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�e automatic recognition of gene names and their associated database identi	ers from biomedical text has been widely studied
in recent years, as these tasks play an important role in many downstream text-mining applications. Despite signi	cant previous
research, only a small number of tools are publicly available and these tools are typically restricted to detecting only mention level
gene names or only document level gene identi	ers. In this work, we report GNormPlus: an end-to-end and open source system that
handles both gene mention and identi	er detection. We created a new corpus of 694 PubMed articles to support our development
of GNormPlus, containingmanual annotations for not only gene names and their identi	ers, but also closely related concepts useful
for gene name disambiguation, such as gene families and protein domains. GNormPlus integrates several advanced text-mining
techniques, including SimConcept for resolving composite gene names. As a result, GNormPlus compares favorably to other state-
of-the-art methods when evaluated on two widely used public benchmarking datasets, achieving 86.7% F1-score on the BioCreative
II Gene Normalization task dataset and 50.1% F1-score on the BioCreative III Gene Normalization task dataset. �e GNormPlus
source code and its annotated corpus are freely available, and the results of applying GNormPlus to the entire PubMed are freely
accessible through our web-based tool PubTator.

1. Introduction

With the rapid growth of biomedical literature, text-
mining or biomedical natural language processing (BioNLP)
becomes increasingly important for today’s biomedical
research [1–6]. BioNLP holds the promise to have computers
to read the vast amount of the literature and extract key
knowledge about speci	c topics, such as protein-protein/
drug-drug interactions [7–11], protein functions and trans-
port [12, 13], and genetic mutations [14–16]. To accomplish
that, the 	rst BioNLP task is o�en known as named entity
recognition (NER): to automatically identify the names of
biological entities (e.g., gene/protein) from unstructured
texts [17]. Given the central role of gene/proteins in the
biomedical research [18], the automatic recognition of gene
(note that we use gene and protein interchangeably in this
paper) names has received much more attention by the
BioNLP researchers [19–26] than other entities such as

diseases (e.g., DNorm [27]) and chemicals (e.g., tmChem
[28]).

Despite many attempts in the past, the gene NER task
remains challenging due to both language variation and
ambiguity. First, the same gene is o�en described in multiple
di�erent ways by the authors including the orthographical
variation (e.g., “ESR1” and “ESR-1”), morphological variation
(e.g., “GHF-1 transcriptional factor” and “GHF-1 transcrip-
tion factor”), variation with abbreviation (e.g., “estrogen
receptor alpha (ER�)”), and composition mentions (e.g.,
“BRCA1/2” and “SMADs 1, 5, and 8”). With respect to
ambiguity, the 	rst challenge is multispecies (orthologous)
gene ambiguity. �at is, the same gene name can indicate
di�erent concept identi	ers depending on its associated
organism information (e.g., erbb2 can be either a human gene
or mouse gene name). �e second ambiguity arises because
di�erent genes can share the same name. For example, “AP-
1” can refer to either “jun proto-oncogene” (Entrez Gene:
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Figure 1: A screenshot of gene, gene family, and protein domain annotation of PMID: 10828014 in PubTator.

3725) or “FBJmurine osteosarcoma viral oncogene homolog”
(Entrez Gene: 2353).

To advance the state of the art in NER, a number of
community-wide shared tasks have been organized [29–
31] (see Huang and Lu, 2015 [32], for a complete list). In
particular, the Critical Assessment of Information Extraction
Systems in Biology (BioCreative) has repeatedly organized
both gene mention (GM) and gene normalization (GN) tasks
where the former task involves 	nding the occurrence (i.e.,
string o�sets) of gene names in text while the latter typically
asks for returning gene concept identi	ers per document.
In BioCreative I [33] and BioCreative II [7], the GM tasks
focused on four species (e.g., human, �y, mouse, and yeast)
gene mentions. �e best results obtained in the challenges
are 83.2% of �-measure in BC I GM task [33] and 88.22%
in BC II GM task [34]. In BioCreative II, the GN task
was introduced which asked participants to return human
gene/protein concept identi	ers given target articles. �e
best performance in this task was 81.0% �-measure [7].
In BioCreative III, the GN task was reintroduced with the
additional challenges of dealing with full text and multiple
species. As a result, the best performance is lower (46.56% in
�-measure [19]).

