
HAL Id: hal-03694409
https://hal.science/hal-03694409

Submitted on 13 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

GNSS-based environmental context detection for
navigation

Florent Feriol, Yoko Watanabe, Damien Vivet

To cite this version:
Florent Feriol, Yoko Watanabe, Damien Vivet. GNSS-based environmental context detection for
navigation. 2022 IEEE Intelligent Vehicles Symposium (IV), Jun 2022, Aachen, Germany. pp.888-
894, �10.1109/IV51971.2022.9827023�. �hal-03694409�

https://hal.science/hal-03694409
https://hal.archives-ouvertes.fr


GNSS-based environmental context detection for navigation

Florent FERIOL1, Yoko WATANABE2 and Damien VIVET1

Abstract— Environmental context detection is a topic of
interest for the navigation community since it enables to build a
context-adaptive solution. Indeed if the type of environment is
known it is then possible to choose the proper data processing
algorithm or to select the sensors to be used to dynamically
adapt the navigation solution design itself. This paper proposes
to build a supervised machine learning model which can
robustly classify multiple contexts such as urban canyons,
urban, trees and open-sky areas using GNSS data only. A
training and test database have been built with four datasets
acquired at different times in order to prove the relevance of the
solution. These datasets are made available to the community
for research purpose. The choices of features and classifier are
also discussed and compared to others papers. Our solution
achieved an average 82.40% of classification accuracy.

I. INTRODUCTION

In the recent years, with the addition of new constellations,
hardware improvements and the development of new ro-
bustification algorithms, Global Navigation Satellite System
(GNSS) based positioning has become more efficient than
ever. The main issue with the latter is that very often those
algorithms are dedicated to mitigate a specific limitation
of GNSS which have a tendency to appear in a specific
environment (also called context). For example, multipaths
mitigation and Doppler aiding algorithms are mainly used in
urban areas, shadow matching is exclusively used in urban
canyon and the modification of the coherent integration time
is useful in indoor or under canopy (see [1] for more details).
This notion of environmental context is therefore considered
as a key of future navigation solution since it could help
to choose a suitable algorithm and improve the general
performance of the solution [2]. This context-adaptive idea
can also be extended to the navigation filter design itself
by, for example, swapping between lose and tight coupling
depending on the situation. Besides, such context information
could also be useful for a path planning task in robotic
applications, in order to ensure the navigation safety by
predicting possible degradations of the localization precision.

Different methods already exist to extract the environmen-
tal context but require sensors which are not commonly used
for navigation applications (cellular, Wifi, magnetometer,
light detector) leading to more power consumption, bulkiness
and cost [3], [4]. Even if multiple visual based approaches
for context detection exist, the use of LiDAR or cameras
require a huge processing power that should be dedicated
to the navigation task by itself. In our opinion, there is a
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lack of simple and efficient environmental context classifier
using GNSS in a kinematic case. Several articles tried
to characterize GNSS signals in various environment and
showed an evolution of the degradations depending on the
context [8]–[10]. Hence, it is natural to think of using those
degradations as a context detector. As introduced in [1] the
semantic contexts of interest are: urban canyons, urban areas,
forest/trees and open-sky. Note that indoor is excluded from
our context of interest due to the fact that in deep indoor
situation there is not enough visible satellites to compute
a position and therefore a lot of features are missing for
the classification step. If indoor is a key context for an
application, a binary indoor/outdoor classification can be
performed before applying the outdoor context detection
approach proposed in this paper.

This paper is structured as follows. Section II introduces
some existing works on GNSS-based context detection in
order to showcase their limitations and the improvements
we want to bring. Next, section III presents the strategy
used to build the training/testing dataset as well as the
acquisition setup. In Section IV, the choice of features used
for the classification is discussed. Classifier, pre-processing
and post-processing of data are explained in section V.
Finally, experiments and results are presented in section VI.

II. STATE OF THE ART

Even if environmental context detection is a well studied
problem with visual sensor or multisensor fusion approaches,
few works have focus on this task using GNSS data. In
[5] both GPS and GLONASS constellations are used to
classify the context between indoor, urban and open-sky
thanks to a two step processing. First, a Hidden Markov
Model (HMM) predicts the indoor/outdoor context proba-
bility from means and variances of C/N0 (Carrier to noise
ratio) features. Second, if the HMM output is unclear, a
Fuzzy Inference System is used to separate open-sky samples
from urban ones. Regarding the database, a unique dynamic
test trajectory recorded at 1Hz with a smartphone is used. It
contains approximately 100 samples. Results mainly focus
on the detection capability during transitions. Thus there is
no certitude on the reliability of the method for different
constellations or localization since only a single test dataset
was used.

