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GndNet: Fast Ground Plane Estimation and Point Cloud Segmentation

for Autonomous Vehicles

Anshul Paigwar, Özgür Erkent, David Sierra-Gonzalez, Christian Laugier

Abstract— Ground plane estimation and ground point seg-
mentation is a crucial precursor for many applications in
robotics and intelligent vehicles like navigable space detection
and occupancy grid generation, 3D object detection, point cloud
matching for localization and registration for mapping. In this
paper, we present GndNet, a novel end-to-end approach that es-
timates the ground plane elevation information in a grid-based
representation and segments the ground points simultaneously
in real-time. GndNet uses PointNet and Pillar Feature Encoding
network to extract features and regresses ground height for
each cell of the grid. We augment the SemanticKITTI dataset to
train our network. We demonstrate qualitative and quantitative
evaluation of our results for ground elevation estimation and
semantic segmentation of point cloud. GndNet establishes a new
state-of-the-art, achieves a run-time of 55Hz for ground plane
estimation and ground point segmentation.

I. INTRODUCTION

Fully autonomous driving is an important but challenging

goal, for which a reliable perception of the local environment

is crucial [1]. 3D-LiDARs are popular and widely used

sensors in robotics and intelligent vehicles. LiDARs generate

high-resolution 3D point clouds of the environment while

remaining unaffected by varying illumination. Point clouds

are used for several applications including object recognition,

navigation, and path planning. Navigation for intelligent

vehicles requires accurate detection of the navigable space

and classification of obstacles. For path planning and to

estimate the risks on the path, occupancy grids are often used

[2]. Occupancy grids are 2D spatial maps of the environment

around the vehicle which can be constructed by processing

the LiDAR point cloud data. Typical steps that precede the

occupancy grid generation are the estimation of the ground

plane and the segmentation of the ground points [3].

The goal of the ground plane estimation is to find out the

height of the ground for each of the grid cells. Due to the

sparse nature of the point clouds, this is a challenging task.

Furthermore, the occupation of some of the cells by tempo-

rary obstacles such as vehicles or pedestrians, lack of points

in some of the cells due to occlusions, and unevenness in the

surface of the ground are some of the other challenges for

estimating the ground height of the grid cells. The benefits

of a correct estimation of the ground plane go beyond the

computation of occupancy grid maps. For instance, knowing

the height of each LiDAR point in relation to the ground

can benefit the plethora of LiDAR-based 3D object detection

approaches [4], [5].
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Fig. 1. Overview of GndNet architecture: GndNet takes point cloud
from 3D LiDAR as input, estimates ground plane elevation, and segments
point cloud into the ground and non-ground categories at 55Hz.

The segmentation of the points belonging to the ground

is also an important task. If these points can be segmented,

other tasks such as object detection and classification or lo-

calization and mapping would be improved both in accuracy

and speed.

Therefore, we formulate our problem as finding a method

that would estimate the ground plane and segment the ground

points simultaneously in real-time for an autonomous vehicle

setting where the computational efficiency of the method is

a critical aspect.

In this work, we present GndNet, a deep learning-based

approach for ground plane estimation and point cloud seg-

mentation. GndNet uses PointNet to extract point-wise fea-

tures [6] and 2D convolutions on the grid to extract spatial

features. By leveraging these features, the proposed network

learns the appearances, analyzes the scene and estimates the

ground elevation in real-time (Figure 1).

One issue with learning-based approaches is the require-

ment of a large amount of annotated data for training. Cur-

rently, no public dataset is available with an annotated ground

elevation map. To overcome this difficulty, we propose two

approaches: morphological operations and a CRF-based [3]

approach to obtain the ground-truth elevation map from the

SemanticKITTI dataset [7], [8].



The key contributions of this study can be summarized as

follows:

• We present a novel deep neural network architecture

called GndNet for real-time ground elevation estimation

and point cloud segmentation. The network directly

operates on sparse 3D points and is end-to-end trainable.

• We show the network’s ability to analyze the scene,

learn the appearances, and distinguish the points be-

longing to the ground and non-ground.

• We demonstrate how to generate ground truth datasets

for ground elevation from the SemanticKITTI dataset.

