
Research Article

GNEA: A Graph Neural Network with ELM Aggregator for Brain
Network Classification

Xin Bi ,1 Zhixun Liu,2 Yao He,2 Xiangguo Zhao,3 Yongjiao Sun,3 and Hao Liu4

1Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, Northeastern University,
Shenyang 110819, China

2College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110819, China
3School of Computer Science and Engineering, Northeastern University, Shenyang 110819, China
4Tencent, Guangzhou 510000, China

Correspondence should be addressed to Xin Bi; bixin@mail.neu.edu.cn

Received 28 September 2020; Revised 14 October 2020; Accepted 16 October 2020; Published 29 October 2020

Academic Editor: Jianxin Li

Copyright © 2020 Xin Bi et al. *is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Brain networks provide essential insights into the diagnosis of functional brain disorders, such as Alzheimer’s disease (AD). Many
machine learning methods have been applied to learn from brain images or networks in Euclidean space. However, it is still
challenging to learn complex network structures and the connectivity of brain regions in non-Euclidean space. To address this
problem, in this paper, we exploit the study of brain network classification from the perspective of graph learning. We propose an
aggregator based on extreme learning machine (ELM) that boosts the aggregation ability and efficiency of graph convolution
without iterative tuning. *en, we design a graph neural network named GNEA (Graph Neural Network with ELM Aggregator)
for the graph classification task. Extensive experiments are conducted using a real-world AD detection dataset to evaluate and
compare the graph learning performances of GNEA and state-of-the-art graph learning methods. *e results indicate that GNEA
achieves excellent learning performance with the best graph representation ability in brain network classification applications.

1. Introduction

In recent years, researchers have generated functional brain
networks from resting-state functional magnetic resonance
imaging (rs-fMRI) data [1]. *e brain network has given
researchers the possibility of analyzing brain regions and the
connections among them. However, most brain network
analysis methods [2, 3] learn from either manually extracted
shallow features or deep features in Euclidean space. *ere is
still an urgent demand for incorporating graph learning
methods into brain analysis and disease detection. Exploiting
the graph structure and connectivity among brain regions
thoroughly can significantly improve the comprehensiveness
and depth of brain analyses. *us, in this paper, we leverage
graph learning methods to study the brain network classifi-
cation problem for the detection of Alzheimer’s disease.

*e graph neural network (GNN) has become one of the
most popular graph representation and learning methods.

Sperduti and Starita first applied neural networks to graphs
in [4], which motivated the initial outline [5] and detailed
description [6] of GNN. But these early networks are based
on recurrent neural networks (RNNs) [7], which are
computationally expensive. *en, the concept of convolu-
tion with graph data is studied. Bruna et al. first developed a
graph convolution based on the spectral graph theory in [8],
and they followed by applying improvements and exten-
sions, for example, ChebNet [9] and GCN [10]. In general,
spectral methods face high computational costs due to
eigendecomposition [11]. On the other hand, spatial con-
volution was first studied in [12], in which the NN4G
network performed sum aggregation on neighbor infor-
mation directly. In follow-up works, GraphSAGE [13]
adopted sampling strategy to improve the convolutional
efficiency, GAT [14] adopted an attention mechanism to
learn edge weights, and CGMM [15] studied probabilistic
interpretability based on NN4G.

Hindawi
Complexity
Volume 2020, Article ID 8813738, 11 pages
https://doi.org/10.1155/2020/8813738

mailto:bixin@mail.neu.edu.cn
https://orcid.org/0000-0002-2645-1112
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8813738

Although several recent works have applied GNNs to
brain-related problems, there are still many remaining open
problems. Ktena et al. [16] studied similarity metric learning
for brain networks, but the classification performance on
brain networks was not explored. Rajchl et al. [17] realized
the prediction of spectrum disorders and AD by running
node classification on a patient network, in which each node
denoted a patient. However, this work focused on disease
prediction among patients, and the brain connectivity of
each individual patient was not studied. Lee and Huang [18]
applied GCN to study the brain connectome, but due to the
unknown precise structure of the graph, the graph learning
procedure relied on iterative graph generation and was thus
very time-consuming.

In this paper, to improve the efficiency of graph learning,
we propose a graph learning neural network named GNEA
(Graph Neural Network with ELM Aggregator) for the
graph classification problem. *e graph learning procedure
of GNEA is presented in Figure 1. *e aggregation per-
formance is boosted by an aggregator based on extreme
learning machine (ELM) [19, 20].*e extremely fast training
speed and good generalization performance of ELM have
been proven in various applications, for example, time-series
learning [21–23], text mining [24, 25], biomedical data
analysis [26–29], graph classification [29, 30], and game
strategy [31]. *e ELM aggregator learns a more complex
aggregation function than those of other aggregators, which
provides an extremely fast learning speed and a powerful
aggregation ability.

*e contributions of this paper are summarized as
follows:

(1) An ELM-based aggregator is proposed, which ach-
ieves high aggregation ability and training efficiency.

(2) A graph learning neural network named GNEA is
designed, which possesses a powerful learning ability
for graph classification tasks.

(3) We apply GNEA to a real-world brain network
classification problem to verify its ability to perform
graph representation learning and classification.