[6] tries to classify indoor and outdoor using machine
learning (ML) algorithms. 36 statistical features are extracted
from azimuth/elevation, C/N0, Position/Horizontal/Vertical
Dilution of precision (P/H/V-DOP), number of visible satel-
lites (NVS). The database is composed of 195,861 samples
recorded at different times with diverse smartphones and



meteorological conditions. Results with multiple classifiers
are shown and the stacking one, composed of several models,
is the most efficient one. They also used a HMM in a
post-processing step in order to improve the performances.
However, the database is not available making us unable to
know what trajectory the user did and at which speed.

[11] also use smartphones for pedestrian application but
goes further than the previous paper by classifying four
contexts: deep indoor, shallow indoor, semi-outdoor and
outdoor. To do so the authors used a Recurrent Neural
Network (RNN) model with an input vector of 11 statistical
features based on the number of visible satellite and the
signal to noise ratio. They showed that the use of multiple
constellations could improve the classification results. How-
ever the dynamic test dataset is again very limited (only 322
samples) and therefore results cannot be extended to other
locations and times.

More recently [12] proposed a method based on a fusion of
RNNs and Fully Convolutional Networks (FCN) to classify
in real-time three road navigation contexts: urban canyon,
trees and open sky. Note that tree class is a road bordered
by trees. The presented results show good performance.
Nevertheless, a lot of information is missing. First, there is no
information on the receiver and the antenna used. Second, the
exact structure of the features vector is not mentioned and
is mixed with features extracted with RNNs (which need
a 256*11 historical data matrix as input - representing 50
seconds of signal). The architecture and the hidden size of
the proposed RNN is not provided. Lastly, no information on
the learning phase, the training and testing database (training
epoch, batch size) are shared making the reproduction of
the work impossible. More over, the system is based on the
analysis of 50 seconds of signal making it more suitable for
static system or with slow movement than for real navigation
cases.

Finally, [13] tries to recognize six urban contexts: urban
canyon, semi-urban, suburb, viaduct-up, viaduct-down and
boulevard (roads bordered by trees). The definition of those
contexts seems unclear since some classes look very similar
to others. The authors proposed to use a five dimensional
vector as input of a Support-Vector Machine (SVM) model.
The vector is made of the mean µ and standard deviation σ
of signal strength attenuation Ai(t) defined in (1), blockage
coefficient α (2) , GDOP expansion ratio λ (3) and the
strength fluctuation coefficient β which are all extracted from
the GPS L1 band.

Ai(t) = P std
i (θ)− Pi(t) (1)

where Pi(t) is the measured signal strength of satellite i
at time t, and P std

i (θ) is the standard strength with no
attenuation for each elevation θ.

α(t) = 1− Nvisible(t)

Nall(t)
(2)

where Nvisible is the number of visible satellites and Nall is
the number of all satellites for the same constellation in the
sky which can be obtained from the almanac.

λ(t) =
GDOP (t)

GDOP std(t)
(3)

where GDOP (t) is the value computed by the receiver and
GDOP std(t) is the GDOP value calculated for all the satel-
lites in the sky. Finally, the strength fluctuation coefficient
β is the standard deviation of the strength attenuation (1) in
1 second. The training data have been acquired in Shanghai
(100 000 samples) at 5 Hz using an Ublox-M8N placed on
the top of a vehicle. The test dataset have been recorded
in Nanjing with the same setup. Data are pre-processed
thanks to a standardization in order to assure a similar scale
for the different features. A one-vs-all SVM model is then
trained using the Shanghai data. The last step is to perform
a Bayesian filtering at the output of the SVM classifier in
order to improve the results by avoiding the random miss-
classifications. The results are impressive but the ground truth
shared is not very precise and the database is not available.
Also, in order to compute the feature vector it is mandatory
to obtain a position at each epoch and to have access to the
almanac which is not always possible.

In summary, there are only few works dealing with GNSS
signal based context detection. Even if existing works seems
to give good classification results, they are based on small
private datasets often obtained from smartphones held by
pedestrians. It is important to note the relevance of having a
large dataset with different conditions since it is the only way
to ensure a generalizable solution. Also, the database are built
in major chinese cities with contexts that can really differ
from those found in Europe. None of these works can be
reproduced as there is an obvious lack of public GNSS signal
database. Therefore, contributions of this paper are twofold:
first to propose a new GNSS-based environmental context
detection methodology, and second to provide to public a
GNSS signal database with labeled contexts1.