We perform real experiments and quantitative com-

parisons to prove the integrity of our learning-based

approach.

II. RELATED WORK

In this section, we first discuss methods related to ground

plane estimation and segmentation. Next, we discuss meth-

ods that solely focus on ground points segmentation. Finally,

we cover deep learning methods for feature extraction from

point clouds.

One of the initial methods that appeared for ground

estimation was based on elevation maps [9]. This method

was used in the DARPA Urban Challenge and is based on

projecting 3D points as a 2.5D grid and then using a Min-

Max elevation map. However, this approach suffers from

large errors in the case of bridges or treetops. Another

group of studies relies on a 2D-line-extraction-based fast

algorithm [10]. However, these algorithm-based methods

have problems with scalability to a large set of cases, for

example, curved terrains. Several other methods use the

gradient information of the terrain to model the ground

plane using a Markov Random Field (MRF) or a Conditional

Random Field (CRF) [11], [12], [13], [3]. However, due to

limited learning capacity the results in cases of occlusions

and sparse points are not satisfactory and the segmentation

of ground points require thus additional processing time.

Narksri et al, propose a two-stage method to estimate

the ground points and then fit a plane by using RANSAC,

which makes the approach slow [14]. Liu et al integrate

Gaussian Process Regression (GPR) and Robust Locally

Weighted Regression (RLWR) to form a hybrid regression

model for the ground plane, which is also not real-time due

to the computational complexity of the GPs [15]. In another

study, Velas et al use a discriminative method to segment

the ground points by using a neural network that performs

in real-time [16]. However, the network is capable only of

ground point segmentation. A ground plane is not obtained

for occluded regions which would be necessary for tasks

related to autonomous vehicles.

One of the common points in most of the discussed meth-

ods is the use of handcrafted features. They generally fail

to scale, are complex to implement, and are computationally

expensive. The sparsity, occlusions and the roughness of the

terrain are not considered.

Recently, Deep Learning methods has emerged as the

prominent alternative for manual feature engineering for

learning the representation of point clouds. However, in

contrast to images, point clouds lack the detailed texture

information. Pointclouds obtained from 3D LiDARs are

unordered, sparse and have a variable point density.

Recent work proposes novel types of network architec-

tures, dealing with challenges associated with point cloud

processing. Among these, PointNet has shown encouraging

results for single object classification and semantic segmen-

tation [6]. PointNet can learn point features from a set of

points but its applicability to entire large scale point cloud

has not been studied yet. 3D object detection approaches

like VoxelNet discretize the point cloud into a voxel grid

[4]. PointPillars takes a similar route but uses pillars instead

of voxels [5]. PointNet is then applied to the points inside

each voxel/pillar to learn voxel/pillar wise features. This

voxel/pillar feature encoding network is then used with

convolution filters for region proposals and object detection.

Inspired by VoxelNet and Pointpillars we choose to use

PointNet together with a pillar feature encoding network as

the backbone for our model.

III. GNDNET ARCHITECTURE

GndNet accepts raw point clouds as input and produces

a grid-based ground elevation estimation and a point cloud

segmentation into two categories (ground and non-ground).

It consists of three main stages as shown in Figure 2: (1)

Discretization of the point cloud into a 2D grid; (2) Pillar

feature encoding network that converts a point cloud to a

sparse pseudo image; and (3) 2D convolutional encoder-

decoder network to process the pseudo-image and produce

a high-level representation and a regression of the ground

elevation per cell.

A. Point cloud discretization

To extract features from the point cloud, we first discretize

it into an evenly spaced grid in the x−y plane. Unlike Vox-

elNet [4], which discretizes the point cloud into a 3D voxel

map, the PointPillars authors argued that there is no need for

binning the z dimension, as it does not affect the accuracy

of the detection and is significantly more computationally

efficient [5]. This is equivalent to creating a set of pillars P .