*e remainder of this paper is organized as follows.
Section 2 introduces the brain network. Following the
framework overview of GNEA in Section 3, Section 4
presents the graph convolution of GNEA, including prop-
agation based on correlation-biased sampling and aggre-
gation based on ELM. Section 5 presents the results of the
performance evaluation, comparison, and discussion. Sec-
tion 6 concludes this paper.

2. Functional Brain Network

A functional brain network is represented as a graph, where
each node denotes a brain region and each edge denotes the
functional connection between two brain regions [32].

A 4-dimensional fMRI image is a sequence of 3-di-
mensional brain models, which themselves are sequences of
2-dimensional brain image slices. *e 4th dimension is the
temporal dimension.*e brain regions of each 3-dimensional

brain model are mapped using an Atlas. For example, the
automated anatomical labeling (AAL) Atlas maps 116 brain
regions in the rs-fMRI images. With extracted brain regions,
according to the correlation coefficients along the 4th di-
mension, the connectivity of each pair of brain regions can be
estimated. *e Pearson correlation coefficient is one of the
most popular statistics for measuring the linear correlation
between two normally distributed variables [33]. *e Pearson
correlation coefficient of two brain regions x and y is cal-
culated as

rp �
cov(x, y)
σxσy

�
∑ni�1 xi − �x() yi − �y()������������∑ni�1 xi − �x()2√ ������������∑ni�1 yi − �y()2√ ,

(1)

where x and y have the same length n, cov(x, y) is the
covariation of x and y, σx and σy are the standard deviations
of x and y, and x and y are the mean values of x and y.

*e calculated correlation coefficient between each pair
of brain regions indicates the weight of the edge between
these two nodes in the brain network. Since a brain network
is theoretically a sparse graph with dense local connectivity
[34], a weight threshold is set to remove irrelevant edges
from the complete graph of the brain network. *e edges
with lower weights than the threshold are considered in-
active connections between brain regions.

An example of rs-fMRI and the corresponding func-
tional brain network is presented in Figure 2. In subfigure
Figure 2(a), the original rs-fMRI images are presented in
three cuts, namely, frontal, axial, and lateral cuts. Figure 2(b)
presents the three cuts of the AAL Atlas, which maps 116
brain regions in the rs-fMRI images. Figure 2(c) is the graph
matrix generated from the AAL-mapped brain regions and
calculated correlation coefficients. Figure 2(d) presents the
final generated brain network according to the graph matrix
with a determined weight threshold.

3. Framework Overview of GNEA

To boost the performance of brain network classification by
GNNs, we improve the graph learning ability by designing a
graph learning model named GNEA, which learns graph
embeddings with graph convolution based on the ELM
aggregator. A brain network is represented in a graph
format, where each node denotes a brain region and each
edge denotes a strong connection between two brain regions.
*e edge weight represents the correlation coefficient. A
brain network consists of three matrices, namely, the ad-
jacency matrix A, the node embedding matrix X, and the
correlation coefficient matrix C. *e training data and
targets of the ELM aggregator are generated from the graphs.
With the trained aggregator, three layers of graph convo-
lution are applied to update the node embeddings by
propagation and aggregation based on the structures of the
graphs. With the learned embeddings of nodes and graphs,
the fully connected layer and Softmax output the

2 Complexity

classification results of the input graph. *e structure of
GNEA is presented in Figure 3.

GNEA accepts three graph-formatted matrices as inputs.
*e adjacency matrix A represents the connectivity of the
brain network, where element Aij� 1 indicates a connection
between the corresponding ith and jth nodes, while element
Aij� 0 indicates a disconnection. *e embedding matrix X
concatenates all the node embeddings by rows. *e corre-
lation coefficient matrix C keeps all the weights of the edges.
In the case of the brain network, each weight Cij is the
calculated Pearson correlation coefficient between the ith

and jth brain regions. Note that we keep both A and C
instead of a single weighted adjacency matrix, so that all the
original correlation coefficients between brain regions can be
stored.

*ree layers of graph convolution are conducted se-
quentially to learn both the semantic and structural feature
embeddings. For each node v, the graph convolution collects
information from the neighbor node setN(v) and disparate
sampling node set S(v). *en the collected information is
aggregated by the pretrained ELM aggregator.

*e convoluted node embeddings of each convolutional
layer are activated by the activation function ReLU.*e sizes
of the node embeddings are reduced by graph pooling. *e
graph embedding generated from the node embeddings by
the readout operation is flattened into a vector and classified
by a fully connected layer. *en, the activation function
Softmax is applied to transform the neural distribution
outputs into a final set of class labels for the input graph.

4. Graph Convolution

Graph convolution, as the key module of learning embed-
dings in GNEA, consists of two major operations, namely,
propagation and aggregation. In this section, we propose our
sampling-based propagation method and ELM aggregator,
following an overview of graph convolution in GNEA.

4.1. Spatial Convolution. A graph is defined as G � (V, E),
where V denotes the node set and E⊆V × V denotes the edge
set. In the case of an undirected graph, such as brain net-
work, the condition (i, j) ⊂ E iff (j, i) ⊂ E holds. Graph is
often represented by an adjacency matrix A ∈ R|V×V|.