As a result of these challenge tasks, a number of annotated
corpora were made available to the research community
and have, in turn, enabled the development of a number of
so�ware tools. For instance, the BioCreative GM corpus was
used to build several gene mention taggers, such as AIIA-
GMT [35], BANNER [36], and BioTagger-GM [37]. However,
existing gene corpora (e.g., BioCreative II GM/GN corpora
[29, 30]) are annotated in either mention or document level
as they were separately developed.�eGM corpus (e.g., [34])
includes mention annotations but not gene identi	ers of the
target document; the GN corpus contains annotations for

the gene identi	ers but not their associated mentions. Train-
ing a supervised method on some GM data for the GN
task is not ideal because di�erent annotation criteria are
o�en used (e.g., GM corpus may include mentions that
cannot be mapped to gene identi	ers). �us, we propose
developing a corpus that includes both gene mentions and
concept identi	ers for the same set of articles. To our best
knowledge, the newly published IGN corpus [38] is the
only other data set that includes both types of annotations.
However, we di�er from IGN in two main aspects. First, our
newly developed corpus consists of more articles (694 versus
543). More importantly, we annotate gene-related concepts
separately. �at is, we distinguish gene, gene family, and
protein domains and treat them as separate classes in our
annotation (see Figure 1) as we believe such a distinction can
help gene name disambiguation and improve performance.
None of the current GM/GN corpora annotates these types
separately. For instance, in the BioCreative II GM corpus,
gene, protein family, protein domain, DNA, and RNA are all
treated as gene mentions.

Past GN systems are unable to distinguish between gene
and gene families: they either completely ignored the problem
or simply used a protein family name list as 	lters [24, 25, 39,
40]. However, the 	ltering strategy does not work once the
family mention is not in this list. In this case, the family name
becomes false positives in the results. Furthermore, detecting
domain names can assist resolving ambiguous gene/protein
names. As shown in Figure 2, the TEL1 and TEL2 proteins
are both ETS-family transcription factors with the ETS 	nger
domain and GGAA core motif. TEL1 also has the pointed
(PNT) domain. When searching for the gene identi	er in
Entrez Gene, TEL1 can map to two di�erent concepts: ATM
serine/threonine kinase (gene ID: 472) and ETS translocation
factor variant 6 (gene ID: 2120). But with extracted protein
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Table 1: �e statistic of our gene corpus.

Data set Articles Gene mentions (gene/family/domains) Gene identi	ers

BioCreative II GN training set 281 3,019/1,115/278 758

BioCreative II GN test set 262 3,233/1,252/361 928

NLM Citation GIA test collection 151 1,205/160/17 310

Total 694 7,457/2,527/656 1996

motif
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domain

ETS-family
transcription factor

ETS �nger

GGAA core 

TEL1
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Figure 2: Relations between gene, gene family, and protein domains
in PMID: 10828014.

domain information, we can infer that in this case ETS
translocation factor variant 6 is the correct answer because it
is known to be associated with the PNT domain. Besides, the
family name “ETS translocation factor” is also helpful to the
disambiguation of TEL1/2 because it is included in the gene’s
o�cial full name.

Taken together, this research makes three major contri-
butions. First, through reannotating two existing corpora, we
are the 	rst to build a new corpus that allows the development
of new methods for distinguishing di�erent gene-related
entities: (gene, gene family, and protein domains). Second,
we build a new end-to-end system that includes both GM
and GN modules, together with several advanced BioNLP
tools (e.g., GenNorm [19], SimConcept [41], SR4GN [42], and
Ab3P [43]) for improved performance. Lastly, we show state-
of-the-art performance on two separate benchmark data sets.