We denote by l a point in a point cloud with coordinates x,

y, z, and reflectance r. Similar to Pointpillars, the points in

each pillar are then augmented with (xc, yc, zc, xp, yp) where

the c subscript denotes distance to the arithmetic mean of all

points in the pillar and the p subscript denotes the offset

from the pillar (x, y) center. Four-dimensional lidar point l

is now augmented to a D = 9 dimension. A large set of

pillars will be mostly empty due to the sparsity of the point

cloud, and the non-empty pillars will, in general, have only

a few points in them. We fixed the number of points N per

pillar to create a dense tensor of size (D,P,N), where P

is the number of non-empty pillars. If a pillar holds more

than N points then we randomly sample the points to fit the

tensor. Conversely, if a pillar has too few data points then a

zero padding is applied to populate the tensor.



Fig. 2. GndNet architecture: We use a pillar feature network with a fully convolutional encoder-decoder network to regress local ground elevation
values. The raw point cloud is discretized in a 2D grid forming a set of pillars. PointNet uses points in the pillars to learn pillar wise features that can
be scattered back to a 2D pseudo image. A convolutional encoder-decoder network uses the pseudo image to learn spatial features and regresses ground
elevation values per cell in the grid. The point cloud is then segmented in the ground and non-ground category using elevation values with a threshold.

B. Pillar Feature Encoding and Pseudo Image

Next, we extract features per non-empty pillar using

a simplified version of PointNet. Our simplified PointNet

consists of a linear layer that is applied to each point followed

by Batchnorm and ReLU to generate a (C, P, N) sized tensor.

Then, a max-pooling operation over the channels creates an

output tensor of size (C, P). These encoded pillar features

are then placed to their original locations in the grid to create

a pseudo-image of size (C, H, W) where H and W indicate

the height and width of the grid.

C. Encoder-Decoder Network

To extract spatial features we use a convolutional encoder-

decoder network in a similar fashion as SegNet [17]. The

encoder part of the network consists of 4 convolutional

layers. Max-pooling with a 2×2 window and stride 2 (non-

overlapping window) is performed after every two convo-

lution layers. The resulting output of the encoder is sub-

sampled by a factor of 4. We selected the number of layers

such that the ground elevation of a cell is only dependent

upon its close neighboring cells. Each encoder layer has a

corresponding decoder layer and hence the decoder network

has 4 convolution layers and max-unpooling after every two

convolution layers. The final decoder output is of the same

shape as the input pseudo image (grid), and is fed to 3x3

convolution filter which regresses the ground elevation value

for each pixel in the pseudo image (cell in the grid).

D. Point cloud segmentation

We segment the point cloud into two categories as ground

or obstacle points. In each cell, the points above threshold T

of predicted ground elevation are segmented as obstacles and

points below are segmented as ground points. These ground

points then can be removed to generate an occupancy grid

or to facilitate object detection. Ground elevation itself can

be used to find navigable and non-navigable space for path

planning.

IV. TRAINING AND EXPERIMENTS

Supervised learning using deep neural networks requires,

in general, a large amount of annotated data to train. Absence

of annotated ground elevation and point cloud data is the

reason learning-based approaches have not been explored

for this task. Also because of the lack of annotated data,

none of the existing ground detection approaches carry-

out exhaustive quantitative evaluation and cross-comparison.

Generating annotated ground elevation data is a crucial and

important challenge we try to solve in this work.

A. Dataset generation

To generate an annotated ground elevation dataset we use

the SemanticKITTI [7] dataset, which is based on the KITTI

Vision benchmark and uses sequences from the odometry

task [8]. SemanticKITTI provides dense annotations for

each scan of sequences 00-10. The dataset contains 28

classes including classes distinguishing non-moving and

moving objects (which covers traffic participants), and also

functional classes for ground, such as parking areas and

sidewalks.

Definition of ground: We define ground elevation as the

height in the LiDAR sensor frame of reference at which

object boundaries start or objects can be placed. For example,

the ground can be any terrain where a vehicle can traverse

(does not imply that it is legal to traverse). In the case of

non-moving objects like walls and trees, the ground elevation

is at the bottom where the actual object boundary starts as

shown in Figure 3.

To generate ground elevation dataset from the

SemanticKITTI dataset, we first remove all the points

that do not belong to the ground, and keep only those

belonging to the categories road, sidewalk, parking, other

ground, and terrain as shown in Figure 4. We divide the

entire environment into a 2D grid of shape (100, 100)
with cell resolution of 1m x 1m. We then calculate the

ground-truth ground elevation per cell. One approach for



Fig. 3. Definition of the ground plane as defined and utilized for this work.