In a spectral convolutional solution, the normalized
graph Laplacian L is defined as

L � I − D
− (1/2)

AD
− (1/2), (2)

where D is the diagonal degree matrix and I is the identity
matrix. *e representation H ∈ RN×C of the (l+)th layer
with C input channels and F filters can be calculated as

H
(l+1) � σ D̃

− (1/2)
ÃD̃

− (1/2)
H
(l)
W

(l)(), (3)

where W ∈ RC×F is a matrix of filter parameters. However,
this spectral convolution requires a stable and complete
matrix A and has a computation cost of O(|ε|FC).

Different from aggregating information from the spec-
tral perspective, the process of spatial convolution involves
aggregating a node’s information with the information of its
spatial neighbors. An increase in the number of layers of
spatial convolutions results in the propagation of more
information from further neighbor nodes. *e spatial
convolution used to learn the node representations is de-
scribed in Algorithm 1.

Given a graph G, the graph convolution algorithm first
generates the adjacency matrix A, node embedding matrix
X, and correlation coefficient matrix C. *e number of
sampling operations m and the number of graph con-
volutional layers K are also accepted as hyperparameters.
*e input embeddingX is taken as the initialized embedding
H0 (Line 1).

Iteration through the K aggregators (Line 2) can be
viewed as propagation through the K layers of spatial
convolutions. In each layer, for each node v ∈ V (Line 3), the
function ϕ(v, m,A,C) returns the top-m neighbors of node v
according to the adjacency matrix A and the correlation
coefficients C (Line 4).

*e aggregator function fkagg(·) in the k
th spatial con-

volution layer aggregates the embeddings of all the sampled
neighbor embeddings. *en, it generates an aggregated
neighbor embedding hkN(v) (Line 5). *en, the embedding of
node v and the aggregated neighbor embedding are con-
catenated as [hk− 1v , hkN(v)]. Dimension reduction is done by
calculating the elementwise average values of the concate-
nated embeddings (Line 6). *is graph convolution algo-
rithm finally returns HK, which includes the concatenated
embeddings in the Kth layer of every node (Line 8).

In the following subsections, we present the two major
operations in the graph convolution of GNEA, our sam-
pling-based propagation method, and the ELM aggregator.

4.2. Propagation Based on Correlation-Biased Sampling.
Previous graph learning methods aggregated node embed-
dings from the entire graph. In our sampling-based prop-
agation method, to maintain the stability of propagation, we

Brain networkGraph matrixfMRI data Graph neural network Result

A
D

 d
et

ec
ti

o
n

Figure 1: Graph learning for brain network classification for AD detection.

Complexity 3

L

y = 286 x = 270

z = –9

R

L R

(a)

R

AAL Atlas

L
RL

y = –40 x = 2
z = –1

(b)

L Aud

L
 A

u
d

R
 A

u
d

St
ri

at
e

L
 D

M
N

M
ed

 D
M

N
F

ro
n

t
D

M
N

R
 D

M
N

O
C

C
 p

o
st

M
o

to
r

R
 D

L
P

F
C

R
 F

ro
n

t
p

o
l

R
 P

ar
R

 P
o

st
 T

em
p

B
as

al
L

 P
ar

L
 D

L
P

F
C

L
 F

ro
n

t
p

o
l

L
 I

P
S

R
 I

P
S

L
 L

O
C

V
is

R
 L

O
C

D
 A

C
C

V
 A

C
C

R
 A

 I
n

s
L

 S
T

S
R

 S
T

S
L

 T
P

J
B

ro
ca

Su
p

 F
ro

n
t

S
R

 T
P

J
R

 P
ar

s
O

p
C

er
eb

D
o

rs
 P

C
C

L
 A

n
t

IP
S

R
 A

n
t

IP
S

L
 I

n
s

C
in

g
R

 I
n

s

0.8

0.6

0.4

0.2

0.0

–0.2

–0.4

–0.6

–0.8

R Aud
Striate

L DMN
Med DMN

Front DMN
R DMN

Occ post
Motor

R DLPFC
R Front pol

R Par
R Post Temp

Basal
L Par

L DLPFC
L Front pol

L IPS
R IPS

L LOC

R LOC

V ACC
R A Ins

L STS
R STS
L TPj
Broca

R TPj
R Pars Op

Cereb
Dors PCC

L lns
Cing
R Ins

L Ant IPS
R Ant IPS

Sup Front S

D ACC

Vis

(c)

L R
L R

0.79

0.39

0

–0.39

–0.79

(d)

Figure 2: An example of a functional brain network. (a) Original rs-fMRI images. (b) *e AAL Atlas. (c) Generated graph matrix.
(d) Generated functional brain network.

