take into account that some remainders’ orders swallow
orders of others. Q.E.D.

PROOF OF THEOREM 1: The first order asymptotics for the first step estima-
tor θ̄ is

√
T(θ̄− θ)= −ΞW ζT +Op(1/

√
T )� The second step GMM estimator

θ̂ has the FOC

0 =
(

1
T

T∑
t=1

m̂θt

)′(
ρ−1

2

δT

T

T∑
t=1

m̄κ
t m̄

κ′
t

)−1
1√
T

T∑
t=1

m̂t�

The FOC has the expansion

0 =
(

1
T

T∑
t=1

mθt + 1√
T

k∑
j=1

1
T

T∑
t=1

∂ma
θt

∂θj

√
T(θ̂j − θj)

)′

×
(
ρ−1

2

δT

T

T+rT∑
t=1−rT

mκ
t m

κ′
t

+ 1√
T

k∑
j=1

ρ−1
2

δT

T

T+rT∑
t=1−rT

∂mκ†
t m

†κ′
t

∂θj

√
T(θ̄j − θj)

)−1

×
(

1√
T

T∑
t=1

mt + 1
T

T∑
t=1

mθt

√
T(θ̂− θ)

+ 1

2
√
T

k∑
j=1

1
T

T∑
t=1

∂mb
θt

∂θj

√
T(θ̂j − θj)

√
T(θ̂− θ)

)
�

where θa and θb lie componentwise between θ̂ and θ� and θ† lies between
θ̄ and θ. Because the first order asymptotics for θ̂ is

√
T(θ̂ − θ) = −ΞζT +

Op(1/
√
T )� the expansion can be simplified to

0 =
(
Q+ 1√

T

(
∆∂m −

k∑
j=1

E

[
∂mθt

∂θj

]
e′
jΞζT

)
+Op

(
1
T

))′

V −1

×
(
I −

(
ρ−1

2

δT

T

T+rT∑
t=1−rT

mκ
t m

κ′
t − V

− 1√
T

k∑
j=1

+∞∑
u=−∞

E

[
∂mt m

′
t−u

∂θj

]
e′
jΞW ζT

)
V −1
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+ 1√
T
Op

(
δ2
T

T
+ 1
δT

+
√
δT

T

))

×
(
ζT +Q√

T(θ̂− θ)

+ 1√
T

(
−∆∂mΞζT + 1

2

k∑
j=1

E

[
∂mθt

∂θj

]
ΞζTΞζTej

)

+Op
(

1
T

))
�

where the order of the remainder in the middle follows by Lemma 3(b). Sim-
plifying,

op

(
1√
T

)

=Q′V −1
(
ζT +Q√

T(θ̂− θ)) − 1√
T
Q′V −1∆∂mΞζT + 1√

T
∆′
∂mΩζT

− 1√
T
Q′V −1ρ−1

2

δT√
T

T+rT∑
t=1−rT

mκ
t m

κ′
t ΩζT +Q′ΩζT

+ 1

2
√
T
Q′V −1

k∑
j=1

E

[
∂mθt

∂θj

]
ΞζTΞζTej

− 1√
T

k∑
j=1

E

[
∂mθt

∂θj

]
ΩζTe

′
jΞζT

− 1√
T
Q′V −1

k∑
j=1

+∞∑
u=−∞

E

[
∂mt m

′
t−u

∂θj

]
ΩζTe

′
jΞW ζT �

Premultiplying by −Σ� expressing out
√
T(θ̂ − θ)� and taking expectations

getting rid of terms of higher order, we obtain the first result using Lemmas
2 and 3.

The FOC for the SGEL estimator are

0 =
T+rT∑
t=1−rT

h1(λ
′m̂κ

t )m̂
κ
t � 0 =

T+rT∑
t=1−rT

h1(λ
′m̂κ

t )m̂
κ′
θt λ̂�
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Using Lemma 3, we have the expansion of the FOC to Op(1/
√
T ):

Op(1/
√
T )= ζT +Q√

T(θ̂− θ)+ Vρ2δ
−1
T

√
T λ̂�

Op(1/
√
T )=Q′ρ2δ

−1
T

√
T λ̂�

Premultiplying the first equation by Q′V −1, adding the second, and expressing
out

√
T(θ̂− θ) and ρ2δ

−1
T

√
T λ̂� we get that

√
T(θ̂− θ)= −ΞζT +Op(1/

√
T )

and ρ2δ
−1
T

√
T λ̂ = −ΩζT + Op(1/

√
T )� Moreover, the leading term in an ex-

pansion of the product of these has expectation of order o(1) according to
Lemma 2. Taking the second order expansion,

0 = − 1√
T

T+rT∑
t=1−rT

mκ
t −

(
Q+ 1√

T

1√
T

T+rT∑
t=1−rT

(mκ
θt −Q)

)√
T(θ̂− θ)

−
(
V +

(
ρ−1

2

δT

T

T+rT∑
t=1−rT

mκ
t m

κ′
t − V

))
ρ2

√
Tδ−1

T λ̂

+ 1

2
√
T

k∑
j=1

[
1
T

T+rT∑
t=1−rT

∂2h1(λ
∗′m̂∗κ

t )m̂
∗κ
t

∂θ′ ∂θj

]√
T(θ̂− θ)√T(θ̂j − θj)