III. DATASET

In order to acquire the database, a Traxxas rover (Fig. 1)
equipped with a Ublox EVK-M8T receiver and a NovAtel
VEXXIS GNSS-804 antenna was used. Data are collected at
5Hz thanks to a ROS platform. Compared to previous works
dealing at 1Hz in static or low speed situations, we choose
to increase the recording frequency to be able to deal with
high speed situations. Moreover, as proven in [11], using
multi-constellations could improve the detection capability
thus the receiver has been configured to track GPS and
Galileo signals. Given the rover’s average speed of 4km/h
the dynamic platform model of the GNSS receiver is set to
portable.

To build a database, four experiments have been conducted
on the ISAE-SUPAERO campus in Toulouse (France) on
different days/hours and under sunny/cloudy conditions. A
summary of the tests can be found in Table I. The training
database has only been labeled when the context was obvious

1The database used in this paper is available at: https:
//gitlab.isae-supaero.fr/d.vivet/GNSS_based_
context_detection and to be completed with new experiments



Fig. 1: Our rover setup at ISAE-SUPAERO. The robot
is equipped with GNSS receiver and cameras for context
ground truth labelling and visual confirmation.

Fig. 2: Satellite view of the training database ( :Urban,
:Canyon, :Trees, :Open-Sky) and the ground truth tra-

jectory in yellow

in order to have a generic model, thus every transition
between contexts have been eliminated from the learning set.
The ground truth labeling is based on the localization of the
sample. Static points have also been filtered from training and
test dataset as we are only interested in kinematic situations
where the context can evolve. The number of samples in
Table I is obtained after the filtering. Finally, to simulate
a spatial independence for the tests some areas have been
deleted for the training step (see Fig. 2). As a result there
is no overlapped data point in training/testing subsets (Table
VII).

IV. FEATURES OF INTEREST

In order for the proposed approach to be widely applicable,
only the classical outputs which are accessible to end-users
of standard off-the-shelf GNSS receiver are used to construct
the feature vector. For instance, it excludes the use of

Filename Date SoR Meteo Samples
Training Testing

Dataset 1 05/28/2021 13h22 Sunny 4986 9292
Dataset 2 05/28/2021 16h49 Sunny 2529 5282
Dataset 3 05/31/2021 16h51 Sunny 2356 4240
Dataset 4 06/03/2021 11h45 Cloudy 4507 6684

TABLE I: List of the different recordings (SoR:Start of
Recording)

correlators information. As using information from multiples
constellations can improve the detection by reducing random
outliers, features will be declined in their GPS and Galileo
version at each epoch, except for the features based on the
solution (such as the DOP feature).

The first feature selected is the number of visible satellites
(NVS) as done in [6], [11], [13]. It gives a lot of information
on the environment since its value will be very different
in open-sky situations compared to urban canyon ones.
However the NVS stays high in situations other than open-
sky like under canopy, making this feature not sufficient to
distinguish every context. In such areas the satellite signal
quality should be impacted by multi-paths and/or attenuation
due to branches and leaves. That is why a second feature
based on the NVS is used but with a threshold on the C/N0
as done in [5]:

Mask(i) =

{
1, if C/N0i > ξ

0, otherwise
(4)

NV S filtered =
∑
i∈Sv

Mask(i) (5)

with i the satellite ID, Sv a set of IDs of the visible satellites
(i.e. i ∈ Sv if the i-th satellite is visible), and ξ the threshold
value. In our case we found empirically that a proper value
for the threshold was 30dB.Hz. This threshold has been
obtained by looking at the evolution of the signal quality
when coming from an open-sky environment to under trees.

As mentioned before it seems mandatory to track the
evolution of the C/N0 since it gives an idea on the signal
quality. However in kinematic situation it is prone to a lot of
variance (Fig. 3a). This problem is surprisingly not explained
in the different papers that try to classify the context in
real time [12] [13]. To resolve this matter we proposed to
smooth the signal by using a filtering window on the last 10
samples (2s in our case) in which the mean and the variance
are computed (6, 7) for each satellite (Fig. 3b). In addition,
since an information on the whole constellation is needed,
the mean of both the indicators is computed over all the
satellites available (8, 9).