Fig. 4. Left: 3D point cloud from SemanticKITTI dataset; Right: point
cloud with only ground points.

this task would be to align the point clouds and estimate

global elevation field for the whole driving sequence. We

observe that there are still many cells without the ground

points, mainly due to the occlusions. We explore two

different methods to tackle this issue:

Morphological method: We average the z values of all

the ground points in the corresponding cells and create an

elevation map as shown in Figure 5 (d). Many cells belonging

to the ground do not have any points in them resulting in the

elevation of the cell as zero. Through this work, we aim to

achieve a smooth, uniform ground plane elevation even in

regions with sparse points and in occluded regions. To fill

the holes in the elevation map we use an image processing

technique of in-painting. The procedure is as follows:

1) The first step is to create a mask for the cells that need to

be inpainted. We create an occupancy map using the ground

points as in Figure 5 (a). We use dilation to fill the holes in

occupancy map, Figure 5 (b). We subtract occupancy map

from dilated occupancy map resulting in the desired mask,

Figure 5 (c).

2) Inpainting is the process of reconstructing lost or

deteriorated parts of images using the information from

neighboring pixels. We use a biharmonic function based

inpainting and surface completion method [18] implemented

in scikit-image [19] to fill the holes in the elevation map.

Inpainting resulted in the far superior interpolation of ground

elevation than just averaging over neighboring cells—see

Figure 5 (e). Finally, to further smoothen small crests and

troughs we apply an average filter over the entire inpainted

elevation map, Figure 5 (f).

CRF-based Method: Another more mathematically consis-

tent approach for surface reconstruction is using CRFs. We

used a similar CRF model as proposed in [3] to model

the ground plane. The CRF based method uses temporal

Fig. 5. Morphological Operations: (a) Occupancy map generated using
only ground points. (b) Dilated occupancy map to fill the void cells. (c)
Occupancy map subtracted from dilated occupancy map resulting into a
mask for void cells. (d) Elevation map. (e) Inpainted elevation map. (f) Final
elevation map after applying average filter. The colors represent elevation
of the cells and the side bar shows the scale in meters.

Fig. 6. Qualitative comparison of ground truth elevation map generated
using morphological operations vs CRF-method. The colors represent ele-
vation of the cells and the side bar shows the scale in meters.

dependence and the reconstruction resulted in more struc-

turally defined and consistent output than a morphology-

based approach. A comparison between outputs from both

the method is shown in Figure 6.

Finally, we choose to use the CRF-based method to

generate the ground elevation dataset for the training of

our network. For each scan, we save the complete point

cloud (including ground and non-ground points) and the

ground elevation map generated using only ground points.

To help our network generalize better on challenging terrains

with steeper slopes than those present in the SemanticKITTI

dataset, we augment the point cloud by randomly applying

3D rotations in the range of (−10, 10) degrees with respect

to the x and y axes. The SemanticKITTI dataset has 11

annotated sequences; we use 7 sequences for the training

set and 4 sequences for the validation set. The final dataset

consists of 6584 frames for training and 3040 frames for

validation.

B. Loss Function

We perform end-to-end training of the full model including

pillar feature encoding layer and encoder-decoder module

using a combination of regression loss Lreg and spatial-

smoothing loss Lsmooth:

L(I, Î) = αLreg(I, Î) + βLsmooth(Î) (1)



where I denotes the ground truth elevation map of the grid

with shape (H,W ), and Î denotes the predicted elevation

map. The hyper-parameters α and β are used for balancing

the two losses. For the regression of elevation values, we

use the Huber loss. For spatial smoothness, we minimize

the L1 norm of the second-order gradients for the predicted

elevation maps (similar to [20]). We penalize the norm of

second-order gradients across adjacent cells to encourage not

constant but rather smoothly changing elevation values:

Lsmooth(Î) = ∇
2

xÎ +∇x∇y Î +∇y∇xÎ +∇
2

y Î (2)

where ∇x and ∇y are, respectively, the gradients in the x

and y direction of the elevation map.