4 Complexity

sample m nodes from the neighbors of each node. Since the
sampling is an operation biased by the correlation coeffi-
cients, we sample m neighbors with the highest relevance
according to the correlation coefficient matrix C. *e
sampling function ϕ(·) (Line 4 in Algorithm 1) is described
as

ϕ(v,m,A,C) � ui|ui ∈ NA(v), i � 1, . . . , m,∀uj{
∉ N′(v), Cui >Cuj}, (4)

where v is the current node for the embedding update, m is
the sample number, A is the adjacency matrix of the current
graph for retrieving neighbor information, and C is the
correlation coefficients matrix as the sampling bias criterion.
*is sampling function retrieves m nodes ui, i � 1, . . . , m{ }
from the neighbors NA(v) of node v, guaranteeing that the
correlation coefficients between node v and these m
neighbors are the top-m most relevant neighbors of node v.

Note that if the number of neighboring nodes is less than
m, the collected node embeddings are zero-padded. *en,
the GNEA network tunes the weight matricesW for all theK
aggregators and other trainable parameters by using sto-
chastic gradient descent.

4.3. Aggregation Based on ELM

4.3.1. Symmetry Aggregators. Since the neighbor nodes
N(v) of node v have no ordering in the non-Euclidean space,
the aggregator function of the spatial convolution process
should be symmetric to maintain invariance to permutations
of the input vectors of representations, for example, the
mean aggregator and pooling aggregator in GraphSAGE [13].

(1) Mean Aggregator. Taking the elementwise mean of the
embedding tensors is nearly equivalent to the convolutional
propagation rule used in transductive spectral convolution
[13]. *e mean aggregator applies the mean operator to the
concatenated embeddings of both node v and the propagated
neighbor embeddings, that is, hk− 1v and hk− 1N(v). *us, the k

th

mean aggregator function fkagg− mean is written as

fkagg− mean � σ Wk ·MEAN h
k− 1
v , hk− 1N(v)[]()(). (5)

(2) Pooling Aggregator. *e pooling aggregator of a graph
convolutional network takes the average or maximum ele-
ment out of an embedding. It was found in [13] that there is
no significant difference between max-pooling and mean-

Graph convolutional layer × 3

Sampling

Target

ELM
aggregator

Brain network

A

C

X

Propagation Flatten
readout

Dense
layer

So�max
Graph pooling

layer × 2

Figure 3: Architecture of GNEA for brain network classification.

Input: Adjacency matrix A, node embedding matrix X, correlation coefficient matrix C, sample number m, number of graph
convolutional layers K
Output: Convoluted nodes embedding HK

(1) H0←X
(2) for k ∈ 1, . . . , K do
(3) N′(V)←ϕ(V,m,A, C);
(4) for v ∈ V do
(5) hkN′(v)←fkagg(hk− 1u ,∀u ∈ N′(v){ });
(6) hkv←AVG([hk− 1v ,hkN′(v)], axis � 1);
(7) HK � concat[hkv |∀v ∈ V];
(8) Return HK.

ALGORITHM 1: Graph convolution of GNEA.

Complexity 5

pooling in practice. *us, we apply only the max-pooling
strategy to realize the pooling aggregator of our rival
methods. By performing the max-pooling operation on each
of the activated and weighted features, the aggregator is able
to capture different aspects of the neighbor nodes. *e kth

pooling aggregator function fkagg− pool is described as

fkagg− pool � MAX h
k
u ∈ Nv

() � MAX σ W
k
h
k− 1
u ∈ N(v) + b()().

(6)

4.3.2. ;e ELM Aggregator. *e trainable parameters of
symmetry aggregators are learned through backpropagation
iterations according to the total loss. *e aggregator must be
tuned along with the other trainable parameters of graph
neural networks. However, for a neural network-based
aggregator, the weighted mapping of the embeddings can be
performed by input mapping within the network.

*us, to boost both the learning efficiency and perfor-
mance of the aggregator, we propose an aggregator based on
extreme learning machine [19, 20]. *e ELM aggregator is
capable of powerful aggregation and efficient training be-
cause it avoids iteratively tuning the weights with the total
loss. In each graph convolutional layer, the ELM aggregator
learns an ELM feature mapping from the neighboring
embedding space into the aggregated embedding space of
the central node.

*e ELM aggregator is presented in Figure 4. Given N
arbitrary samples xi, ti{ } ∈ Rn×m, the ELM feature mapping
matrix HELM is calculated as

HELM �
g ω1, b1, x1() · · · g ωL, bL, x1()
⋮ · · · ⋮

g ω1, b1, xN() · · · g ωL, bL, xN()
 

N×L

, (7)

where L is the number of hidden layer nodes, ωi is the input
weight vector from the input nodes to the ith hidden node,
and bi is the bias of i

th hidden node. g(ωi, bi, x) is the ac-
tivation function that generates mapping neurons, and it can
be any nonlinear piecewise-continuous functions.

*e ELM aims to minimize the training error and the
norm of the output weights. *us, the output weight matrix
β can be calculated as

β � H
†
ELMT, (8)

where H†
ELM is the Moore-Penrose inverse of HELM and T is

the training target. *e training procedure of the ELM is
presented in Algorithm 2.

During the feedforward phase, the aggregation result of
the ELM aggregator is calculated as

fkELM � σ ω
k
h
k− 1
v + b()βk. (9)

4.3.3. Supervised Learning of the ELM Aggregator. *e ELM
aggregator is trained with supervised learning. *e target T
should be specified before the training procedure. However,
only the target labels of the downstream task, that is, the

labels for graph classification, are acknowledged. *us, we
obtain T according to the total loss of GNEA, which is
calculated using categorical cross-entropy loss.

