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Abstract

Data association is the backbone to many multiple ob-

ject tracking (MOT) methods. In this paper we formulate

data association as a Generalized Maximum Multi Clique

problem (GMMCP). We show that this is the ideal case of

modeling tracking in real world scenario where all the pair-

wise relationships between targets in a batch of frames are

taken into account. Previous works assume simplified ver-

sion of our tracker either in problem formulation or prob-

lem optimization. However, we propose a solution using

GMMCP where no simplification is assumed in either steps.

We show that the NP hard problem of GMMCP can be for-

mulated through Binary-Integer Program where for small

and medium size MOT problems the solution can be found

efficiently. We further propose a speed-up method, employ-

ing Aggregated Dummy Nodes for modeling occlusion and

miss-detection, which reduces the size of the input graph

without using any heuristics. We show that, using the speed-

up method, our tracker lends itself to real-time implementa-

tion which is plausible in many applications. We evaluated

our tracker on six challenging sequences of Town Center,

TUD-Crossing, TUD-Stadtmitte, Parking-lot 1, Parking-lot

2 and Parking-lot pizza and show favorable improvement

against state of art.

1. Introduction

Tracking is a fundamental problem in computer vision

and for decades researchers have tried to solve this prob-

lem. Every year many trackers are proposed and results in

many dataset have already reached their ceilings. The big

question is: ”Do we need yet another tracker?”. Looking

back at recent tracking papers, despite great performance

reported on specific scenarios, still many challenges remain

unsolved including occlusion, abrupt motion, appearance

changes and, etc. This leaves the room open for new track-

ers which can better deal with tracking challenges in various

scenarios. The aforementioned aspects mostly affect the

performance of the pre-trained object detectors which are
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Figure 1. The two versions of the input graph used in our track-

ing. The graph on the left uses regular dummy nodes (shown with

triangles) for occlusion handling and the speed-up version of our

tracker uses only one dummy node per cluster called aggregated-

dummy-node (shown with stars). Our method finds all the cliques

in a graph that maximize the score function simultaneously. In this

example 4 cliques are found, each shown in a different color. Each

circle represents one tracklet.

used to generate the input to data-association based track-

ing algorithms. Reviewing the literature, most data associ-

ation methods have considered a simplified version of the

problem and focused on approximate inference methods

which can be solved efficiently. On the other side, those

algorithms which incorporate more accurate formulation of

tracking scenario in real world suffer from greedy optimiza-

tions and local minima.

In this paper we take a different direction and propose a

method which does not involve any simplification in prob-

lem formulation nor in optimization. Our method has sev-

eral advantages: First, it mimics the real world tracking sce-

nario precisely by incorporating all temporal pairwise rela-

tionship in a batch of frames, i.e the graph is k-partite com-

plete. Second, we formulate the proposed graph theoretic

problem using Binary-integer Program without simplifying

the original problem. Third, it allows including high-order

relationship between targets in our cost function. Fourth, it

can robustly handle short/long-term occlusion. And, finally

it lends itself to real-time implementation on a desktop com-

puter. Next we shall critique some important previous data

association methods in more detail and highlight how the

proposed method differs from them.

Data association is the core of multiple object tracking
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algorithms. One group of data-association techniques are

temporally local. Bipartite matching is probably the most

popular method in this category and exact solution to that

can be found using Hungarian algorithm [6]. On the other

hand, the popularity of the global data association based

tracking methods have recently increased due to their abil-

ity to better deal with the challenges caused by noisy detec-

tion inputs. In global data association the temporal-locality

during optimization is increased which means that the op-

timization is done over a batch of frames instead of just

two/few consecutive frames [20, 21, 8, 27]. This allows

incorporating more global properties of targets during opti-

mization. Reviewing the literature we can divide such algo-

rithms into two main groups. One group assumes a simpli-

fied version of the problem where only relationship between

observations in consecutive frames are taken into account.

These methods are mostly followed by an optimization for

which there exists an exact solution. Such methods are com-

putationally efficient and plausible for many applications.