µC/N0i(t) =
1

10

9∑
k=0

C/N0i(t− k) (6)

σ2
C/N0i

(t) =
1

10

9∑
k=0

(
C/N0i(t− k)− µC/N0i(t)

)2

(7)
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(a) Comparison of the C/N0 mean in a static and a
dynamic situation
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(b) Comparison of the C/N0 mean before and after
smoothing

Fig. 3: C/N0 analysis in static and dynamic situation (a), and
with the results of our proposed smoothing strategy (b)

µC/N0(t) =
1

NV S(t)

∑
i∈Sv

µC/N0i(t) (8)

σ2
C/N0(t) =

1

NV S(t)

∑
i∈Sv

σ2
C/N0i

(t) (9)

After relying on the signal quality to extract information
about the context, the receiver position solution could also
give additional information. Indeed it is possible to estimate
the error on the position which should be larger in cluttered
environment. From the Ublox-M8T we can extract the hori-
zontal/vertical accuracy and the position dilution of precision
PDOP. For commercial reason, there is no access on how
those values are calculated but they seem to be related
to the position estimation error covariance. With the same
idea, the pseudorange residuals which enlighten errors on
pseudoranges (that can be due to multipaths among others)
is also chosen as a feature:

res(t) =
∑
i∈Sv

|ρm,i(t)− ρe,i(t)|, (10)

with ρm the measured pseudorange, ρe the estimated pseu-
dorange. Here we decided to use the sum over the mean in
order to avoid an over-smoothing of the values.

To have a better understanding of the constellation we
can also use the elevation of each satellite as proposed in
[6]. In cluttered environment the mean elevation will tend to
be higher since tall structures will occlude the signal of low
elevation satellites:

elev(t) =
1

NV S(t)

∑
i∈Sv

ei(t), (11)

with ei the elevation of the i-th satellite.
Finally, a 15 dimensional feature vector is obtained for each
epoch:

v(t) =[NV Sgps, NV Sgal, NV S filteredgps, NV S filteredgal,

Hacc, V acc, PDOP,

µC/N0gps , µC/N0gal
, σ2

C/N0gps , σ
2
C/N0gal

,

elevgps, elevgal, resgps, resgal]
(12)

V. PRE-PROCESSING, CLASSIFIER AND POST-PROCESSING

A. Pre-processing

Once the feature vector is created, it still has to be pre-
processed before using it as input of a classifier. To guarantee
a similar scale for each feature, they need to be normalized
since an SVM classifier will be used as justified later. To
do so, the Z-score standardization (13) is used under an
assumption of a normal distribution.

X̄ =
X − µ

σ
, (13)

To further improve the uniformity between small and high
values, the sigmoid function define as follows is applied:

f(X̄) =
1

1 + exp−X̄
, (14)

Those standardization steps are important due to the fact
that SVM classifiers try to find the optimal hyperplane
between two classes and therefore are sensible to magnitude
differences.

At this point, we applied Principal Component Analysis
(PCA) in order to verify the segmentability of our data (Fig.
4). It can be seen that except for the urban/open-sky case the
different contexts are classifiable. It is important to mention
that only the two main components are plotted on Fig. 4 and
that the classifier will not be in this space. To compare the
segmentability of our feature vector with the one proposed in
[13], Fig. 5 shows the PCA plot for the feature vector which
relies only on the five features listed earlier in Section II. It
can be seen that the data are way more mixed up and that the
resulting classification should be less efficient since 72.45%
of the variance is represented here.
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Fig. 4: PCA plot of the two main components (60.66 % of
the variance) with our set of features
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Fig. 5: PCA plot of the two main components (72.45 % of
the variance) with the feature vector extracted from [13]

B. SVM classifier

As mentioned before, we chose to use an SVM classifier
for the following reasons. The first is to avoid the randomness
of algorithms such as boosting and bagging. Second, it allows
to estimate posterior probabilities which can be useful for fil-
tering/smoothing. Finally its fine tuning is more understand-
able than a black box such as deep learning solutions (SVM
has only few hyperparameters). For multi-class problem, it
has been shown that error-correcting output codes (ECOC)
model can improve classification [7]. Indeed it reduces the
possibility of wrong classification because each learner will
find a single bit of the code whereas in other methods each
learners define a class. Therefore this type of model will be
used with SVM learners. The one-vs-one classifier is adopted
due to the fact that it is less computationally-expensive than
one-vs-all for training and performs better most of the time.
We then obtain K ∗ (K − 1)/2 (K being the number of

Class
Learner L1 L2 L3 L4 L5 L6

Canyon 1 1 1 0 0 0
Open-sky -1 0 0 1 1 0

Trees 0 -1 0 -1 0 1
Urban 0 0 -1 0 -1 -1

TABLE II: Coding matrix of our ECOC model

classes) binary learners and the coding matrix (Table. II)
where 1 means that the class will be positive, -1 negative
and 0 ignored during the training.