*e ELM target matrix T is first initialized randomly.
Each row in Tdenotes the target embedding of a node. *en
the corresponding targets of the sample graph are updated
according to the total loss. *e partial derivative of the total
loss with respect to T is obtained for the update, and it is
calculated as

T(k) � T
(k− 1) − λ

zJ(θ, y, ŷ)
zT

, (10)

where T(k) is the updated target of the kth layer, λ is the
update rate, and J(θ, y, ŷ) is the total loss of the downstream
task, which is calculated as

J(θ, y, ŷ) � − ∑M
j�0
∑N
i�0
yijlog ŷij(), (11)

where y is the target label, ŷ is the output label, M is the
number of classes, and N is the number of samples.

5. Experiments

In this section, we first introduce our generated brain
network dataset and experimental setup. *en, the perfor-
mance of GNEA is evaluated and compared with those of
state-of-the-art graph neural networks.

5.1.Dataset. *ebrain networks in our dataset are generated
using resting-state fMRI data from the Alzheimer’s Disease

N (v)

ELM
aggregator

x1

...

x2

xn

N (v)

Figure 4: Aggregation using ELM aggregator on nodev.

Input: Number of hidden nodes L
Output: Output weight matrix β

(1) for i � 1 to s do
(2) Initiate input weight ωi randomly;
(3) Initiate bias bi randomly;
(4) Calculate ELM feature mapping matrix HELM;
(5) Calculate output weight matrix β;

ALGORITHM 2: ELM.

6 Complexity

Neuroimaging Initiative (ADNI) by the LONI Image and
Data Archive (IDA). *ree patient types are included in our
dataset, which are patients with Alzheimer’s disease (AD),
patients withmild cognitive impairment (MCI), and patients
for normal control (NC). We select 118 samples of each
patient type from all four project phases of the ANDI, which
results in a total of 354 samples in our dataset.*e samples of
all the different patient types have similar distributions of
ages and genders, and these distributions are presented in
Figure 5.

All rs-fMRI images are processed using the toolboxes
Nilearn2 and DPABI (Data Processing and Analysis for
Brain Imaging) [35]. *e AAL Atlas [36] is applied to map
the brain into 116 brain regions. *en, the brain networks
are generated, each of which is in the form of a 116×116
square matrix.

*e dataset is split into training data and testing data at a
ratio of 4 :1. Performance evaluation and comparison are
obtained by using the testing samples.

5.2.Experimental Setup. We use the AUC (area under curve)
with a 95% CI (confidence interval) to evaluate the classi-
fication performance. *e 95% CI is calculated as

x ± tn− 1, 1 −
α

2

sd�
n

√(), (12)

where n is the number of cross-validation folds, x is the
mean result of the n-fold cross-validation proc-
ess,α � 1 − 0.95 � 0.05, tn− 1 is the t-test with an n-1 degree of
freedom, and sd is the standard deviation, which is calculated
as

sd �

������������∑ni�1 xi − x()2
n − 1

√
. (13)

We evaluate the testing performance on three binary
classification problems, namely, NC-AD, NC-MCI, and AD-
MCI. Furthermore, we also evaluate the 3-class classification
problem, in which the macroaverage strategy is applied in
the AUC calculation.

All the experiments are conducted on a PC with a
3.7GHz Intel Core CPU, an NVIDIA GeForce RTX 2080 Ti
graphics card, 32GB of 2400MHz DDR4 RAM, and a
500GB solid-state disk drive. *e proposed method is re-
alized using MATLAB R2018a and Python 3.6. *e
deep learning frameworks are TensorFlowGPU 1.8 and
Keras 2.2.

5.3. Results. We first evaluate the performance of GNEA
with varied hyperparameter settings, namely, the graph
convolutional layers and classification layers. *en, we
compare the overall performance of GNEA with those of
several state-of-the-art methods.

5.3.1. Evaluation of Graph Convolutional Layers. *e
number of graph convolutional layers can be viewed as the
distance of information propagation. In other words, k layers

of graph convolution collect information from k-hop
neighbors. *e neighborhood sample size determines
|N′(v)|, which is the number of nodes sampled from the
neighbors N(v) of node v. *us, we evaluate the AUC in
Figure 6(a) and the runtime in Figure 6(b) with varied layer
numbers and sample sizes.

(1). ;e Number of Graph Convolutional Layers. Regarding
our dataset, although more graph convolutions lead to a
longer runtime, the network with three graph convolutional
layers has the highest AUC performance. We believe that
more than three layers of graph convolution may lead to the
oversmoothing of the graph embedding, which decreases the
discrimination among the brain networks of different class
labels.

(2). ;e Neighborhood Sample Size. More sample nodes lead
to higher matrix calculation cost. *e incrementation is
nonlinear due to the matrix operations in the information
propagation and aggregation process. Although the runtime
continues to increase nonlinearly, the growth in the AUC
performance stagnates when the neighborhood sample size
increases to 20. Since the sampling is biased by the corre-
lation coefficients, when the number of neighbors is larger
than a set threshold, extra information from the neighbors
N(v) of node v provides a little contribution to the em-
bedding hv of node v.