Network flow algorithm [20, 21, 8] is an example of

such approaches. In network flow, a directed acyclic graph

(DAG) is formed given the detection hypotheses in each

frame, and the solution is found through minimum-cost

maximum-flow algorithm. Zhang et al. [20] showed that

the exact solution to network flow problem can be found in

polynomial time through push relabel algorithm. Pirsiavash

et al. in [21] showed that a high quality sub-optimal solution

can be found using dynamic programing.

Different variations of network flow are also used in

MOT recently [12, 10, 22]. Authors in [10] incorpo-

rate constant velocity motion model in network flow graph

and proposed a Lagrangian relaxation solution to min-cost

max-flow problem. The work of [22] presents a multi-

commodity network flow to better incorporate the appear-

ance consistency between group of people during track-

ing. Authors in [12] use a variation of multi-commodity

flow graph in an inner loop of a structured learning tracker

and solve detection and data association simultaneously for

multiple objects. However, this simplification of the orig-

inal problem comes with a price. Limiting the cost calcu-

lated for a track to observations in consecutive frames make

tracker prone to ID-switches.

The second group of data association methods assume no

simplification in problem formulation and consider a model

which is closer to the tracking scenario in real world. How-

ever, due to the complexity of their models, the proposed

solutions are approximate [3, 4, 27]. Andriyenko et al. in

[3] formulate tracking in a non-convex optimization frame-

work where the goal is to fit a set of trajectories to the data

which best satisfies some constraints mimicking tracking in

real world scenarios. Even though the model is closer to the

real world tracking scenario compared to network flow, the

solution found to the non-convex function is prone to local

minima.

GMCP tracker proposed in [27] considered a more com-

plete representation of the tracking problem, where all the

pairwise relationships between detections in the temporal

span of a video is considered. This makes the input to

the data association to be a complete k-partite graph. In

a k-partite complete graph a track of a person will form

a clique (a subgraph in which all the nodes are connected

to each other), thus the MOT can be formulated as con-

straint maximum weight clique problem. In [27], a cost

is assigned to each clique and the one that maximizes the

score function is selected as the best clique(track). How-

ever, as mentioned earlier the solver used in these methods

is sub-optimal. First GMCP tracker does not follow a joint

optimization for all the tracks simultaneously and finds the

tracks one by one. In addition, the proposed solver follows

a greedy local neighborhood search which is prone to lo-

cal minima. Moreover the heuristic line fitting approach for

removing outliers make the tracks prone to ID-switch espe-

cially when people are walking close to each other. Some

failure cases of GMCP tracker are shown in Figure 2.

In this paper we propose a multiple object tracking ap-

proach which in contrast to previous works does not involve

any simplification neither in problem formulation nor in the

optimization. We formulate tracking as a Generalized Max-

imum Multi Clique Problem which have not been explored

before. Our graph incorporates the pairwise relationship be-

tween all the observations in a batch of frames and our cost

function allows incorporating higher order costs between all

the candidates in a track. Although we prove that GMMCP

is an NP hard problem, we do not follow an approximate so-

lution for it. We formulate the NP hard problem through Bi-

nary Integer Program (BIP), and show that the solution can

be found accurately for small and medium size MOT prob-

lems. Our tracking algorithm addresses the aforementioned

problems of [27] by not only finding the tracks jointly for all

the objects but also providing an accurate solution without

relaxing the original problem.

In addition, we propose an approach for speeding up the

proposed BIP solution with a more efficient occlusion han-

dling strategy. Our speed-up solution formulates GMMCP

as a Mixed-Binary Integer Program that reduce the com-

putational complexity significantly without any loss in the

performance. We show that for small and medium size mul-

tiple object tracking problem the solution to the NP hard

problem can still be found efficiently using our pipeline and

favorable results against state-of-art can be achieved. Our

experiments involve challenging sequences and the results

support the effectiveness of the proposed pipeline. We show

qualitatively that our method can handle very long term oc-

clusions, sometimes up to 150 frames, and can preserve the

identity of targets better than previous work.