It is possible to fine tune the type of kernel as well as the
soft-margin and kernel scale hyper-parameter of the SVM
learners. After multiple tests, it has been found that the
gaussian kernel is the most efficient one with γ = 15.9631.
The best soft margin parameter C is 4.0364. Those parameter
have been found thanks to a Bayesian optimization.

C. Post-processing

Since the outputs of an SVM classifier are probabilities,
it is possible to filter the result by applying a Bayesian
approach. The prior probabilities are initialized uniformly
for each context to 0.25 in order to avoid to favour a class
over the others:

P (c0|m0) = [0.25, 0.25, 0.25, 0.25] (15)

The posteriors of the next epoch can be computed using the
previous probabilities as priors by Bayes’ rule (16):

P (ct|mt) =
P (m|c) ∗ (Ptrans · P (ct−1|mt−1))

P (m)
, (16)

with P (m|c) provided by the SVM, Ptrans is the transition
matrix between the contexts defined as follows (Canyon,
Open-sky, Trees, Urban)(17). In order to define this transition
matrix, we analyse the existing transitions in the dataset to
get the transitions probabilities:

Ptrans =


0.9 0.01 0.01 0.08
0.01 0.9 0.045 0.045
0.01 0.045 0.9 0.045
0.1/3 0.1/3 0.1/3 0.9

 (17)

The context giving the highest probability of P (ct|mt) is
then considered as our predicted label.

VI. EXPERIMENTS AND RESULTS

A. Setting and performance metrics

To show the relevance of our feature vector choice, differ-
ent input vectors and pre-processing have been tried. Firstly,
only GPS data are used in the input vector and the standard
Z-score normalization (13) is the only pre-processing (SVM-
G). Then the Galileo constellation has been added into the
input vector as shown in (12) (SVM-GGa). In a third time
the normalization is improved by the use of the sigmoid
function (14) in addition (SVM-GGaS). Finally, the post
processing Bayesian filtering presented in (16) is performed
(SVM-GGaSB).The model has been trained using three of



the four trajectories and using the last one as a test. From
each input vector we can extract the recall (18), the precision
(19) and the F1-score (20) to demonstrate the performance
of our solution. This evaluation summary is 4-folded.

Recall =
True positive

True positive+ False negative
(18)

Precision =
True positive

True positive+ False positive
(19)

F1-score = 2 ∗ Precision ∗Recall

Precision+Recall
(20)

B. Results

A comparison of the performances of the classifier for the
four different input vectors is available in Table III where the
best classifier is the one using GPS/Galileo features, sigmoid
standardization and Bayesian filtering. The arctan function
has also be tested instead of sigmoid but obtained inferior
results. We also tried to fuse GPS and Galileo features
as done in [12] but ended up with worse results. Because
each constellation has its own characteristics it is better to
keep their features independent. This result confirms the
importance of using multiple constellations as mentioned in
[11]. We also tested different training/testing datasets folding
in order to validate the reliability and robustness of our
solution with reference to: different constellation geometries
(time of acquisition), different weathers. The F1-score for
each test is available in Table IV.

Classifier Performances
SVM-G R:0.8160 P:0.8194 F1:0.8177

SVM-GGa R:0.8352 P:0.8303 F1:0.8328
SVM-GGaS R:0.8338 P:0.8368 F1:0.8353

SVM-GGaSB R:0.8407 P:0.8458 F1:0.8432

TABLE III: Average recall, precision and F1-score for each
classifier (G:GPS, Ga:Galileo, S:Sigmoid, B:Bayesian filter-
ing)

Classifier Test D 1 Test D 2 Test D 3 Test D 4
SVM-G 0.8535 0.8568 0.8012 0.7662

SVM-GGa 0.8621 0.8458 0.8372 0.7903
SVM-GGaS 0.8516 0.8612 0.8385 0.8057

SVM-GGaSB 0.8625 0.8707 0.8410 0.8124

TABLE IV: F1-score for each classifier (G:GPS, Ga:Galileo,
S:Sigmoid, B:Bayesian filtering) and each dataset