(3). ;e ELM Aggregator. We evaluate the AUCs and
running times obtained with varied hidden numbers of
the ELM aggregator, along with varied numbers of con-
volution layers. It can be found from the evaluation results
presented in Figure 7 that the runtime continues to in-
crease as the number of hidden nodes of the ELM
aggregator increases. However, the AUC performance
begins to drop when the number of ELM hidden nodes is
larger than 400. Given a fixed dimension of input space,
extra hidden nodes do not result in a more powerful
learning ability.

5.3.2. Evaluation of Classification Layers. *e fully con-
nected layers in GNEA provide it with the ability to
classify the representations of brain networks. We eval-
uate the AUCs in Figure 8(a) and runtimes in Figure 8(b)
with varied numbers of fully connected layers and fully
connected nodes in each layer. Both larger numbers of
nodes and layers lead to longer runtimes. Since the major
computational cost lies in the graph convolution opera-
tions, the differences of runtimes between various settings
of the fully connected layers are low. Regarding the AUC
performance, one fully connected layer is able to achieve a
strong classification performance due to the excellent
quality of the graph representation generated by GNEA.
Specifically, the AUC performance reaches its maximum
when the number of nodes increases to approximately 100
and begins to drop afterward. A larger number of either
layers or nodes may lead to overfitting and poor testing
performance.

Complexity 7

5.3.3. Performance Comparison. Comparisons of the graph
classification performances achieved by GNEA and state-of-
the-art methods, namely, a convolutional neural network
(CNN) [37], a long-short term memory (LSTM) [38] network,
a graph convolutional network (GCN) [10], and GraphSAGE

[13] with three aggregators, which are denoted as GS-mean,
GS-pool, and GS-LSTM, respectively, are given in Table 1.

Among these rival methods, the CNN and LSTM are
deep neural networks in Euclidean space. *e GCN,
GraphSAGE, and GNEA form the group of graph

200 300 400 500

ELM hidden nodes number

600 700

0.80

0.78

0.76

0.74

A
U

C

0.70

0.72

0.68

1L

2L

3L

4L

(a)

1000

800

600

500

700

600

400

300

200 300 400 500

ELM hidden nodes number

600 700

R
u

n
ti

m
e

(s
)

1L

2L

3L

4L

(b)

Figure 7: Performance evaluation of the ELM aggregator. (a) AUC. (b) Runtime.

0.80

0.78

0.76

0.74

A
U

C

0.70

0.72

0.68
0 10 20 30

Neighborhood sample size

40 50

1L

2L

3L

4L

(a)

1200

1000

800

600

400

0 10 20 30

Neighborhood sample size

40 50

1L

2L

3L

4L

R
u

n
ti

m
e

(s
)

(b)

Figure 6: Performance evaluation of graph convolutional layers. (a) AUC. (b) Runtime.

Gender distribution

Male

182

172

Female

(a)

50–59

60-69

90–100

80–89

70–79 34
82

13
41

2

Age distribution (female)

(b)

50–59

90–100

80–89

70–79

49

96
1

33

3 60–69

Age distribution (male)

(c)

Figure 5: Distribution of patient ages and genders. (a) Gender distribution. (b) Female age distribution. (c) Male age distribution.

8 Complexity

convolutional networks, of which GCN applies spectral
convolution, while GraphSAGE and our GNEA perform
spatial convolution.

To thoroughly measure the performance of AD detec-
tion, we decompose the original 3-class classification
problem into three binary classification problems. *e NC-
AD task is to distinguish between normal controls and
Alzheimer’s disease patients. *e NC-MCI task is to dis-
tinguish between normal controls and patients with mild
cognitive impairment. *e MCI-AD task is to distinguish
between patients with mild cognitive impairment and pa-
tients with Alzheimer’s disease.

*e comparison results presented in Table 1 indicate that
(1) the graph learning neural networks achieve higher per-
formance than the deep neural networks in Euclidean space,
including the CNN and LSTM; (2) within the group of graph
neural networks, spatial convolution outperforms spectral
convolution; (3) for the general three-class problem, our
proposed GNEA has the best AUC performance; (4) compared
with their performances in the other binary classification tasks,
all the methods have higher AUC scores in the NC-AD task,
since the distinction between MCI and other classes is trivial
and explicit; (5) for theNC-ADproblem, bothGraphSAGE and
GNEA exhibit satisfactory learning ability due to the relatively
explicit distinction between the brain networks of NCs and AD
patients; (6) for the MCI-AD problem with the most implicit
distinction, GNEA earns a dominant position due to the
powerful representation ability of the ELM aggregator.

6. Conclusion

To address the graph learning problem for brain network
classification, we propose a graph convolution aggregator
based on extreme learning machine. *e ELM aggregator
exhibits an efficient and powerful aggregation ability.
*en, we design a graph neural network named GNEA,
which achieves high performance in graph embedding
and graph classification. *e results of extensive experi-
ments on a real-world Alzheimer’s disease detection task
indicate that our proposed GNEA outperforms the state-
of-the-art rival methods in the application of brain net-
work classification.