The rest of the paper is organized as follow: In Section 2



(a) (b)

Figure 2. Example of failure cases of the GMCP tracker in [27]

(top row).(a) indicates the effect of joint optimization where two

targets with similar appearance are walking in the scene. In GMCP

first the red track that has a very high score is selected and later the

blue track is picked, which has a very low similarity score. Both

tracks in this case are wrong. (b) Shows two targets walking in

parallel for 6 frames with very different appearance but spatially

close (each target has one miss detection). The red track is selected

first which includes an ID-Switch. The reason is that, the outliers

selection is based on spatial location only and it is sensitive to

RANSAC parameters. Bottom row shows the groundtruth tracks

we review our tracking pipeline and introduce the General-

ized Maximum Multi Clique Problem. Next we discuss how

tracking is formulated using GMMCP (Section 3) and pro-

pose our Binary-Integer Program solution. In section 4 we

discuss our proposed algorithm to speed up the optimiza-

tion introduced in Section 3.1. The appearance and motion

affinities used in our tracking are discussed in section 5. The

experimental results are presented in 6 and finally section 7

concludes the paper.

2. Proposed Framework

We adopt a two layer tracking framework in which tracks

with shorter length are combined in each layer to form

longer tracks. We start with a set of low-level tracklets

for different temporal segments of a video. To further in-

crease the reliability of these low-level tracklets we limit

their length to a maximum of 10 frames and the ones shorter

than 5 frames are discarded. Later the low-level tracklets

in different segments (4 − 6) are used to create the input

to our GMMCP tracker. This will form the first layer of

our tracking where the output is a set of mid-level tracklets.

The mid-level tracklets are later used as input to the next

layer to form the final trajectories. Below we shall intro-

duce GMMCP and we show that it is NP hard.

Generalized Maximum Multi Clique Problem. Given

a k-partite complete graph, where there is an edge between

every pair of nodes that do not belong to the same cluster

(in our case cluster represents tracklets in a segment of a

video); the objective is to find a sub-graph which forms K

cliques, in which the sum of edges of the cliques are maxi-

mized and exactly K nodes are selected from every cluster.

To give a more formal definition, the input to the GMMCP

is a graph G(V,E,W ), where V , E and W are the nodes,

edges and their corresponding weights. V is divided into

a set of disjoint clusters where v
j
i defines the ith node in

the jth cluster. The goal is now to pick a set of K cliques

by selecting exactly K nodes from each cluster that maxi-

mize the total score. The closest problem to ours is Gen-

eralized Maximum Clique Problem (GMCP) where the aim

is to find only one clique with maximum score. It is shown

that GMCP is NP hard [16, 19] and a set of approximate

solutions, such as multi-greedy heuristics and local search,

are proposed to solve GMCP [27, 2]. In order to prove that

Generalized Maximum K clique problem is NP hard we use

reduction and show that GMCP can be reduced to GMMCP.

We will show below that GMMCP is also hard to solve:

Proposition. Generalized Maximum K Clique Problem

is NP hard.

Proof. Consider a graph with h clusters where we aim

to find the clique with maximum score. We add K − 1
nodes to each cluster. The added nodes in different clus-

ters are connected to each other with inf edge weights and

the edges connecting the added nodes to the nodes of the

original graph have the weight zero. Now the solution to

Generalized Maximum K clique problem in the new graph

is equal to the solution to GMCP in original graph, after

excluding the K − 1 inf cliques. So GMCP is reduced to

GMMCP and we have shown that GMMCP is at least as

hard as GMCP, thus it is NP-hard.

3. Tracking using Generalized Maximum

Multi Clique Problem

Creating Input Graph. The input to our tracker is a

k-partite complete graph where there is an edge between

every pair of nodes that are not in the same cluster. For the

first layer we divide the video into segment of 10 frames

and each segment defines one cluster. The nodes of our

graph in the first layer are low-level tracklets (mid-level

tracklets are used to create the input to the second layer)

found in each segment with maximum length of 10 frames

and minimum length of 5 frames. These low-level tracklets

are found using a simple overlap criteria where bounding

boxes that overlap more than 60% in consecutive frames

are connected. It is worth to mention that tracklets have

been previously used as reliable inputs in many tracking al-

gorithm [26, 11, 13, 22]. In our method, tracklets not only

help reducing the computational complexity but also allow

incorporating motion similarity into edge cost of our graph.