To see if the spatial distribution of the constellation has
an impact on the classification results, the model is now
trained using only the Dataset 1 and each of the remaining
trajectories (Dataset 2, Dataset 3 and Dataset 4) are used as
test (Table V). This table shows that F1-score is very close to
those in Table III which is a promising result considering that
a single dataset has been used to build the training database.
This result shows that our solution is robust to a difference
in time and that the constellation has a limited impact in a

Classifier Performances
SVM-G R:0.8253 P:0.7795 F1:0.8017

SVM-GGa R:0.8481 P:0.8118 F1:0.8295
SVM-GGaS R:0.8588 P:0.8218 F1:0.8358

SVM-GGaSB R:0.8662 P:0.8218 F1:0.8434

TABLE V: Recall, precision and F1-score for each classifier
(G:GPS, Ga:Galileo, S:Sigmoid, B:Bayesian filtering) using
a single trajectory as training dataset

local environment, which is an unexpected result. Effectively
there is a time difference of 1h30 between Dataset 1 &
Dataset 2 and of 3h30 between Dataset 1 & Dataset 3\4.
As a reminder the constellation period is about 12 hours.
The same test has been conducted but with respectively the
Dataset 2, Dataset 3 and Dataset 4 as training database and
the remaining trajectories as test. The average F1-score is
0.8176 (respectively 0.8165, 0.8122 and 0.8240 for the three
others training/testing configurations).

In order to check if a specific context is leading to larger
number of wrong classifications, the confusion matrix for
the SVM-GGaSB classifier is given in Table VI. It can
be seen from this table that every context has a correct
classification rate of at least 76.5%. The high classification
rate of the canyon samples can be explained by its limited
spatial distribution. To visualize where the errors are located,
the predicted labels are plotted on a satellite view (Fig. 6). It
can be seen that many missclassifications are coming from
transitions or areas with a mix of contexts (such as trees
close to buildings). Scores can also be plotted to have a
better understanding of the Bayesian filtering (Fig. 7). Those
values provide a confidence level of the context detection
results, and hence could be very useful for decision-making
of navigation filter adaptation or path planning application.

True Class
Predicted Class Canyon Open-Sky Trees Urban T% F%

Canyon 2429 0 56 11 97.3 2.7
Open-Sky 0 2313 17 321 87.3 12.7

Trees 207 55 3246 292 85.4 14.6
Urban 590 454 661 5554 76.5 23.5

TABLE VI: Confusion matrix for the SVM-GGaSB classifier

As a final test, testing samples have been filtered depend-
ing on their position to prove that our solution is spatially
generalizable. If a sample has a position at a distance of
at least 3 meters from the closest point in the database the
sample is kept otherwise it is filtered. We can then extract
the confusion matrix built only on those samples (Table
VII). This table shows that similar results than the classifier
without filtering (Table VI) are achieved which demonstrates
the spatial robustness of our solution.

VII. CONCLUSION

In this paper we proposed to used classical GNSS features
provided by any off-the-shelves receiver and additional signal
processing for context classification. We showed the possi-
bility of using GNSS signals to extract the environmental
context information with a mobile platform with an average
F1-score of 0.8240 (with a single dataset as training). We also



True Class
Predicted Class Canyon Open-Sky Trees Urban T% F%

Canyon 525 0 15 13 94.9 5.1
Open-Sky 0 1182 10 116 90.4 9.6

Trees 6 35 1848 263 85.9 14.1
Urban 450 439 414 3180 70.9 29.1

TABLE VII: Confusion matrix in the filtered areas

Fig. 6: Satellite view with the predicted labels ( :Urban,
:Canyon, :Trees, :Open-Sky)

showed that the methodology is robust to different constella-
tion geometries and weathers. Considering the dataset, there
is no GNSS dataset available in the communities making any
comparison with state-of-the art solutions very complex. We
decided to provide publicly this first set of experiments to the
navigation research community. This dataset is going to be
enriched and completed with on-coming experiments from
bigger area and towns. In future works, we plan to provide
additional synchronized sky-facing fisheye images. We think
that the context detection capability can be improved with
additional information coming from such sensor with few

-2 -1.5 -1 -0.5 0 0.5 1 1.5

10
4

-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

10000

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

s
c
o
re

Fig. 7: Confidence score of the context prediction for each
points of the tested trajectory

additional computing. For example, sky-segmentation could
provide information on LOS (Line-of-sight) to each GNSS
satellite. Our future work will focus on a fusion of such
visual information with the GNSS-based ones to improve
the proposed context detection solution.
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