2. Materials and Methods

2.1. Corpus Development. We reannotated two existing gene
corpora. �e BioCreative II GN corpus is a widely used data
set for benchmarking GN tools and includes document level
annotations for a total of 543 articles (281 in its training
set and 262 in test). �e Citation GIA test collection was
recently created for gene indexing at the NLM and includes
151 PubMed abstracts with both mention level and document
level annotations.�ey are selected because both have a focus
on human genes. For both corpora, we added annotations of
gene families and protein domains. For the BioCreative GN
corpus, we also added mention level gene annotations. As a
result, in our new corpus, there are a total of 694 PubMed
articles (see Table 1). PubTator [44, 45], a tool developed and
evaluated through the BioCreative III Interactive Task [46],
was used as our annotation so�ware.

2.2. Method Overview. As shown in Figure 3, our proposed
approach includes two main steps: mention recognition
and concept normalization, respectively. In the mention

recognition step, we developed a new module, together with
our previous species recognition system (i.e., SR4GN) to
recognize gene and species names and match them accord-
ingly. In concept normalization step, we applied our previous
system, GenNorm, combined with a composite mention
simpli	cation tool (i.e., SimConcept) and an abbreviation
resolution tool (i.e., Ab3P) for optimized performance.

2.3. Mention Recognition Step. In this study, we propose a
supervised approach to detect the mentions of gene, gene
family, and protein domain from a target input (e.g., PubMed
abstracts). We 	rst translate this mention recognition prob-
lem as a sequence labeling task. Accordingly, we adapted
a probability based sequence detection conditional random
	elds (CRF) model [47] provided by CRF++ (http://crfpp
.googlecode.com/svn/trunk/doc/index.html) library by order
2 model. CRF++ applies L-BFGS [48] which is a Quasi-
Newton algorithm for large scale numerical optimization
problems. We chose BIEO (B: begin, I: inside, E: end, and
O: outside) label set for this recognition model. We also
used the tokenization module in our previous NER systems
(i.e., tmChem [28] and tmVar [15]) here. More speci	cally,
we applied tmVar’s tokenization module which splits tokens
not only at punctuation (e.g., “.,()+”) and spaces, but also at
digits and transitions between uppercase and lowercase. For
instance, “hTIF1” will be split into three individual tokens “h,”
“TIF,” and “1.” We also reused the features in tmChem and
tmVar as described below.

(1) General Linguistic Features. We included the original
tokens (e.g., genes), stemmed tokens (e.g., gene), and
POS tagging result (e.g., “NN”).We also extracted the
pre	xes and su�xes as features (length: 1∼5).

(2) Character Features. Sincemany gene concepts include
letters, digits, and special characters, we therefore
detected the number of uppercases, lowercases, let-
ters, digits, and special characters (“;:,.->+ ”).

(3) Semantic Features. We de	ned three types of features
to recognize the di�erence between potential gene
mentions and other concepts. We 	rst use the gene
vocabulary from ctdbase.org (http://ctdbase.org/
downloads/#allgenes) to detect those strings which
can match gene mentions. In general, literature
usually uses abbreviation to describe bioconcepts.We
therefore use Ab3P [43] to detect those abbreviation
pairs. To help the CRF model to recognize the
di�erence between bioconcepts (e.g., genes, disease,
and chemical), we collected a list of semantic tokens
for genes (e.g., strains), disease (e.g., “disorder”),



4 BioMed Research International

Full texts

Abstracts

Available for

PubTator/BioC/XML

formats

Ab3P

Ab3P GNR

SR4GN

Abbreviation solution
Gene name 

Gene mentions

Species assignmentSpecies recognition

OutputFormat conversion

Gene mention with 

Gene name normalization

Gene mentions with 

Abbreviation solution

SimConcept

Mention simpli�cation

Entrez Gene identi�er

species information

recognition

GenNorm

Normalization stepRecognition step

Figure 3: �e overview of our integration method (GNormPlus).

chemical (e.g., “trivial ring”), domain (e.g., “region”),
cell (e.g., “cell”), protein symbol (e.g., glutamine),
and so forth.