Because the edges in our graph will connect more than two

detection hypotheses which are essential for encoding a mo-

tion cost. Thus each edge in our graph, G, is assigned a

weight which incorporates both appearance and motion of



the target. We later show in Section 5 how these weights are

calculated.

3.1. Solving GMMCP using Binary Integer Pro
gram

We formulate GMMCP as a Binary Integer Program. To

the best our knowledge this problem is not solved before.

Any binary integer program can be formulated as follows:

{

maximize CT x,

subject to Ax = b and Mx ≤ n.
(1)

The objective function to maximize is CT x, where C is

the weight matrix and x is boolean column vector. Ax = b

and Mx ≤ n define the equality and inequality constraints

respectively. For every node and edge in the graph there is

binary variable in vector x. Let us define the v
j
i as the bi-

nary variable for each node (the ith node in the jth cluster)

and emn
ij to be the binary variable for the edge between the

nodes v
j
i and vnm. In order to guarantee a feasible solution

to GMMCP, x needs to satisfy three constraints.

The first constraint enforces the sum of nodes in each

cluster to be equal to K, which is the number of cliques we

need to find (We explain later in the experiment section how

we set the number K).

{∀j|1 ≤ j ≤ h} :

l∑

i=1

v
j
i = K, (2)

where h is the number of clusters and l is the number of

nodes within that cluster.

The second constraint ensures that, if a node is selected

then (h− 1) of its edges should be included in the solution.

This is because of the fact that in each clique, one node from

each cluster is included.

h∑

j=1

l∑

i=1

eijmn = vnm.(h−1).{∀m,n|1 ≤ n ≤ h, 1 ≤ m ≤ l}

(3)

Finally we need the third constraint to ensure that the solu-

tion found by x will form a clique.

e
i′j′

ij + e
i′′j′′

i′j′ ≤ 1 + e
ij
i′′j′′ . {∀emn

ij ∈ E} (4)

Constraints in Equations 2 and 3 are used together to

form the equality constraint defined by matrix A and vec-

tor b. Matrix M and vector n are also constructed so that

the constraint in Equation 4 is satisfied. The combination of

these three constraints will ensure that x will provide a valid

solution to the GMMCP. Once x is found, each clique will

represent a track of a person.

3.2. Occlusion Handling using Dummy Nodes

The solution to GMMCP is a set of cliques where one

node from each cluster is selected in each clique. In our

formulation each node will represent a tracklet of person

which may not necessarily be present in all the frames (clus-

ter) or may be occluded or miss-detected. In order to avoid

selecting irrelevant nodes in a track of a person, we intro-

duce an additional set of nodes in each cluster called dummy

nodes. Dummy nodes are treated the same as the rest of the

nodes in the graph with only one difference. The weights

of the edges connected to each dummy node are fixed to a

pre-defined value of cd. Our dummy nodes will ensure that

the tracks for each person will be free of outliers. In other

words, when there is no confident tracklet for a clique in

a particular cluster, a dummy node from that cluster is se-

lected. In figure 1 (left), 4 cliques are selected, each shown

in different color and dummy nodes are shown with trian-

gles. The figure shows that dummy nodes are used to fill the

miss-detection spots whenever needed.