V. NETWORK AND TRAINING DETAILS

A. Network

We do not pre-train our networks, all weights were initial-

ized randomly using a uniform distribution. Our simplified

PointNet in the pillar feature encoding network has one

fully connected layer with C = (9, 64) input-output features.

In the encoder-decoder architecture, all the convolutional

layers have kernel size 3, and stride and padding 1. Each

convolutional layer is followed by batch normalization and

element-wise rectified-linear non-linearity (ReLU) except for

the last regression layer. Max-pooling and max-unpooling are

performed with a 2×2 window and stride 2. The specifics

of the encoder-decoder network design with input-output

channels for the convolutional layers are: Conv1(64, 128),

Conv2(128, 128), Max-pool, Conv3(128, 256), Conv4(256,

256), Max-pool, Max-unpool, Conv5(256, 256), Conv6(256,

128), Max-unpool, Conv7(128, 64), Conv8(64, 64), and

regression layer Convreg(64, 1).

B. Training Settings

GndNet takes a raw point cloud with approximately

100,000 points as input. We discretize the environment into

a 2D grid of size (100, 100) meters. The x, y, z range is

[(−50, 50), (−50, 50), (−4, 4)] meters, and we remove all the

points outside that range. The maximum number of points

per pillar (N) is kept at 100. We keep the cell resolution of

1m x 1m as it provides us better trade-off between accuracy

and run-time. Compared to the PointPillars, which keeps the

cell resolution of 0.2 m is very small our task as it results

in very few ground points per cell, and most of the cells

being empty. The hyper-parameters α and β were set to 0.9

and 0.1 respectively. We use the stochastic gradient descent

(SGD) optimizer to train the model with a momentum of

0.9, weight decay of 0.0005 and batch size 2. The learning

rate is kept 0.01 for the first 40 epochs and then lowered it

to 0.001 for further epochs. We observed that the network

converges in roughly 120 epochs. Training on our custom

ground elevation dataset takes 6 to 8 hours to converge using

an Nvidia GTX 1080 GPU. We use the PyTorch [21] machine

learning framework for the development of our model.

Fig. 7. Qualitative comparison of ground elevation estimation in case of
occluded areas (yellow). (Left) Output from CRF-method [3]; (Right) Output
from the proposed method GndNet.

VI. RESULTS

Real-time accurate ground plane estimation and semantic

segmentation of point clouds is a challenging task. We

compare the proposed method with several top-performing

approaches, including a CRF-based method [3], Hybrid-

regression [15] and a CNN-method [16]. At the time of

writing this work, no ground elevation dataset was available

publicly. Most previous approaches only reported qualitative

results, while others evaluated their approach on small cus-

tom datasets, providing no common basis for quantitative

comparison.

In this work, we first deal with the challenge of estab-

lishing a common basis for a quantitative evaluation of the

ground estimation method. We use the publicly available

SemanticKITTI dataset to generate a ground elevation dataset

as described in subsection IV-A. We perform a qualitative

and quantitative evaluation on this dataset and use the CRF-

based method [3] as our baseline. For ease of comparison, we

follow the same color schematic and representation of ground

elevation as in [3]. We perform two different quantitative

evaluations to show the effectiveness of our approach:

A. Quantitative Evaluation

Ground plane estimation: To evaluate the ground plane

estimation we use the Root Mean Squared Error (RMSE)

metric. We calculate the RMSE for all the cells that contain

ground points. We use the elevation map in Figure 5 (d)

as ground truth for elevation values. We only qualitatively

evaluate the cells that do not have ground points as only

interpolated elevation values are available for these regions.

Ground elevation estimation results for GndNet are shown

in Table I.

TABLE I

EVALUATION OF GROUND PLANE ESTIMATION

Method Dataset Frames RMSE (m)

Hybrid-reg [15] custom 10 0.182
CRF-method[3] SemKITTI 3040 0.201

GndNet SemKITTI 3040 0.195

Segmentation of ground points: To evaluate the segmen-

tation of the point clouds we use the mean Jaccard or
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Fig. 8. Ground elevation estimation by GndNet: Two diverse scenes with uphill and downhill slopes. GndNet outputs smooth and uniform ground
elevation even in the regions with very sparse points up to the distance of 50m. GndNet equally perform well in occluded regions as the network not only
uses local features for regressing elevation values but also the spatial features from the points in nearby areas.