(4) Case Pattern Features. We applied the case pattern
features from tmVar [15]. Each token is represented
in four simpli	ed forms. Uppercase alphabetic char-
acters are replaced by “A” and lowercase characters are
replaced by “a.” Likewise, digits (0–9) are replaced by
“0.” Moreover, we also merged consecutive letters and
numbers and generated additional single letter “a” and
number “0” as features.

(5) Contextual Features. In order to take advantage of
contextual information, for a given token we included
the dictionary and linguistic features of 3 neighboring
tokens from each side.

To best distinguish the three gene-relatedmention types, gene
versus gene family versus protein domains, we applied several
postprocessing rules to the CRF results. (1) Set the type by
su�x (e.g., “OSBP-related proteins” to family, “LIM1 domain”
to domain). (2) If we 	nd a mention (e.g., “TIF1”) which
is also a pre	x of another mention (e.g., “TIF1alpha”), then
we set the type of the mention to be gene family. (3) When
abbreviation pairs are found, use the mention type of the
long form to the sort form (e.g., “TIF1” is tagged as protein
family because of its long form “transcriptional intermediary
factor 1 family”). (4) If a mention occurs multiple times in an
article but is tagged with di�erent types by the CRF module,
we then apply the majority rule to determine its 	nal type
in the article. For example, if hif1 was tagged twice by the
CRF as a gene but as gene family in three times, then all 	ve
occurrences of hif1 will be tagged as gene family names.

2.4. Concept Normalization Step. �e second step of our
system is tomap genementions to speci	c concepts in Entrez
Gene. To do that, we 	rst applied our previous GN tool,
GenNorm [19, 49], which is based on a statistical inference
network model via two individual matching strategies (i.e.,
exact match and bag-of-words match). More speci	cally,
the exact match strategy requires the input mention to be
identical to the names in the controlled vocabulary. On the
other hand, the bag-of-words approach matches tokens in
both input text and target vocabulary. GenNorm achieved the
best performance in the BioCreative III GN task [29].

For performance optimization, we also integrated an
abbreviation resolution and composite mention simpli	ca-
tion tool in this step. First, we applied Ab3P [43] to extract
the long form and short form abbreviation pairs. When the
short form and long form map to di�erent gene candidates,
we typically infer the candidate gene of long form to short
form for improved performance. SimConcept [41] was used
to identify and resolve composite named entities, where a
single span refers to more than one concept (e.g., BRCA1/2).
Most past NER studies have either ignored this issue, used
simple ad hoc rules, or only handled coordination ellipsis,
which is only one of the many types of composite mentions
studied in this work. SimConcept was shown to successfully
tag individual entities from composite mentions.

3. Evaluation and Results

�e 	rst evaluation is a species-speci	c experiment where
only human genes are considered. In this evaluation, we
trained our system using both BioCreative II GN training
set and NLM Citation GIA test collection and tested it on
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Table 2: �e evaluation of human species gene normalization.

Methods Precision Recall �-measure System availability

Our approach (GNormPlus) 87.1% 86.4% 86.7% Open source

GenNorm [19] + AIIA-GMT [35] 78.9% 81.4% 80.1%
GenNorm is open source
but AIIA-GMT is no longer

available

GNAT [23] 90.7% 82.4% 86.4% Open source

GeNO [24] 87.8% 85.0% 86.4% N/A

Hu et al., 2012 [40] 83.5% 82.5% 83.0% N/A

Li et al., 2013 [39] 88.1% 92.3% 90.1% N/A

Table 3: �e evaluation of cross species gene normalization.