Considering the dummy nodes in the graph we can ex-

pand the cost function in 1 into four terms as shown bellow:

maximize
∑

j1

RealEdges
︷ ︸︸ ︷
cj1xj1 +

∑

j2

DummyEdges
︷ ︸︸ ︷
cj2xj2

+
∑

j3

RealNodes
︷ ︸︸ ︷
cj3xj3 +

∑

j4

DummyNodes
︷ ︸︸ ︷
cj4xj4 ,

(5)

where xj1 , xj2 , xj3 and xj4 are the four types of variables in

column vector x. xj1 defines the variables specified to real

edges in the graph, xj2 are used to define the variables for

dummy edges, e.g edges which are connected to dummy

nodes, xj3 is the variable for real nodes representing the

tracklets in each cluster and finally xj4 represent the dummy

nodes in the graph. The cost associated to each type of vari-

able is defined using cj1 , cj2 , cj3 and cj4 . In our formulation

cj2 = cd and cj3 and cj4 are set to zero. However one can

also define a cost for the nodes in the graph, e.g average de-

tection confidences of one tracklet can define the score of a

node. cj1 is defined based on motion and appearance simi-

larity of the two tracklets. In Section 5 we explain in detail

how to compute cj1 .

Given the number of clusters and the number of nodes in

each cluster, one can define the upper bound for the number

of dummy nodes which needs to be added to each cluster:

N i
d =

∑

j 6=i

N j , (6)

where N i
d is the number of dummy nodes added to clus-

ter i and N j is the number of true-nodes in cluster j. One

should note that this is the upper bound for the number of

dummy nodes, where the assumption is that for each track



there is only one true node among all the clusters. How-

ever, in practice we found that using only a small number

of dummy nodes is sufficient, e.g when considering 5 clus-

ters in GMMCP,

∑
j 6=i

Nj

3
dummy nodes are enough. We

show in our experiments that our dummy nodes are able

to robustly replace miss detections as well as detection hy-

pothesis with low global appearance and motion similarity

with the rest of the tracks.

4. Speed-Up

In previous section we showed that one can easily obtain

the upper bound for the number of dummy nodes added to

each cluster. However, in practice only a small number of

these dummy nodes are sufficient to handle miss detections

in cliques. Adding more dummy nodes will increase the

computational complexity as the number of variables dur-

ing optimization will increase. In order to void such cases,

we introduce Aggregated Dummy Nodes (ADN). Our ADN

will no longer be boolean variable and can take any integer

value. This allows us to add only one ADN to each cluster

which will account for all the outliers in that cluster.

Our new graph with aggregated dummy nodes is similar

to the original graph with the difference that there is no edge

connecting dummy nodes to other nodes. Integer-valued

dummy nodes, will no longer allow solving GMMCP

through BIP introduced in Section 3.1. Moreover, removal

of edges correspond to dummy nodes require us with a new

set of constraints in order to ensure the cliques found during

optimization are valid solutions to the GMMCP.

We propose to solve GMMCP with ADN through

Mixed-Binary-Integer Programming in which we aim to

minimize the objective function CT x. Where C is the

weight matrix and x is a vector containing both boolean and

integer variables. To ensure the solution is a valid solution

to GMMCP we enforce the following three constraints:

Constraint 1 is similar to the one in Equation 4 which en-

sures that the solution will form a clique.

e
i′j′

ij + e
i′′j′′

i′j′ ≤ 1 + e
ij
i′′j′′ . {∀emn

ij ∈ E} (7)

Constraint 2 enforces the sum of outgoing edges of one

node entering another cluster to be less than or equal to one.

Thus one clique does not include more than one node from

each cluster.

l∑

m=1

eijmn ≤ 1. {∀emn
ij ∈ E} (8)

Constraint 3 guarantees that K nodes from each cluster is

selected.

{∀j|1 ≤ j ≤ h} :

l∑

i=1

eijmn + vdj = (h− 1)×K, (9)

where vdj defines the ADN in cluster j. The cost func-

tion remains the same as the one defined in Equation 5 with

the difference that we no longer have the term for dummy

edges, instead cj4 which corresponds to setting dummy

node cost to cd
2

, and cj1 and cj3 remain the same as before.

The solution can be found optimally through Mixed-Binary

Integer Program. For optimization we used ILOG CPLEX

package provided at [1]. Our experiments show that us-

ing ADNs, one can significantly reduce the computational

complexity and achieve performance close to real time on a

desktop computer.