Data Availability

*e data used to support the findings of this study are in-
cluded within the article.

Conflicts of Interest

*e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

*is work was supported in part by the National Key R&D
Program of China under Grant no. 2016YFC1401902 and

0.80

0.78

0.76

0.74

A
U

C

0.72

0.70

0.68

25 50 75 100

Nodes number

125 150

1L

2L

3L

(a)

800

750

700

650

600R
u

n
ti

m
e

(s
)

550

500

25 50 75 100

Nodes number

125 150

1L

2L

3L

(b)

Figure 8: Performance evaluation of fully connected layers. (a) AUC. (b) Runtime.

Table 1: Performance comparison of AUCs with a 95% CI on different problems.

Methods 3-class NC-AD NC-MCI MCI-AC

CNN 0.688± 0.042 0.743± 0.008 0.596± 0.078 0.579± 0.085
LSTM 0.671± 0.047 0.726± 0.013 0.601± 0.083 0.565± 0.098
GCN 0.717± 0.033 0.806± 0.005 0.674± 0.075 0.605± 0.081
GS-mean 0.725± 0.022 0.802± 0.003 0.688± 0.088 0.618± 0.091
GS-pool 0.720± 0.043 0.813± 0.002 0.690± 0.097 0.610± 0.068
GS-LSTM 0.729± 0.012 0.811± 0.004 0.702± 0.099 0.613± 0.035
GNEA 0.732± 0.025 0.813± 0.003 0.703± 0.078 0.637± 0.045

Complexity 9

the National Natural Science Foundation of China under
Grants 61702086, 61672145, 61572121, and 61972077.

References

[1] F. Shi, N. Dey, A. S. Ashour, D. Sifaki-Pistolla, and
R. S. Sherratt, “Meta-KANSEI modeling with valence-arousal
fMRI dataset of brain,” Cognitive Computation, vol. 11, no. 2,
pp. 227–240, 2019.

[2] M. Termenon, M. Graña, A. Savio et al., “Brain MRI mor-
phological patterns extraction tool based on extreme learning
machine and majority vote classification,” Neurocomputing,
vol. 174, pp. 344–351, 2016.

[3] J. Liu, M. Li, W. Lan, F.-X. Wu, Y. Pan, and J. Wang,
“Classification of alzheimer’s disease using whole brain Hi-
erarchical network,” IEEE/ACM Transactions on Computa-
tional Biology and Bioinformatics, vol. 15, no. 2, pp. 624–632,
2018.

[4] A. Sperduti and A. Starita, “Supervised neural networks for
the classification of structures,” IEEE Transactions on Neural
Networks, vol. 8, no. 3, pp. 714–735, 1997.

[5] M. Gori, G. Monfardini, and F. Scarselli, “A new model for
learning in graph domains,” in Proceedings of IEEE Inter-
national Joint Conference on Neural Networks, pp. 729–734,
Montreal, Canada, August 2005.

[6] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and
G. Monfardini, “*e graph neural network model,” IEEE
Transactions on Neural Networks, vol. 20, no. 1, pp. 61–80,
2009.

[7] J. J. Hopfield, “Neural networks and physical systems with
emergent collective computationa,” Proceedings of the Na-
tional Academy of Sciences, vol. 79, no. 8, pp. 2554–2558, 1982.

[8] J. Bruna, W. Zaremba, A. Szlam et al., “Spectral networks and
locally connected networks on graphs,” in Proceedings of the
International Conference on Learning Representations, Bejing,
China, November 2014.

[9] F. Monti, D. Boscaini, J. Masci et al., “Geometric deep learning
on graphs and manifolds using mixture model CNNs,” in
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 5425–5434, Honolulu, HI, USA, July
2017.

[10] T. N. Kipf and M. Welling, “Semi-supervised classification
with graph convolutional networks,” in Proceedings of the
International Conference on Learning Representations, Tou-
lon, France, April 2017.

[11] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A
comprehensive survey on graph neural networks,” IEEE
Transactions on Neural Networks and Learning Systems,
pp. 1–21, 2020.

[12] A. Micheli, “Neural network for graphs: A contextual con-
structive approach,” IEEE Transactions on Neural Networks,
vol. 20, no. 3, pp. 498–511, 2009.

[13] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive repre-
sentation learning on large graphs,” Advances in Neural In-
formation Processing Systems, pp. 1024–1034, 2017.

[14] P. Velickovic, G. Cucurull, A. Casanova et al., “Graph at-
tention networks,” in Proceedings of the International Con-
ference on Learning Representations, Vancouver, BC, Canada,
2018.

[15] D. Bacciu, F. Errica, and A. Micheli, “Contextual graph
Markov model: A deep and generative approach to graph
processing,” in Proceedings of the 35th International Con-
ference on Machine Learning, pp. 294–303, Stockholm,
Sweden, July 2018.

[16] S. I. Ktena, S. Parisot, E. Ferrante et al., “Metric learning with
spectral graph convolutions on brain connectivity networks,”
NeuroImage, vol. 169, pp. 431–442, 2018.