Methods TAP-5 TAP-10 TAP-20 �-measure System availability

Our approach (GNormPlus) 33.3% 36.7% 36.7% 50.1% Open source

GenNorm [42] + AIIA-GMT [23] 32.8% 35.5% 35.5% 46.9%
GenNorm is open source
but AIIA-GMT is no longer

available

GeneTuKit [22] 29.7% 31.4% 32.5% — Open source

Kuo et al. [21] 21.4% 25.1% 25.1% 30.6% N/A

Tsai et al. [20] 19.0% 22.9% 23.9% — N/A

the BioCreative II GN test set. As shown in Table 2, we com-
pared GNormPlus with several previously reported systems,
including our previous system, GenNorm [19]. �e default
setting of GenNorm uses AIIA-GMT [35] for gene mention
recognition. AIIA-GMT is one of the high-performing gene
mention recognition tools and provided web API service.
Unfortunately, AIIA-GMT is no longer available since 2013.

In the second experiment (see Table 3), we evaluate
GNormPlus in multispecies gene normalization using the
BioCreative III GN task data set. In this evaluation, we
used the whole set of 694 articles for system training. As
can be seen, our proposed method signi	cantly outperforms
previously published results in both standard �-measure
and the task-speci	c TAP-k measures. �e new system also
outperforms our previous GenNorm tool by a signi	cant
margin.

4. Discussion and Conclusion

To assess the impact of using multiple gene-related mention
types (i.e., gene versus family versus domain), we built
a baseline model where all three types were treated as
one. As shown in Table 4, the proposed multitype scheme
signi	cantly boosted the 	nal GN performance as shown in
this comparison.

Despite our best e�orts, errors remain in our tagging
results. Based on our results on the BioCreative II GN
test set, we performed an error analysis including 127 false
positive (FP) errors and 87 false negatives. In order to better
understand the causes of di�erent errors, we 	rst separated
the 214 errors by the GM step and GN step where the former
accounts for 53% and the latter 47%. Among the errors in the
GM step, many are due to gene/family/domain mention type

Table 4: �e comparison of di�erent mention recognition training
corpus.

Gene mention type
scheme

Precision Recall �-measure

Gene/family/domain 87.1% 86.4% 86.7%

Single gene type only 78.4% 79.2% 78.8%

confusion (e.g., assigning gene mentions to family/domain
or assigning family/domain mentions to genes). Some gene
mentions (e.g., TGF-beta) are particularly confusing when
they refer to genes in some articles but to family/domain in
other articles. In the GN step, failure in disambiguation is
a frequent error (17.3%). A number of gene mentions can
be associated with multiple identi	ers. With only limited
information in the abstract, sometimes it is very di�cult
to disambiguate and assign genes with correct identi	ers.
Another 8.9% of the errors are due to de	ciencies of the gene
name dictionary. Overall, as can be seen in Table 5, both the
GM and GN results are important to the 	nal performance.

To conclude, we developed GNormPlus: an end-to-end
gene recognition system which handles both GM and GN
tasks. By integrating several advanced BioNLP tools (i.e.,
GenNorm, SR4GN, Ab3P, and SimConcept), GNormPlus
achieved competitive results in our two benchmarking
experiments when compared with the state of the art. Unlike
our previous GenNorm system that relies on AIIA-GMT,
GNormPlus is a stand-alone open source tool with no
dependence on external tools (freely available at http://www
.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/tmTools/#GNorm-
Plus). GNormPlus is made interoperable with other BioC-
compatible BioNLP tools. For convenience, we have also
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Table 5: �e frequency of false negative and positive errors of GNormPlus.

FN FP Total Percentage

Gene mention (GM) recognition

Gene/family/domain mention type confusion 38 18 56 27.1%

Wrong boundary or missed gene mention 18 18 36 17.4%

Not a gene mention 0 15 15 7.3%

Gene normalization (GN)

Wrong gene identi	er due to ambiguity 19 18 37 17.9%

Insu�ciency of the gene name dictionary 19 0 19 9.2%

Not annotated in the gold standard 0 17 17 8.2%

Nonhuman genes found 0 11 11 5.3%

Others 13 3 16 7.7%

applied GNormPlus to PubMed and stored its results in
PubTator (http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/
Demo/PubTator/) so that users can readily access gene data
via PubTator. In the future, we plan to explore its applica-
tions in real-world uses such as biocuration [50] and also
investigate the automatic recognition of other gene-related
biological entities such as microRNAs [51].
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