5. Affinity Measures

As mentioned earlier once our graph, G, is constructed

given the tracklets in each segment, the edge connecting

each pair of tracklets in different clusters are assigned a

weight (cj1 in Equation 5). The weight assigned to each

edge is calculated considering both motion and appearance

similarity between the two tracklets. Below we shall de-

scribe how these two affinities our computed in our tracker:

Appearance Affinity. For appearance representation of

a node, we use color histogram [14]. The histogram is com-

puted for all the detections of one node (tracklet) and the

median appearance of the detections is selected as the ap-

pearance representation of the node. Given the appearance

descriptor of two nodes in the graph (φ(Ti) and φ(Tj)),
the appearance affinity is calculated by computing the his-

togram intersection between the two tracklets.

cAppearance(Ti, Tj) = k(φ(Ti), φ(Tj)). (10)

Motion Affinity. Motion model is one of the major com-

ponents in any tracking method. When it comes to track-

ing people in fixed surveillance cameras, the most prac-

tical motion model is constant velocity. Similar to [27],

we employed a global constant velocity model. In our

graph each node represents a tracklet. This allows encod-

ing the motion affinity in the edge weight of the graph be-

cause each edge in the graph will connect more than two

detection hypothesis. Given two tracklets and their cor-

responding state vectors, T1 =
[
ys1 , ys1+1, · · · , ye1

]
and

T2 =
[
ys2 , ys2+1, · · · , ye2

]
, the deviation error is computed

using the following equation:

d =

⌊m/2⌋
∑

j=0

⌊l/2⌋
∑

i=0

forward deviation error
︷ ︸︸ ︷
[

ys2+j −
˙(ye1−i)(s2 − e1 + j − i)ye1−i

]

+

⌊m/2⌋
∑

j=0

⌊l/2⌋
∑

i=0

backward deviation error
︷ ︸︸ ︷
[

ye1−i −
˙(ys2+j)(e1 − s2 + i− j)ys2+j

]

.

where l and m define the length of first and second tracklets



Metric Description

MOTA Takes into account false positives, false negatives and ID-Switches

MOTP It measures the tightness of the tracking results and groungtruth.

MT Percentage of tracks that are successfully tracked for more than 80%

ML Percentage of tracks that are successfully tracked for less than 20%

IDS Total number of times that an output track changes its identity

Table 1. Description of metrics used in our evaluations.

respectively. yi defines the location of the target in frame

i, s1 and s2 are the start frames and e1 and e2 are the end

frames. ˙(ye1−i) defines the velocity vector ending at node

in frame e1− i and ˙(ys2+j) defines the velocity vector start-

ing from node s2 + j. The first part of the above equation

calculates the forward motion error and the second part cal-

culates the backward error. Once the deviation error d is

found the similarity is computed using Equation 11.

cMotion(Ti, Tj) =
1

2
exp(

−d

σ
). (11)

Given the appearance and motion affinity for each pair of

nodes in the graph, the final edge cost is defined using linear

combination of these two as:

cj1 = (ν)cAppearance + (1− ν)cMotion, (12)

where ν and (1 − ν) are the corresponding weights for the

two affinities. ν is set to 0.7 in first layer of our pipeline.

However, in the second layer and where the final trajecto-

ries are found, global constant velocity motion model does

not hold all the time. For the second layer of our tracking

framework, where the long tracks are formed, we consider

a damping factor which reduce the contribution of motion

similarities when the two tracklets are far away in time. For

the second layer the edge weight for two tracklets T l
i and

Tm
j , where l and m are the indexes of the GMMCP clus-

ters, is computed using the equation below:

cj1 = (1− τ)cAppearance + (τ)cMotion,

where τ = exp(
|l −m|

γ
)(1− ν).