[17] S. Rajchl, S. I. Ktena, E. Ferrante et al., “Disease prediction
using graph convolutional networks: Application to Autism
spectrum disorder and Alzheimer’s disease,” Medical Image
Analysis, vol. 48, pp. 117–130, 2018.

[18] Y. Lee and H. Huang, “New graph-blind convolutional net-
work for brain connectome data analysis,” in Proceedings of
the International Conference on Information Processing in
Medical Imaging, pp. 669–681, Hong Kong, China, July 2019.

[19] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning
machine: A new learning scheme of feedforward neural
networks,” in Proceedings of the IEEE International Joint
Conference on Neural Networks, vol. 2, pp. 985–990, Budapest,
Hungary, July 2004.

[20] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning
machine: *eory and applications,” Neurocomputing, vol. 70,
no. 1–3, pp. 489–501, 2006.

[21] X. Bi, C. Zhang, X. Zhao, D. Li, Y. Sun, and Y. Ma, “CODES:
Efficient incremental semi-supervised classification over
drifting and evolving social streams,” IEEE Access, vol. 8,
pp. 14024–14035, 2020.

[22] J. P. Nóbrega and A. L. I. Oliveira, “A sequential learning
method with Kalman filter and extreme learning machine for
regression and time series forecasting,” Neurocomputing,
vol. 337, pp. 235–250, 2019.

[23] Y. Rizk and M. Awad, “On extreme learning machines in
sequential and time series prediction: A non-iterative and
approximate training algorithm for recurrent neural net-
works,” Neurocomputing, vol. 325, pp. 1–19, 2019.

[24] X. Bi, X. Zhao, G. Wang, Z. Zhang, and S. Chen, “Distributed
learning over massive XML documents in ELM feature space,”
Mathematical Problems in Engineering, vol. 2015, pp. 1–13,
Article ID 923097, 2015.

[25] X. Zhao, X. Bi, G. Wang, Z. Zhang, and H. Yang, “Uncertain
XML documents classification using extreme learning ma-
chine,” Neurocomputing, vol. 174, pp. 375–382, 2016.

[26] G. Zhang, Y. Zhao, and D. Wang, “A protein secondary
structure prediction framework based on the extreme learning
machine,” Neurocomputing, vol. 72, no. 1, pp. 262–268, 2008.

[27] X. Bi, H. Ma, J. Li, Y. Ma, and D. Chen, “A positive and
unlabeled learning framework based on extreme learning
machine for drug-drug interactions discovery,” Journal of
Ambient Intelligence and Humanized Computing, pp. 1–12,
2018.

[28] L. Duan, M. Bao, S. Cui, Y. Qiao, and J. Miao, “Motor imagery
EEG classification based on kernel Hierarchical extreme
learning machine,” Cognitive Computation, vol. 9, no. 6,
pp. 758–765, 2017.

[29] X. Qiao, X. Zhao, H. Huang, D. Chen, and Y. Ma, “Functional
brain network classification for Alzheimer’s disease detection
with deep features and extreme learning machine,” Cognitive
Computation, vol. 12, no. 3, pp. 513–527, 2020.

[30] Y. Sun, B. Li, Y. Yuan, X. Bi, X. Zhao, and G.Wang, “Big graph
classification frameworks based on extreme learning ma-
chine,” Neurocomputing, vol. 330, pp. 317–327, 2019.

[31] X. Zhao, Z. Ma, B. Li, Z. Zhang, and H. Liu, “ELM-based
convolutional neural networks making move prediction in
Go,” Soft Computing, vol. 22, no. 11, pp. 3591–3601, 2018.

[32] X. Liu, Y. Zeng, T. Zhang, and B. Xu, “Parallel brain simulator:
A Multi-scale and parallel brain-inspired neural network
modeling and simulation platform,” Cognitive Computation,
vol. 8, no. 5, pp. 967–981, 2016.

10 Complexity

[33] A. J. Bishara and J. B. Hittner, “Testing the significance of a
correlation with nonnormal data: Comparison of Pearson,
Spearman, transformation, and resampling approaches,”
Psychological Methods, vol. 17, no. 3, pp. 399–417, 2012.

[34] D. S. Bassett and E. Bullmore, “Small-world brain networks,”
;e Neuroscientist, vol. 12, no. 6, pp. 512–523, 2006.

[35] C.-G. Yan, X.-D. Wang, X.-N. Zuo, and Y.-F. Zang, “DPABI:
Data processing & analysis for (Resting-State) brain imaging,”
Neuroinformatics, vol. 14, no. 3, pp. 339–351, 2016.

[36] N. Tzourio-Mazoyer, B. Landeau, D. Papathanassiou et al.,
“Automated anatomical labeling of activations in SPM using a
macroscopic anatomical parcellation of the MNI MRI single-
subject brain,” Neuroimage, vol. 15, no. 1, p. 273, 2002.

[37] Y. Crivello and Y. Bengio, “Convolutional networks for im-
ages, speech, and time series,,” in ;e Handbook of Brain
;eory and Neural Networks, pp. 255–258, MIT Press,
Cambridge, MA, USA, 1998.

[38] S. Hochreiter and J. Schmidhuber, “Long short-term mem-
ory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

Complexity 11