Fig. 9. Point cloud segmentation using GndNet: Diverse scenes with crossroads, urban environment, slopes, vehicles, and pedestrians. GndNet learns
to distinguish points that are relevant for ground elevation estimation. We segment point cloud in two categories, the points below the estimated elevation
values as ground points, those above as non-ground points. The first column shows failure cases with inconsistencies with ground segmentation, some
points on the car in (a) are wrongly segmented as the ground while in (d) some road points are segmented as non-ground.

intersection-over-union (mIoU) over two classes: ground and

non-ground.

mIoU =
1

C

C∑

c=1

TPc

TPc + FPc + FNc

(3)

where, TPc, FPc and FNc correspond to the number of

true positive, false positive, and false-negative predictions

for class c, and C is the number of classes. We also provide

precision and recall value and compare those with other

approaches in Table II. GndNet shows comparable results

with other approaches. Hybrid-reg [15] and CNN-method

[16] report very high precision but their approaches are

evaluated on a limited set of data.

Inference: The GndNet is a lightweight network and

achieves runtime performance of 55 Hz compared to CRF-

method [3] of 9.8 Hz for processing ≈ 100, 000 points in the

grid size of 100x100m. The Hybrid-reg [15] approach is not

real-time, while the CNN-method [16] reports a runtime of

140Hz but only performs the segmentation task (the ground

elevation is not estimated). Detailed analysis of the inference

TABLE II

EVALUATION OF POINT CLOUD SEGMENTATION

Method Dataset Frames Prec Recall mIoU

Hybrid-reg [15] custom 10 0.98 - -
CNN-method [16] custom 252 0.929 0.993 -
CRF-method [3] SemKITTI 3040 0.801 0.993 0.782

GndNet SemKITTI 3040 0.841 0.993 0.836

time for GndNet is given in Table III. Note that the pre-

processing and point segmentation task is performed on CPU

using Numpy and Numba which could be further accelerated

using GPU.

TABLE III

ANALYSIS OF COMPUTATION TIME REQUIRED BY GNDNET

Task Time Device

Pre - processing 7.59 ms CPU
Model forward pass 6.57 ms GPU
Point segmentation 3.88 ms CPU

Total 17.98 ms (55.61 Hz)



B. Qualitative Evaluation

The illustrations in Figure 8 and Figure 9 show the

ground elevation estimation and point cloud segmentation by

GndNet in diverse and challenging scenarios. The main ad-

vantage of GndNet is in occluded regions with no data points

and regions with sparse data. Figure 7 depicts a scenario

where a vehicle in front occludes a section of the ground

and part of a wall. The competing CRF-based method uses

the lowest points in the cells to estimate ground elevation; for

the cells that do not have any points, the ground elevation

values are interpolated using values from the neighboring

cells. As in Figure 7, the CRF-method incorrectly estimates

ground elevation as a steep slope starting from the bottom

of the vehicle to the visible part of the wall and continues

further. GndNet rather learns the appearances, analyzes the

scene to accurately estimate ground elevation.

VII. CONCLUSIONS

In this paper, we tackled the challenging problem of

ground plane estimation and point cloud segmentation for

intelligent vehicles. We presented a deep learning-based

approach called GndNet, which uses PointNet and Pillar

Feature encoding networks to learn point features and output

ground elevation in a grid-based representation. We provide

a qualitative and quantitative evaluation of our approach on

a large dataset and compare our results with other competing

approaches. GndNet achieves comparable results in terms of

the accuracy and establishes a new state-of-the-art in terms

of the run-time of 55Hz for ground plane estimation and

ground points segmentation.

Currently, for training, we use a dataset derived from

the SemanticKITTI dataset using a CRF-based method. This

derived dataset can be inconsistent in certain scenarios and

using a carefully annotated dataset by hand can improve

the accuracy of the proposed network. Also, our proposed

network uses only instantaneous data and spatial features. In

the future, we plan to use temporal information and features

collected from previous frames; this could potentially im-

prove the ground elevation results in the cases of occluded

areas and regions with sparse points. Another line of future

work could be directly segmenting point cloud as a predicted

output by the network rather than as a post-processing step.
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