(13)

6. Experiments

We performed exhaustive experiments and evaluated our

tracker on six sequences. Five of the sequences are publicly

available sequences including Town Center [7], Parking-Lot

1 [23], Parking-Lot 2 [24], TUD-Crossing [3] and TUD-

Stadmitte [17] and the last sequence is a new sequence

called Parking-Lot Pizza. For publicly available sequences

which the tracking results have been already reported (Town

Center, Parking-Lot 1, TUD-Crossing TUD-Stadmitte), we

compared our method with the state-of-art trackers, borrow-

ing the numbers from the authors’ papers. On the other

two sequences which no tracking results are reported, we

compare our method with competitive approaches which

Dataset Method MOTA MOTP MT ML IDS

MPT 72.9 71.3 - - -

GMCP 75.59 71.93 - - -

Ours 77.37 66.38 86.09 4.35 68

MWIS 85.9 73 - - 2

GMCP 91.63 75.6 - - 0

Ours 91.9 70 75 0 2

DLP 79.3 73.9 - - 4

GMCP 77.7 63.4 - - 0

Ours 82.4 73.9 80 0 0

H2T 88.4 81.9 78.57 0 21

GMCP 90.43 74.1 - - -

Ours 92.9 73.6 92.86 0 4
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Table 2. Quantitative Analysis of our method on Town Center,

TUD-Crossing, TUD-Stadmitte and Parking-lot 1 with state-of-art

methods of DLP[18], H2T [25], WMWIS [9] and PartTrack [23].

for we have access to their code including KSP [8], DCT

[4], CMOT [5], IHTLS [13] and GMCP [27]. The results

reported for these trackers could be considered as lower

bound for which the parameters are set to the default as sug-

gested by the authors.
1

Implementation Details. We used deformable part

based model [15] to get the detection hypothesis in each

frame. The weights for the dummy nodes is found empir-

ically and is set to 0.3. K which is the number of tracks

found by GMMCP is set to a high number (50 in our ex-

periments). A clique must have at least one real tracklet in

its solution to be counted as a valid tracklet otherwise it is

discarded. In Equation 11 the parameter σ is set to 20 and

in Equation 12 the parameter ν and γ are set to 0.7 and 5
respectively.

6.1. Quantitative Evaluation and Discussion

For quantitative evaluation we used CLEAR MOT met-

rics (MOTA and MOTP) as well as Trajectory-Based mea-

sures,( Mostly Track, Mostly Lost and ID-Switch). CLEAR

MOT metrics examine the video as a whole while TBM aim

to evaluate each groundtruth track individually considering

their completeness. The description of the metrics used in

our evaluation is shown in Table 1.

Town Center. This is challenging sequence which con-

tains 4500 annotated frames. The number of cluster in

the first layer is set to 5, yielding to tracklet of maximum

50 frames. For final merging we considered 6 clusters

which create track of maximum length 300 frames. Dur-

ing generating the final track we followed similar approach

to [26, 27] by considering overlapping segments, thus con-

necting tracks in each step that overlap. The quantitative

1For more information and qualitative results please visit http://

crcv.ucf.edu/projects/GMMCP-Tracker/.

http://crcv.ucf.edu/projects/GMMCP-Tracker/
http://crcv.ucf.edu/projects/GMMCP-Tracker/


Dataset Method MOTA MOTP MT ML IDS

KSP 45.4 57.8 46.15 0 531

DCT 60.1 56.1 76.92 0 234

CMOT 80.7 58 84.62 0 61

GMCP 75.6 58.1 61.54 0 76

IHTLS 78.8 57.9 84.62 0 50

Ours 87.6 58.1 92.31 0 7

KSP 51.8 65.7 39.13 0 249

DCT 53.5 65.8 69.57 0 185

IHTLS 57.6 66.8 43.48 4.35 105

CMOT 56.9 63.3 30.43 4.35 87

GMCP 57.6 68.6 26.9 4.35 52

Ours 59.5 64.1 30.43 0 55
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Table 3. Quantitative Analysis of our method on Parking-lot Pizza

and Parking-lot 2 with competitive approaches of KSP [8], DCT

[4], CMOT [5], IHTLS [13] and GMCP [27].

results are shown in Table 2.