+ 1√
T

�∑
i=1

[
1
T

T+rT∑
t=1−rT

∂2h1(λ
∗′m̂∗κ

t )m̂
∗κ
t

∂θ′ ∂λi

]√
T(θ̂− θ)√T λ̂i

+ 1

2
√
T

�∑
i=1

[
1
T

T+rT∑
t=1−rT

∂2h1(λ
∗′m̂∗κ

t )m̂
∗κ
t

∂λ′ ∂λi

]√
T λ̂

√
T λ̂i�

0 = −
(
Q+ 1√

T

1√
T

T+rT∑
t=1−rT

(mκ
θt −Q)

)′√
T λ̂

+ 1

2
√
T

k∑
j=1

[
1
T

T+rT∑
t=1−rT

∂2h1(λ
∗′m∗κ

t )m
∗κ′
θ λ

∗

∂θ′ ∂θj

]

× √
T(θ̂− θ)√T(θ̂j − θj)

+ 1√
T

k∑
j=1

[
1
T

T+rT∑
t=1−rT

∂2h1(λ
∗′m∗κ

t )m
∗κ′
θ λ

∗

∂λ′ ∂θj

]√
T λ̂

√
T(θ̂j − θj)

+ 1

2
√
T

�∑
i=1

[
1
T

T+rT∑
t=1−rT

∂2h1(λ
∗′m∗κ

t )m
∗κ′
θ λ

∗

∂λ′ ∂λi

]√
T λ̂

√
T λ̂i�
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where (θ∗′λ∗′)′ lies between (θ̂′λ̂′)′ and (θ′ 0′)′ componentwise. By the first or-
der asymptotics and Lemma 4, after simplifications we get

0 = −ζT − V ΩζT −Q√
T(θ̂− θ)− Vρ2δ

−1
T

√
T λ̂+ 1√

T
∆∂mΞζT

+ 1√
T
ρ−1

2

δT√
T

T+rT∑
t=1−rT

mκ
t m

κ′
t ΩζT − 1

2
√
T

k∑
j=1

E

[
∂mθt

∂θj

]
ΞζTζ

′
TΞ

′ej

− 1

2
√
T

�∑
i=1

+∞∑
u=−∞

E

[
∂mt mi�t−u
∂θ′

]√
T(θ̂− θ)ρ2δ

−1
T

√
T λ̂i

+ 1√
T

h3

2
ρ3

ρ2
2

�∑
i=1

+∞∑
u=−∞

+∞∑
v=−∞

E[mitmt−um′
t−v]ΩζTζ ′

TΩei

+ 1√
T
Op

(
1
δT

+ δ3
T

T

)
�

0 = −Q′ρ2δ
−1
T

√
T λ̂+ 1√

T
∆′
∂mΩζT

− 1√
T

k∑
j=1

E

[
∂m′

θt

∂θj

]√
T λ̂

√
T(θ̂j − θj)

− 1

2
√
T

�∑
i=1

+∞∑
u=−∞

E[m′
θt(e

′
imt−u + eim′

t−u)]ΩζTζ ′
TΩei

+ 1√
T
Op

(
1
δT

+ δ2
T

T

)
�

Note that the remainders in both equations are op(1/
√
T ) when Assumption 4

holds. Premultiplying the first equation by Q′V −1, adding the second equa-
tion, expressing out

√
T(θ̂ − θ), and taking expectations getting rid of terms

of higher order, we obtain the last result using Lemmas 2 and 3, and the fact
that the bias component

Σ

2

�∑
i=1

+∞∑
u=−∞

E[m′
θtmi�t−u +m′

θteim
′
t−u]E[ΩζTζ ′

TΩ]ei

offsets −ΣE[∆′
∂mΩζT ] up to o(1)� The bias expression for CU is a special case

when h3 = 0. Q.E.D.
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PROOF OF THEOREM 2: From the first part of expansions in Lemma A4 of
Newey and Smith (2004), the second order expansion for GMM and GEL are,
respectively,

√
T(θ̂GMM − θ)
= −ΞζT + 1√

T
Ξ∆mmΩζT + 1√

T
Ξ∆∂mΞζT − 1√

T
Σ∆′

∂mΩζT

− 1√
T

Ξ

2

k∑
j=1

E

[
∂mθt

∂θj

]
ΞζTζ

′
TΞ

′ej

+ 1√
T
Σ

k∑
j=1

E

[
∂mθt

∂θj

]
ΩζTζ

′
TΞ

′ej

+ 1√
T
Ξ

k∑
j=1

E

[
∂mt m

′
t

∂θj

]
ΩζTζ

′
TΞ

′
W ej +Op

(
1
T

)
�

√
T(θ̂GEL − θ)
= −ΞζT + 1√
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2

�∑
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′
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t)]ΩζTζ ′
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(
1
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)
�

Taking expectations of the leading seven terms, we obtain the first and third
conclusions using Lemma 2. The bias expression for CU is a special case
when h3 = 0� Finally, the last conclusion follows from the observation that un-
der the additional condition, E[mtm

′
t+uΩmt] = 0 and E[m′

θtΩmt+u] = 0 when
u > 0. Q.E.D.
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