Parking Lot 1 and Parking Lot 2. Parking-lot 1 (PL1)

contains 748 annotated frames and up to 14 pedestrians in

the scene. The main challenges in this sequence are occlu-

sion and confusion cause by targets walking close by with

similar appearance . Parking Lot 2 is relatively more dif-

ficult as it includes a fighting scene with targets walking

with abrupt motion. Parking-Lot 2 contains 900 annotated

frames and up to 13 pedestrians. On PL1 we show ∼ 4%
improvement in MOTA compared to state-of-art. For PL2

we compare with 5 other methods and show favorable im-

provement especially in number of ID-Switches. IHTLS

[13] which estimates the underlying dynamic of the tar-

get without assuming a prior motion model performs bet-

ter compared to other four methods. However, we show

that using our holistic motion model followed by a damping

factor we can still handle abrupt motion to some extent and

outperform competitive approaches. (To be fair we want to

mention that, our tracker also takes advantage of appearance

information which is not the case in IHTLS)

TUD Dataset. TUD-Crossing and Stadtmitte are two se-

quences in this data set with low camera angle and frequent

occlusions. Crossing includes 201 and Stadtmitte contains

179 frames. The results are provided in Table 2.

Parking-lot Pizza. Although we show significant im-

provement on the five publicly available sequences, the per-

formance of state-of-art trackers on those surveillance type

sequences have almost reached its ceiling. Our new se-

quence Parking-lot Pizza contains a semi-crowded scenario

with a lot of occlusions, pose variations and abrupt motions.

A high-resolution surveillance camera (4000×3000) is used

to record the sequence. We compare our method with 5

trackers and the results are reported in Table 3.
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Figure 3. run-time comparison of our GMMCP tracker with ADN

and without ADN as well as the GMCP tracker proposed in [27]

on Parking-lot 1 and TUD-Crossing sequences. The plots are in

semilogarithmic scale
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GMMCP = 19.51 s

GMMCP−ADN = 1.57 s

GMCP = 123.78 s

Figure 4. Run time comparison of our method for different number

of targets in a batch of 50 frames on Parking-lot 1. The numbers

in the legend show the average run-time across all the segments.

6.2. Run Time Comparison

As discussed in section 4, the more dummy nodes we add

to each cluster, the slower the optimization becomes. Al-

though we show that without ADNs we still can efficiently

find the tracks, the implementation of proposed GMMCP

tracker with aggregated dummy nodes will help reducing

the computational complexity significantly. We conducted

two set of experiments to show the speed-up achieved using

ADNs. First, in figure 3, we compare our implementation

with and without ADNs when the average run-time per seg-

ment of two sequences are reported. For this experiment we

changed the number of frames in the batch from 20 to 60
and recorded the time to find the tracks within that batch.

In the second experiment in figure 4 we show how the run-



Figure 5. Qualitative results of our tracker on experimented sequences.

time increases as the number of people increase in the scene

for a batch size of 50 frames. For both experiments we

also compared our results with GMCP tracker [27] where

the publicly available implementation is used to record the

time complexity. In both experiments we achieved signif-

icant speed-up, up to two order of magnitude, when using

the MBIP implementation of our approach. All the numbers

reported in Figure 4 and 3 are obtained using a 3.2GHz PC

while utilizing only a single core.

It is worth to mention that the computational complexity

of our method is highly dependent on the problem size.

Although we show performance close to real-time using

a non-optimized code on tested sequences, the complex-

ity increases as the size of the graph increases. This issue

highlights itself even more, when we are dealing with an

NP hard problem. Our observations show that for crowded

scenes (more than 30 pedestrians) we need to decrease the

batch size in-order to be able to track targets efficiently.

7. Conclusion

In this paper we formulate multiple target tracking as a

Generalized Maximum Multi Clique problem where it is

solved through Binary Integer Programing. We later show

that by using aggregated dummy nodes and reformulating

GMMCP through a Mixed-Binary-Integer Program we can

achieve a speed-up up to two order of magnitude. In our

experiment we show that we can improve the state-of-art on

six challenging sequences.
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